CN1158628A - 含再生原料的生物可降解材料和其制造方法 - Google Patents

含再生原料的生物可降解材料和其制造方法 Download PDF

Info

Publication number
CN1158628A
CN1158628A CN95195309A CN95195309A CN1158628A CN 1158628 A CN1158628 A CN 1158628A CN 95195309 A CN95195309 A CN 95195309A CN 95195309 A CN95195309 A CN 95195309A CN 1158628 A CN1158628 A CN 1158628A
Authority
CN
China
Prior art keywords
weight
rubber
starch
poly
butyl ester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN95195309A
Other languages
English (en)
Inventor
M·索伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metraplast H Jung GmbH
Original Assignee
Metraplast H Jung GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metraplast H Jung GmbH filed Critical Metraplast H Jung GmbH
Publication of CN1158628A publication Critical patent/CN1158628A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0059Degradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable

Abstract

本发明涉及一种含有由胶乳,淀粉和聚-β-羟基丁酯和/或纤维素粉末组成的基体的生物可降解材料。为制成复合材料在此基本的基体中可埋放植物填料,如谷类种子的颗粒或纤维植物的纤维。本发明还涉及可降解材料的制造方法。此方法的特征在于,所有的原料和尤其是橡胶以粉碎的形状存在。将此粉碎的,如成颗粒的原料进行混合和在一螺杆挤压机或一压铸机中塑化。塑化的物料可直接压铸成型或挤压成条,再将此条加工成用于作压铸材料的的颗粒。

