CN115819531B - Application of overexpression of MtWUSCHEL gene in increasing leaf area and delaying flowering of leguminous forage - Google Patents
Application of overexpression of MtWUSCHEL gene in increasing leaf area and delaying flowering of leguminous forage Download PDFInfo
- Publication number
- CN115819531B CN115819531B CN202210951822.2A CN202210951822A CN115819531B CN 115819531 B CN115819531 B CN 115819531B CN 202210951822 A CN202210951822 A CN 202210951822A CN 115819531 B CN115819531 B CN 115819531B
- Authority
- CN
- China
- Prior art keywords
- gene
- alfalfa
- mtwuschel
- mtwus
- over
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 55
- 239000004459 forage Substances 0.000 title claims abstract description 26
- 230000017260 vegetative to reproductive phase transition of meristem Effects 0.000 title claims abstract description 25
- 230000002018 overexpression Effects 0.000 title claims abstract description 23
- 230000001965 increasing effect Effects 0.000 title claims abstract description 13
- 241000219823 Medicago Species 0.000 claims abstract description 55
- 241000196324 Embryophyta Species 0.000 claims abstract description 49
- 235000017587 Medicago sativa ssp. sativa Nutrition 0.000 claims abstract description 44
- 230000009261 transgenic effect Effects 0.000 claims abstract description 24
- 239000002773 nucleotide Substances 0.000 claims abstract description 5
- 125000003729 nucleotide group Chemical group 0.000 claims abstract description 5
- 240000004658 Medicago sativa Species 0.000 claims abstract 5
- 235000010624 Medicago sativa Nutrition 0.000 claims abstract 5
- 239000013604 expression vector Substances 0.000 claims abstract 2
- 238000010367 cloning Methods 0.000 claims description 5
- 238000003757 reverse transcription PCR Methods 0.000 claims description 4
- 238000005516 engineering process Methods 0.000 claims description 3
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 2
- MUKYLHIZBOASDM-UHFFFAOYSA-N 2-[carbamimidoyl(methyl)amino]acetic acid 2,3,4,5,6-pentahydroxyhexanoic acid Chemical compound NC(=N)N(C)CC(O)=O.OCC(O)C(O)C(O)C(O)C(O)=O MUKYLHIZBOASDM-UHFFFAOYSA-N 0.000 claims 1
- 241000707216 Scopelarchidae Species 0.000 claims 1
- 241000819233 Tribulus <sea snail> Species 0.000 claims 1
- 229940047183 tribulus Drugs 0.000 claims 1
- 244000025254 Cannabis sativa Species 0.000 abstract description 6
- 238000004458 analytical method Methods 0.000 abstract description 5
- 230000003111 delayed effect Effects 0.000 abstract description 5
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 230000002068 genetic effect Effects 0.000 abstract description 3
- 230000009466 transformation Effects 0.000 abstract description 3
- 230000001737 promoting effect Effects 0.000 abstract description 2
- 241000219828 Medicago truncatula Species 0.000 description 25
- 239000002609 medium Substances 0.000 description 14
- 239000013598 vector Substances 0.000 description 10
- 239000007787 solid Substances 0.000 description 9
- 241000589158 Agrobacterium Species 0.000 description 7
- 239000011550 stock solution Substances 0.000 description 7
- 235000019750 Crude protein Nutrition 0.000 description 6
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 6
- 229930002875 chlorophyll Natural products 0.000 description 5
- 235000019804 chlorophyll Nutrition 0.000 description 5
- 230000012010 growth Effects 0.000 description 5
- 238000012216 screening Methods 0.000 description 5
- 108091026890 Coding region Proteins 0.000 description 4
- 206010020649 Hyperkeratosis Diseases 0.000 description 4
- 229930006000 Sucrose Natural products 0.000 description 4
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000005720 sucrose Substances 0.000 description 4
- 229930186147 Cephalosporin Natural products 0.000 description 3
- 239000007640 basal medium Substances 0.000 description 3
- 230000003115 biocidal effect Effects 0.000 description 3
- 229940124587 cephalosporin Drugs 0.000 description 3
- 150000001780 cephalosporins Chemical class 0.000 description 3
- 230000004069 differentiation Effects 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 235000021374 legumes Nutrition 0.000 description 3
- 239000010413 mother solution Substances 0.000 description 3
- 230000001131 transforming effect Effects 0.000 description 3
- 229920001817 Agar Polymers 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 2
- 229920002148 Gellan gum Polymers 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- NWBJYWHLCVSVIJ-UHFFFAOYSA-N N-benzyladenine Chemical compound N=1C=NC=2NC=NC=2C=1NCC1=CC=CC=C1 NWBJYWHLCVSVIJ-UHFFFAOYSA-N 0.000 description 2
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 2
- 239000005708 Sodium hypochlorite Substances 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 150000002505 iron Chemical class 0.000 description 2