Description

含再生原料的生物可降解材料 和其制造方法
本发明涉及一种生物可降解材料和它的制造方法。对于生物可降解材料可理解为是这些材料,它在环境的影响和破坏者的活动影响下被分解。现有已知的生物可降解材料,在其中碗豆被应用作基本物质。此外已知的是,在普通的高聚物中加入淀粉,以便用此方法使达到部分分解。在这种淀粉填充的塑料中只有埋放入的淀粉份额被分解,这样塑料基质就分裂成许多小份。
本发明的目的是建议一种材料,它是完全可生物降解的和适用于形成以点状或纤维状粒子作填料而吸收其中的复合材料。
此任务用在权利要求1至5中建议的基本组成予以解决。所有这些材料含有5-50%(重量)的橡胶和4-25%(重量)的淀粉。在这种基本组分,即上述的橡胶和淀粉中混合入10-50%份额的第三组分。这种组分可以是聚-β-羟基-丁酯或是纤维素粉末。前者通过β-羟基丁酸的聚合得到。它以“Biopol”为标志(Fa,Zeneca)在商业上也可得到。
按本发明材料的主要组分是橡胶。优选采用天然橡胶,因为它是完全可生物降解的。也可采用人造橡胶,它按所采用的添加剂形式至少是部分的或长时间存放后在降解条件下可降解。淀粉粉末以及第三种基本上同样的粉末状组分在基质橡胶中均匀分布和至少仅用肉眼不能辨认。按权利要求1和2本发明的材料各根据橡胶的份额具有或多或少的弹性。因此,它更多适用于制造模制件,在此弹性比强度和稳定性更为重要。
对复合材料而言,取决于埋放的粒子,如点状或纤维状粒子和基质材料之间存在足够的粘合作用。机械性能决定性地取决于粒子和基质之间的界面质量。它表明,按权利要求1和2的材料按GFK(玻璃纤维增强的塑料)的方法可接受相对大量的填料和增强材料。
按本发明作为增强-埋放物是应用再生原料的颗粒状或纤维状物质。这种原料如粉碎的谷类种子或植物纤维。由此得到的材料与权利要求1和2的材料相比其特征为较大的硬度和强度。因此它适用于制造较大的和尤其是平面的模制件,如用于机动车辆的内衬部件。在按本发明的材料中可加入最多约15%的辅助物质。对这种物质可理解为它是对材料改性的,而对材料的机械性能无明显的影响。这种物质例如是增塑剂(如硬脂精),以便改善原料在压铸机或挤压机中的增塑作用(见后面)。它也可以是染料和防蛀咬物质。
本发明的另一目的是,建议按本发明材料的制造方法。橡胶(未交联形式)是熟悉的一种很粘稠的“似树胶”的物质,粉末状或颗粒状物质很难加入其中。这对人造或天然橡胶都是如此。后者一般存在所谓簿皮形状,它在生产地从橡胶植物的胶乳通过水份蒸发而得到。粉末,如淀粉或纤维素或粗粒的颗粒加入橡胶基体中如有必要用非常高效率的切断机和捏合机在高能耗下才有可能。按本发明现建议,橡胶以絮状块或颗粒状加入。它与其它组分很容易在简单的混合器中均匀混合。絮状和颗粒状橡胶在商业上可得到。在下一操作步骤将这样得到的起始混合物在普通的螺杆挤压机中或在普通的压铸机中加热进行塑化。在此处理中橡胶絮块或颗粒可被加热至软化点温度。通过挤压机或压铸机螺杆的作用使原始混合物中的各个组分彻底地混合。通常粘稠的橡胶倾向于固结在上述机器的螺杆上和螺杆空间的内壁上。此作用阻碍了组分的均匀混保。它也导致摩擦增高和因此使被加工物料的温度升高。温度升高导致所不期望的变化,尤其是橡胶变硬。但当按本发明橡胶絮块或橡胶颗粒在挤压机或压铸机中与上述组分混合时,没有出现这种作用。通过以下方法可有效地防止橡胶粘附在螺杆上和机器的内壁上,各个橡胶粒子至少在塑化开始步骤在螺杆空间中包裹一层粉末。在下一加工过程中这些单个的橡胶颗粒连结成均匀的基本物质,添加剂均匀地分布其中。在上述机器的螺杆空间加工的结果是一塑化的、挤压的和可压铸的物质。下一操作步骤是这种物质或作为带子挤压出或浇铸成模型。在第一种情况要将挤压出的材料带子粉碎,即成颗粒。这样按本发明的材料是以颗粒存在,它实际上可任意长时间进行中间贮存和可用于制造压铸件。在后者的情况下按本发明的材料直接压铸成模型和用直接方法获得所需的模件。
原料物质在螺杆空间的塑化作用保持温度在170-180℃表明是有利的。温度低于170℃橡胶不能充分软化和因此添加的物料不能达到满意的掺入。这里温度的影响还有一个作用,特别是加入的天然物质在上述温度经历一个不是非实质性的变化和转化,这对材料的性能也不是不起重要的作用。由于此原因温度不能太多地超过180。主要由淀粉、纤维素和蛋白质组成的天然物质在较高的温度部分起了变化,这样得到的材料不具有所需的性能。特别是含碳的组分如纤维素或淀粉会燃烧或碳化。按本发明的材料能够接受填料份额至65%。由此可制造具有有不同强度和硬度等级的一系列的复合材料。
用按本发明的复合材料可制造压铸件,如盆、板、盘和机动车的内衬件。将制造的物体进行外观直接观察和测试其性能。也制造样品件,这是为了测定各种机械特征参数,如在下面还要解释。所有这些试验得出结论,如果维持以下组成(重量%),能获得具有特别优越性能的材料:
    橡胶                     10-30%
    马铃薯淀粉               5-15%
    聚-β-羟基丁酯/纤维素    20-30%
    填料                     20-60%
    辅助材料                 最多10%
作为复合材料的填料可用各种植物的颗粒和纤维。特别是谷类种子的颗粒如玉米、黑麦和小麦。作为纤维材料可考虑如苧麻纤维或吉贝树带壳的果实的纤维。也可用木材纤维或棉纤维。
如果填料的份额超过60%,材料显得发脆。则含橡胶,马铃薯和聚-β-羟基丁酯(以下称PBHB)及纤维素的基本基质不再可能使埋放的粒子附着在一起,它们的接受能力是似超越的。如果橡胶份额降低至10%以下,也出现材料变脆。橡胶含量多于30%材料弹性增加和赋予复合材料越来越多的性能,即硬度和强度。填料含量大于约60%可观察到机械性能变坏。尤其抗拉强度下降。含再生原料的添加物当然是亲水的,即它吸收水分。如果含再生原料埋放份额多于60%,材料的溶胀能力达到不可容许的程度。此外在高的颗粒份额下当塑化时均匀分布变得困难。辅助材料如柠檬酸作为防蛀咬剂(如防止家鼠和耗子咬)或硬脂精作为增塑剂总量应限制在10%,以在相当大的程度上防止它对机械性能的副作用。
采用爆裂的谷物种子,如爆玉米花的优点是使材料获得较小的密度。此外由于空气包含在材料中使材料的绝热性能提高。
本发明借助于下列实例进一步予以说明:
实施例1
    天然橡胶絮块            26%
    马铃薯淀粉              6%
    爆玉米花                13%
    黑麦                    26%
    PBHB                    26%
    柠檬酸                  4%
实施例2:
    天然橡胶絮块            26%
    马铃薯淀粉              12%
    燕麦                    19%
    爆玉米花                12%
    达玛树脂                12%
    PBHB                    19%
    柠檬酸                  3%
    硬脂精                  2%
    明胶粉                  2%
实施例3
    天然橡胶絮块      13%
    马铃著淀粉        13%
    燕麦              13%
    黑麦              26%
    PBHB              20%
    硬脂精            3%
    柠檬酸            3%
    明胶粉            2%
    爆玉米花          7%
在按实施例1-3的组分中加入硬脂精作为增塑剂。在此组分中“基质”是由橡胶、马铃著淀粉和PBHB组成的。在上述和也在下面例举的实施例中马铃薯淀粉是基质的主要组分,特别是由于成本的原因使用它。也可以采用其它淀粉如大米、玉米或谷类淀粉。
按下列进行按本发明材料的制造:
絮状块或颗粒状的橡胶与其余组分在一普通混合机中进行均匀的混合。至少马铃薯淀粉在此成细粉末或粉材,而填料如玉米,黑麦、燕麦成颗粒状。混合后胶乳-絮状块在其余的组分中均匀分布或与此相反。这样准备好的起始混合物在75吨压铸机中进行塑化。为此将它加入机器的加料漏斗中,通过此漏斗进入机器的螺杆空间。机器是这样进行加热,即在螺杆空间存在的物料具有170℃-180的温度。在此温度范围橡胶软化。通过螺杆的转动使填料和辅助料加入到橡胶基质中去。在上述的温度加入的天然物质也起变化。但是试验在此没有进行。但可推测,在螺杆空间的温度对天然物质的作用对以后材料的性能不是不重要的。当然至少在加热状态粘性的橡胶絮块在螺杆或在螺杆空间的内壁上固结可以用此方法防止,即将橡胶絮块用淀粉或其它粉状组分包裹,物料在螺杆空间的塑化最晚约在1分钟后结束。
用塑化的物料压铸各种模制件如盆,盘和样品。样品用于按下面说明的试验测定机械特征参数。
下面用Z1,Z2和Z3标记实施例1-3的组成。
按DIN53452的弯曲试验:
表1:
抗弯强度(N/mm2)
    样品号     Z1     Z2     Z3
    1     23,38     22,22     40,42
    2     25,09     21,17     43,17
    3     23,39     21,55     37,36
    4     23,86     19,43     41,29
    5     20,91     19,54     38,62
平均抗弯强度     23,33     20,78     40,17
表2:在最大力时的伸长(%)
    样品号     Z1     Z2     Z3
    1     2,35     3,14     3,21
    2     3,00     2,36     3,14
    3     2,47     2,57     2,86
    4     2,23     2,71     3,08
    5     1,68     2,28     3,05
  最大拉力时的平均伸长     2,35     2,61     3,07
为进行按表1和2的弯曲试验采用带直角的平均截面为416mm×9.89mm的样品。测试速度为2mm/分钟。