- 229930027917 kanamycin Natural products 0.000 description 2
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 2
- 229960000318 kanamycin Drugs 0.000 description 2
- 229930182823 kanamycin A Natural products 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 235000016709 nutrition Nutrition 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- JQXXHWHPUNPDRT-WLSIYKJHSA-N rifampicin Chemical compound O([C@](C1=O)(C)O/C=C/[C@@H]([C@H]([C@@H](OC(C)=O)[C@H](C)[C@H](O)[C@H](C)[C@@H](O)[C@@H](C)\C=C\C=C(C)/C(=O)NC=2C(O)=C3C([O-])=C4C)C)OC)C4=C1C3=C(O)C=2\C=N\N1CC[NH+](C)CC1 JQXXHWHPUNPDRT-WLSIYKJHSA-N 0.000 description 2
- 229960001225 rifampicin Drugs 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000009105 vegetative growth Effects 0.000 description 2
- 239000005631 2,4-Dichlorophenoxyacetic acid Substances 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- SQUHHTBVTRBESD-UHFFFAOYSA-N Hexa-Ac-myo-Inositol Natural products CC(=O)OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC(C)=O SQUHHTBVTRBESD-UHFFFAOYSA-N 0.000 description 1
- FAIXYKHYOGVFKA-UHFFFAOYSA-N Kinetin Natural products N=1C=NC=2N=CNC=2C=1N(C)C1=CC=CO1 FAIXYKHYOGVFKA-UHFFFAOYSA-N 0.000 description 1
- 102100025169 Max-binding protein MNT Human genes 0.000 description 1
- 229910021260 NaFe Inorganic materials 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 101000781915 Oryza sativa subsp. japonica WUSCHEL-related homeobox 1 Proteins 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 208000020584 Polyploidy Diseases 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000007844 bleaching agent Substances 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229930002868 chlorophyll a Natural products 0.000 description 1
- 229930002869 chlorophyll b Natural products 0.000 description 1
- NSMUHPMZFPKNMZ-VBYMZDBQSA-M chlorophyll b Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C=O)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 NSMUHPMZFPKNMZ-VBYMZDBQSA-M 0.000 description 1
- 239000012881 co-culture medium Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 235000019784 crude fat Nutrition 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 229960000367 inositol Drugs 0.000 description 1
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 1
- QANMHLXAZMSUEX-UHFFFAOYSA-N kinetin Chemical compound N=1C=NC=2N=CNC=2C=1NCC1=CC=CO1 QANMHLXAZMSUEX-UHFFFAOYSA-N 0.000 description 1
- 229960001669 kinetin Drugs 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 235000009973 maize Nutrition 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 239000012452 mother liquor Substances 0.000 description 1
- 235000001968 nicotinic acid Nutrition 0.000 description 1
- 229960003512 nicotinic acid Drugs 0.000 description 1
- 239000011664 nicotinic acid Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 235000019629 palatability Nutrition 0.000 description 1
- 230000008121 plant development Effects 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- ZUFQODAHGAHPFQ-UHFFFAOYSA-N pyridoxine hydrochloride Chemical compound Cl.CC1=NC=C(CO)C(CO)=C1O ZUFQODAHGAHPFQ-UHFFFAOYSA-N 0.000 description 1
- 229960004172 pyridoxine hydrochloride Drugs 0.000 description 1
- 235000019171 pyridoxine hydrochloride Nutrition 0.000 description 1
- 239000011764 pyridoxine hydrochloride Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000001850 reproductive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 210000000603 stem cell niche Anatomy 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- -1 strains Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- DPJRMOMPQZCRJU-UHFFFAOYSA-M thiamine hydrochloride Chemical compound Cl.[Cl-].CC1=C(CCO)SC=[N+]1CC1=CN=C(C)N=C1N DPJRMOMPQZCRJU-UHFFFAOYSA-M 0.000 description 1
- 229960000344 thiamine hydrochloride Drugs 0.000 description 1
- 235000019190 thiamine hydrochloride Nutrition 0.000 description 1
- 239000011747 thiamine hydrochloride Substances 0.000 description 1
- 108091006107 transcriptional repressors Proteins 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/146—Genetically Modified [GMO] plants, e.g. transgenic plants
Landscapes
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及一种茎尖干细胞决定相关的转录因子WUSCHEL(WUS)基因的应用,尤其涉及一种过表达蒺藜苜蓿MtWUSCHEL(简称MtWUS)基因在增加豆科牧草(如紫花苜蓿)叶片面积和延迟开花中的应用。属于生物基因工程技术领域。The present invention relates to an application of a transcription factor WUSCHEL (WUS) gene related to stem cell determination in shoot apex, and in particular to an application of an overexpressed Medicago truncatula MtWUSCHEL (abbreviated as MtWUS) gene in increasing the leaf area of leguminous forage (such as alfalfa) and delaying flowering, belonging to the field of biological genetic engineering technology.