按DIN 53457在弯曲试验中测定弹性模量:
用平均厚度为4.1mm和宽度平均为9.9mm的样品进行测试。
表3:弹性模量(N/mm2)
    样品号     Z1     Z2     Z3
    1     1821,2     1270,1     1749,9
    2     1707,3     1472,5     1844,7
    3     1725,0     1177,3     1881,4
  平均E模量     1751,2     1306,6     1825,3
纵向膨胀系数的测定:
由Z1和Z2压铸尺寸为15×10.5×117mm的样品。在加热速度为120k/h测定纵向膨胀系数。所有三个样品至约80℃表明相当恒定的膨胀曲线。恒定范围内的膨胀系数列于表4。
表4:膨胀系数〔10-5K-1〕:
    Z1     Z2     Z3
    12,5     13,9     12
按DIN 53735测定熔融指数:
此试验只用按实施例1(Z1)的组成材料进行。测试温度为190℃。为测定熔融指数将小块的样品放在测试圆筒中和将其加热。测试圆筒下面有一喷嘴,软化的物料通过一个装在圆筒中的压力冲头(负荷2.61kp)从喷嘴中成条子挤压出来。测试结果MFI(熔体流动指数)为2.59g/10分钟。
按DIN 75200测定燃烧性能:
燃烧性能的测定特别是对用于机动车辆内衬的材料有要求。用压铸方法制造板材和超过48小时在标准气候条件(23℃,相对空气温度为50%)存放。板材的尺寸为139mm×79mm×3mm。将此板材在边缘上点燃和测定燃烧距离(Brenn strecke)和燃烧时间。对一每组成(Z1至Z3)测试5个试样,下表是归纳了各五个试样的平均燃烧速度和最大燃烧速度。
表5:燃烧性能(平均和最大燃烧速度mm/分表示)
    Z1     Z2     Z3
平均燃烧速度     33,4     18,2     44,4
最大燃烧速度     39,8     19,9     49,0
密度测定:
为测定密度将2.9mm×79mm×139mm的压铸板材称量,精度至0.001g。测定板材的体积和从体积和重量值计算出密度。
表6:密度(g/cm3)
    Z1     Z2     Z3
平均密度     1,24     1,23     1,20
按DIN 52351测定绝对湿含量:
为测定相对湿度将组成为Z1,Z2和Z3的板材在标准气候条件下(23℃,相对空气湿度为50%)存放48小时和然后测定它在湿空气和水中存放后与干燥状态相比重量的增加。其结果归纳在表7。
表7:平均绝对湿含量(%)
    Z1     Z2     Z3
平均绝对湿含量     0,21     0,81     0,43
根据DIN 52351测定吸水和溶胀
为测定吸水和溶胀将组成为Z1、Z2和Z3材料的板材起初在标准气候(23℃,相对空气湿度为50%)存放48小时。一部分样品在湿空所(相对湿度为95%,55℃)存放和在24,48,72,96小时后测定百分值表示的平均厚度和质量的改变。
表8:平均厚度和平均质量的变化
(厚度变化Δd和质量变化Δm以%表示)在湿空气和水中存放
Δ      Z1      Z2      Z3
Δd/Δm在空气中存放后     24h   0,00/0,61   1,54/1,25   0,96/0,86
    48h   0,27/0,68   1,54/1,25   0,96/0,94
    72h   0,83/0,68   1,54/1,25   0,96/94
    96h       -       -      -
Δd/Δm在水中存放后     24h   11,24/2,14   15,85/3,76   2,25/0,96
    48h   13,61/2,83   15,85/5,12   3,46/1,52
    72h   14,87/3,56   16,69/6,35   3,46/1,86
    96   14,87/4,19   16,69/7,33   3,46/2,19
按DIN 53455在拉伸试验中测定张力和伸长:
由组成Z1-Z3制造平均厚度为4mm和平均宽度为10mm(标准棒Nr.3)的样品棒。拉伸强度和伸长的测定一次在测试速度5mm/min(分钟)和另一次在50mm/min进行。伸长-与DIN标准的偏差-从夹持钳口距离变化来测定。试验结果归纳在表9和10。
表9:拉伸强度(N/mm2)
    样品号                Z1                Z2                Z3
 5mm/min  50mm/min  5mm/min  50mm/min  5mm/min  50mm/min
    1   5,92   7,94   14,11   14,69   12,10   14,01
    2   6,79   6,65   13,46   10,98   11,68   16,86
    3   6,64   7,04   10,13   13,35   11,73   19,48
    4   6,83   7,84   11,18   13,01   11,43   13,98
    5   6,57   12,05   14,05   16,49   11,10   13,42
    平均拉伸强度   6,55   8,30   12,57   13,70   11,61   15,55
表10:在最大力时的伸长(%)
    样品号                Z1                Z2                 Z3
 5 mm/min  50mm/min  5mm/min  50mm/min  5mm/min  50mm/min
    1   6,54   8,54   9,22   9,16   11,84   13,46
    2   6,86   7,30   7,86   8,76   11,92   14,04
    3   7,16   8,86   8,00   6,80   12,00   15,84
    4   7,92   8,66   8,78   7,60   11,32   12,62
    5   7,18   8,66   8,76   10,10   12,56   10,84
在最大力时的平均伸长   7,13   8,44   8,52   8,48   11,93   13,36
除了上述实施例1-3外用极其不同的组成制造其它的材料和用压铸法加工。由此制造出盘、盆和板状压铸件。此实施例的组分和含量范围归纳在表11。
表11:实施例4-19(含量数据以重量%表示)
                                                                实施例
  4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19
    基质,总量   50   70   33,4   60   80   80   80   75   63,4   65,8   68,7   82,5   60   85   66,6   53,5
    絮块橡胶   10   20   6,3   10   30   40   50   25   6,7   9,9   21,5   8   6   25   8,3   4,1
    马铃薯淀粉   10   10   6,3   -   10   20   20   -   10   6,2   4,3   5,3   4   10   8,3   4,1
    ″PBHB″   30   20   20,8   10   20   -   10   25   46,7   -   -   53,2   26   50   25   41,2
    纤维素粉   -   20   -   40   20   20   -   25   -   49,7   42,9   16   24   -   25   4,1
    填料,总量   40   30   56,3   40   20   20   20   25   36,8   31   21,5   5,3   38   15   33,4   34,1
    爆玉米花   -   -   -   -   -   -   -   -   6,7   9,3   4,3   -   -   -   -   -
    黑麦   -   -   -   -   -   -   -   -   10   3,1   -   -   18   -   -   -
    燕麦   -   -   -   -   -   -   -   -   6,7   -   -   -   -   -   -   -
    玉米   40   30   56,3   40   20   20   20   25   6,7   12,4   4,3   5,3   16   15   16,7   21,8
    黄豆   -   -   -   -   -   -   -   -   6,7   6,2   -   -   4   -   16,7   8,2
    石板粉   -   -   -   -   -   -   -   -   -   -   12,9   -   -   -   -   4,1
    辅助料总量   10   -   10,5   -   -   -   -   -   -   3,1   9,9   12,2   2   -   -   12,3
    柠檬酸   -   -   -   -   -   -   -   -   -   3,1   1,3   1,6   -   -   -   4,1
    达玛树脂   10   -   6,3   -   -   -   -   -   -   -   4,3   5,3   1   -   -   4,1
    硬脂精   -   -   -   -   -   -   -   -   -   -   4,3   5,3   -   -   -   4,1
    明胶粉   -   -   4,2   -   -   -   -   -   -   -   -   -   1   -   -   -