背景技术Background technique
紫花苜蓿素有“牧草之王”的美称,是世界上利用最早、栽培最广的一种优良的豆科牧草,是畜牧业生产中重要的蛋白饲料来源之一,因兼具抗逆性强、产量高、适口性佳等优点,具有极大的生产利用潜力和研究价值。但我国的紫花苜蓿存在产量较低、品质较差等问题,远远不能满足畜牧业和草业发展的多方面的需求,因此迫切需要提高苜蓿的产量和质量水平,以满足市场的需要。Alfalfa is known as the "king of forage grass". It is the earliest and most widely cultivated excellent legume forage grass in the world. It is one of the important sources of protein feed in animal husbandry production. It has great production and utilization potential and research value because of its strong stress resistance, high yield and good palatability. However, my country's alfalfa has problems such as low yield and poor quality, which is far from meeting the various needs of animal husbandry and grass industry development. Therefore, it is urgent to improve the yield and quality of alfalfa to meet the needs of the market.
苜蓿的蛋白质主要存在于叶片中,而且叶片最多可贡献产草量的60%,因此叶片不仅是苜蓿生长发育、产量构成和品种特性的重要指标,更是反映苜蓿牧草营养价值的重要指标之一。一般而言,叶片面积越大,蛋白质含量越丰富,苜蓿的营养价值就越高,利用价值也就相对越高。因而叶量丰富、蛋白含量高、品质优质的苜蓿新品种的选育一直是苜蓿育种工作者追求的目标。The protein of alfalfa is mainly found in the leaves, and the leaves can contribute up to 60% of the grass yield. Therefore, the leaves are not only an important indicator of alfalfa growth and development, yield composition and variety characteristics, but also one of the important indicators reflecting the nutritional value of alfalfa forage. Generally speaking, the larger the leaf area, the richer the protein content, the higher the nutritional value of alfalfa, and the higher the utilization value. Therefore, the selection and breeding of new alfalfa varieties with rich leaves, high protein content and high quality has always been the goal pursued by alfalfa breeders.
开花是苜蓿从营养生长到生殖生长转变的关键,在花期时牧草质量下降是牧草作物普遍存在的问题,这对苜蓿牧草产量的影响很大。设法延迟苜蓿开花,有望在以下几个方面得到改善:一是其营养生长阶段被延长,生物量的积累增加,且更长时间地保持牧草的高品质;二是通过延迟开花,还可以保护植株免受冬末和早春霜冻的影响;三是可以通过延长苜蓿的收获时间来方便田间管理。然而目前苜蓿开花时间和生物量调控的遗传和基因组基础仍不清楚,这主要是由于该物种的同源多倍体特性和缺乏足够的基因组资源。Flowering is the key to the transition of alfalfa from vegetative growth to reproductive growth. The decline in forage quality during the flowering period is a common problem for forage crops, which has a great impact on alfalfa forage yield. Trying to delay alfalfa flowering is expected to improve the following aspects: first, its vegetative growth stage is extended, biomass accumulation is increased, and the high quality of forage is maintained for a longer time; second, by delaying flowering, the plant can be protected from the effects of late winter and early spring frost; third, the harvest time of alfalfa can be extended to facilitate field management. However, the genetic and genomic basis of alfalfa flowering time and biomass regulation is still unclear, mainly due to the autologous polyploid characteristics of the species and the lack of sufficient genomic resources.
WUS是WOX(WUSCHEL-RELATED HOMEOBOX)基因家族的成员,在植物发育的关键时期起到重要的调控作用,包括干细胞生态位的维持和茎顶端分生组织(SAM)的发育等(Clark,2001;Fletcher,2002;Kieffer et al.,2006;Laux et al.,1996)。水稻中OsWUS的功能缺失,导致分蘖数降低(Xia et al.,Plant Journal,2020,104,1635-1647)。在玉米中,ZmWUS1和ZmWUS2在腋生分生组织(AM)中高表达,参与了分枝调控等(Nardmann and Werr,2006)。在蒺藜苜蓿中,有报道WUS的同源基因HDL(HEADLESS)作为一个转录抑制因子发挥功能。HDL的功能缺失突变体表现为腋生分生组织发育受阻并丧失顶端优势、叶片呈心形等(Ikeda et al.,2009;Meng et al.,2019)。但关于过表达蒺藜苜蓿MtWUSCHEL基因在增加豆科牧草(如紫花苜蓿)叶片面积和延迟开花中的应用还未见报道。WUS is a member of the WOX (WUSCHEL-RELATED HOMEOBOX) gene family and plays an important regulatory role in key periods of plant development, including the maintenance of stem cell niches and the development of the stem apical meristem (SAM) (Clark, 2001; Fletcher, 2002; Kieffer et al., 2006; Laux et al., 1996). The functional loss of OsWUS in rice leads to a decrease in the number of tillers (Xia et al., Plant Journal, 2020, 104, 1635-1647). In maize, ZmWUS1 and ZmWUS2 are highly expressed in the axillary meristem (AM) and are involved in branching regulation (Nardmann and Werr, 2006). In Medicago truncatula, it has been reported that the homologous gene HDL (HEADLESS) of WUS functions as a transcriptional repressor. The loss-of-function mutants of HDL show blocked development of axillary meristems and loss of apical dominance, heart-shaped leaves, etc. (Ikeda et al., 2009; Meng et al., 2019). However, there are no reports on the application of overexpression of the MtWUSCHEL gene in increasing leaf area and delaying flowering in leguminous forages (such as alfalfa).