Claims (16)

1.生物可降解的材料,其特征在于以下组成(重量%)
    橡胶               5-50%
    淀粉               4-25%
    聚-β-羟基丁酯     10-50%
    辅助材料           0-15%
2.生物可降解材料,其特征在于以下组成(重量%)
    橡胶               5-50%
    淀粉               4-25%
    纤维素粉末         10-50%
    辅助材料           0-15%
3.含有热塑性基质和其中埋放的再生原料的粒子-或纤维状填料的生物可降解复合材料,其特征在于,基质是由下列物质组成
    橡胶               5-50%(重量)
    淀粉               4-25%(重量)
    聚-β-羟基丁酯     10-50%(重量)
4.含有热塑性基质和其中埋放的再生原料的粒子-或纤维状填料的生物可降解复合材料,其特征在于,基质是由下列物质组成
    橡胶               5-50%(重量)
    淀粉               4-25%(重量)
    纤维素粉末         10-50%(重量)
5.含有热塑性基质和其中埋放的再生原料的粒子-和纤维状填料的生物可降解复合材料,其特征在于,基质是由下列物质组成
    橡胶               5-50%(重量)
    淀粉               4-25%(重量)
    聚-β-羟基丁酯和纤维素
    的混合物           10-50%(重量)
6.按权利要求3,4和5之一项的材料,其特征在于,填料的份额最多为65%。
7.按权利要求6的材料,其特征在于,下列的组成(重量%)
    橡胶                    10-30%
    马铃薯淀粉              5-15%
    聚-β-羟基丁酯和/或
    纤维素                  20-30%
    填料                    25-60%
    辅助材料                最多10%
8.按权利要求3-7之一项的材料,其特征在于,填料是谷类的种子或植物纤维。
9.按权利要求3-8之一项的原料,其特征在于,是用爆裂的谷类种子的粒子作填料。
10.按权利要求1-9之一项的材料,其特征在于,橡胶是天然橡胶。
11.按权利要求10的材料,其特征在于,有下列组成(重量%):
    天然橡胶                26%
    马铃薯淀粉              6%
    爆玉米花                13%
    黑麦                    26%
    聚-β-羟基丁酯          25%
    柠檬酸                  4%
12.按权利要求10的材料,其特征是,有下列组成(重量%)
    天然橡胶                13%
    马铃薯淀粉              13%
    燕麦                    13%
    黑麦                    26%
    聚-β-羟基丁酯          20%
    硬脂精                  3%
    柠檬酸                  3%
    明胶粉末                2%
    爆玉米花                7%
13.按权利要求10的材料,其特征是,有下列组成(重量%):
    天然橡胶                19%
    马铃薯淀粉              12%
    燕麦                    19%
    爆玉米花                12%
    达玛树脂                12%
    聚-β-羟基丁酯          19%
    柠檬酸                  3%
    硬脂精                  2%
    明胶粉                  2%
14.按权利要求1-3之一项材料的制造方法,其特征是,有以下步骤
a)将原料,如淀粉,聚-β-羟丁酯,填料和辅助料准备成粉碎的形状,即粉末或粒子;
b)将橡胶准备成絮块或颗粒状;
c)将原料均匀相互混合;
d)这样得到的起始混合物在加热下在螺杆挤压机或压铸机塑化;
e)将塑化物料从挤压机中或压铸机中排出和使之冷却。
15.按权利要求14的方法,其特征在于,在按步骤d)塑化时温度维持在170-180℃。
16.按权利要求15的方法,其特征在于,挤压出的物料进行造粒和作原料用于制造压铸模件。
CN95195309A 1994-08-27 1995-08-28 含再生原料的生物可降解材料和其制造方法 Pending CN1158628A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEG9413921.0U 1994-08-27
DE9413921 1994-08-27

Publications (1)

Publication Number Publication Date
CN1158628A true CN1158628A (zh) 1997-09-03

Family

ID=6912965

Family Applications (1)

Application Number Title Priority Date Filing Date
CN95195309A Pending CN1158628A (zh) 1994-08-27 1995-08-28 含再生原料的生物可降解材料和其制造方法

Country Status (16)

Country Link
US (1) US5719203A (zh)
EP (1) EP0777699B1 (zh)
JP (1) JP3447298B2 (zh)
KR (1) KR970705606A (zh)
CN (1) CN1158628A (zh)
AT (1) ATE185828T1 (zh)
AU (1) AU3473795A (zh)
BR (1) BR9508812A (zh)
CA (1) CA2197981C (zh)
CZ (1) CZ53697A3 (zh)
DE (1) DE59507100D1 (zh)
DK (1) DK0777699T3 (zh)
ES (1) ES2140702T3 (zh)
MX (1) MX9701133A (zh)
PL (1) PL181959B1 (zh)
WO (1) WO1996006886A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023103114A1 (zh) * 2021-12-10 2023-06-15 王素贞 一种环保全生物降解塑料及片材制品

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08109278A (ja) * 1994-10-12 1996-04-30 Hideo Kakigi 発泡成形体、発泡成形体用原料、および発泡成形体の製造方法
DE19543635A1 (de) * 1995-11-23 1997-05-28 Hp Chemie Pelzer Res & Dev Verbundwerkstoffe aus Polyhydroxyfettsäuren und Fasermaterialien
DE19705280C1 (de) * 1997-02-12 1998-03-05 Daimler Benz Ag Faserverstärktes Kunststoff-Formteil und Verfahren zu dessen Herstellung
WO1998036018A1 (en) * 1997-02-14 1998-08-20 Foster-Miller, Inc. Biodegradable polymers
DE19802718C2 (de) * 1998-01-24 2002-02-21 Hubert Loick Vnr Gmbh Thermoplastische, kompostierbare Polymerzusammensetzung
US6074587A (en) 1998-02-13 2000-06-13 Cs Enviromental Technology Ltd. Degradable container and a method of forming same
EP0943410A1 (de) * 1998-03-19 1999-09-22 Heinrich Wolf Einstufiges Verfahren zur Herstellung von Dekorformteilen aus nachwachsenden Rohstoffen
MXPA02002706A (es) * 1999-09-22 2002-07-30 Econeer Co Ltd Composicion para moldear articulos y metodo para preparar articulos moldeados a partir de esta composicion.
DE10027905A1 (de) * 2000-06-06 2001-12-13 Bayer Ag Biologisch abbaubare Formmassen mit sehr guter Fließfähigkeit sowie deren Herstellung und Verwendung
US7402618B2 (en) * 2000-11-23 2008-07-22 Hao Xu Biodegradable composition for the preparation of tableware, drink container, mulching film and package and method for preparing the same
CN1121452C (zh) * 2000-11-23 2003-09-17 许浩 生物降解环保型餐具的配方及生产工艺
AU2003241846A1 (en) * 2002-05-24 2003-12-12 Nexsol Technologies, Inc. Biodegradable compound and preparation method thereof, and molded material made of the same and molding method thereof
AU2003215386A1 (en) * 2003-02-06 2004-09-06 Don-B Corporation Additive for rubber elastomers
WO2004072118A2 (en) * 2003-02-06 2004-08-26 Don-B Corporation Additive for rubber elastomers
JPWO2005044922A1 (ja) * 2003-11-07 2007-11-29 株式会社ネイチャートラスト 生分解・崩壊性樹脂組成物
DE102006041308A1 (de) * 2006-09-01 2008-03-20 Center For Abrasives And Refractories Research & Development C.A.R.R.D. Gmbh Verfahren zum Einbringen von Hartstoffen in eine Reifenlauffläche
JP5845721B2 (ja) * 2011-08-25 2016-01-20 日本電気株式会社 水分測定方法及び水分測定装置
DE102018132738A1 (de) * 2018-12-18 2020-06-18 Georg-August-Universität Göttingen Stiftung Öffentlichen Rechts Einsatz von expandiertem und hydrophobem Popcorn zur Herstellung von dreidimensionalen Formteilen
DE102019204050A1 (de) * 2019-03-25 2020-10-01 Timm Oberhofer Haushaltsware aus biologisch abbaubarem Kunststoff und ganz überwiegend Zellulose

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2900402B2 (ja) * 1989-05-26 1999-06-02 エヌオーケー株式会社 生分解性ゴム組成物
DE4025523A1 (de) * 1990-08-11 1992-02-13 Werner Georg Munk Verrottbarer behaelter, verfahren zu seiner herstellung und verwendung
FR2697259B1 (fr) * 1992-10-28 1996-06-07 Roquette Freres Compositions thermoformables biodegradables, leur procede de preparation et leur utilisation pour l'obtention d'articles thermoformes.
WO1994014886A1 (de) * 1992-12-19 1994-07-07 Metraplast H. Jung Gmbh Zusammensetzung für einen werkstoff, insbesondere für eine spritzgussmasse

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023103114A1 (zh) * 2021-12-10 2023-06-15 王素贞 一种环保全生物降解塑料及片材制品

Also Published As

Publication number Publication date
PL181959B1 (pl) 2001-10-31
CA2197981C (en) 2002-11-12
DK0777699T3 (da) 2000-04-17
PL318879A1 (en) 1997-07-07
JP3447298B2 (ja) 2003-09-16
WO1996006886A1 (de) 1996-03-07
EP0777699A1 (de) 1997-06-11
ATE185828T1 (de) 1999-11-15
EP0777699B1 (de) 1999-10-20
ES2140702T3 (es) 2000-03-01
DE59507100D1 (de) 1999-11-25
MX9701133A (es) 1997-10-31
CZ53697A3 (en) 1997-07-16
JPH10504851A (ja) 1998-05-12
AU3473795A (en) 1996-03-22
KR970705606A (ko) 1997-10-09
BR9508812A (pt) 1997-12-23
CA2197981A1 (en) 1996-03-07
US5719203A (en) 1998-02-17

Similar Documents

Publication Publication Date Title
CN1158628A (zh) 含再生原料的生物可降解材料和其制造方法
US6375881B1 (en) Process for making a plastic material
CN1038422C (zh) 以淀粉为基料不溶于水的制品及其制备方法
Gironès et al. Natural fiber-reinforced thermoplastic starch composites obtained by melt processing
US9109118B2 (en) Cellulosic inclusion thermoplastic composition and molding thereof
CN107540939B (zh) 由再循环和可再生的成分形成的长纤维热塑性塑料
US20120090759A1 (en) Method of producing composite materials
CN1870905A (zh) 宠物磨牙物
CN1646008A (zh) 宠物磨牙物及其生产方法
CN1048551A (zh) 含结构被破坏淀粉的聚合物基混合组合物
CN1105580C (zh) 塑性材料的棉球棒
CN103265818A (zh) 一种木塑复合材料用的复合润滑剂
Wu et al. Preparation and properties of biodegradable planting containers made with straw and starch adhesive
Yee et al. Mechanical and water absorption properties of poly (vinyl alcohol)/sago pith waste biocomposites
JP4732185B2 (ja) 生分解性ポリエステル樹脂複合材料の製造方法
CN102421314A (zh) 热塑性补强材料
CN101240096A (zh) 麦秸纤维/热塑性塑料复合材料及其制造工艺
RU2691988C1 (ru) Биологически разрушаемая термопластичная композиция
KR101013446B1 (ko) 셀룰로오스 유도체 및 화학섬유를 포함하는 생분해성 수지 조성물
JP2009096875A (ja) 熱可塑性樹脂組成物の製造方法及び成形体の製造方法
CN1618851A (zh) 热塑性淀粉材料的制备方法
WO2012004347A1 (de) Gefüllte formmaassen
KR101249407B1 (ko) 열가소성 전분의 제조방법
CN112300593A (zh) 一种弹性生物降解复合塑料及制备方法
WO2024054108A1 (en) A method for producing compostable biodegradable resin materials for articles of manufacture thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C01 Deemed withdrawal of patent application (patent law 1993)
WD01 Invention patent application deemed withdrawn after publication