发明内容Summary of the invention
针对现有技术的不足,本发明要解决的问题是提供一种过表达蒺藜苜蓿MtWUSCHEL(MtWUS)基因在增加豆科牧草叶片面积和延迟开花中的应用。In view of the shortcomings of the prior art, the problem to be solved by the present invention is to provide an application of overexpressing Medicago truncatula MtWUSCHEL (MtWUS) gene in increasing the leaf area of leguminous forage and delaying flowering.
本发明所述过表达蒺藜苜蓿MtWUSCHEL(MtWUS)基因在增加豆科牧草叶片面积和延迟开花中的应用;其中所述蒺藜苜蓿MtWUSCHEL基因的核苷酸序列如SEQ ID No.1所示,该基因编码的氨基酸序列如SEQ ID No.2所示;所述应用是通过RT-PCR技术从蒺藜苜蓿中克隆MtWUSCHEL基因编码序列,构建植物过表达载体,进行植物转基因操作导入豆科牧草植物细胞,获得过表达MtWUSCHEL基因的豆科牧草转基因株系实现。The invention discloses an application of the overexpressed Medicago truncatula MtWUSCHEL (MtWUS) gene in increasing the leaf area of leguminous forage and delaying flowering; wherein the nucleotide sequence of the Medicago truncatula MtWUSCHEL gene is shown in SEQ ID No.1, and the amino acid sequence encoded by the gene is shown in SEQ ID No.2; and the application is achieved by cloning the MtWUSCHEL gene coding sequence from Medicago truncatula by RT-PCR technology, constructing a plant overexpression vector, and carrying out plant transgenic operation to introduce the MtWUSCHEL gene into leguminous forage plant cells to obtain a leguminous forage transgenic strain overexpressing the MtWUSCHEL gene.
上述的应用中:所述豆科牧草优选是紫花苜蓿或蒺藜苜蓿。In the above application: the leguminous forage is preferably alfalfa or Medicago truncatula.
上述的应用中:所述植物过表达载体优选是pEarleyGate103-MtWUS。In the above application: the plant overexpression vector is preferably pEarleyGate103-MtWUS.
本发明所述过表达蒺藜苜蓿MtWUSCHEL基因在提高紫花苜蓿的牧草品质中的应用;其中所述蒺藜苜蓿MtWUSCHEL基因的核苷酸序列如SEQ ID No.1所示。The invention discloses an application of the overexpressed Medicago truncatula MtWUSCHEL gene in improving the forage quality of alfalfa; wherein the nucleotide sequence of the Medicago truncatula MtWUSCHEL gene is shown in SEQ ID No.1.
申请人利用引物MtWUS-F(CACCATGGAACAGCCTCAACAACAACAAC)和MtWUS-R(TTAATTAGCATAATCTGGTGACCTACAGC),通过RT-PCR技术从蒺藜苜蓿中克隆MtWUS基因编码序列,构建植物过表达载体pEarleyGate103-MtWUS,进行植物转基因操作导入紫花苜蓿植物细胞,获得过表达MtWUS基因的紫花苜蓿转基因株系。检测表明,过表达MtWUS植株的叶片面积增大,牧草品质显著提高,同时开花时间显著延迟(约20天),这一数据远高于目前现有的苜蓿品种。The applicant cloned the MtWUS gene coding sequence from Medicago truncatula by RT-PCR using primers MtWUS-F (CACCATGGAACAGCCTCAACAACAACAAC) and MtWUS-R (TTAATTAGCATAATCTGGTGACCTACAGC), constructed a plant overexpression vector pEarleyGate103-MtWUS, and introduced the plant transgenic operation into alfalfa plant cells to obtain alfalfa transgenic strains overexpressing the MtWUS gene. Tests showed that the leaf area of the plants overexpressing MtWUS increased, the quality of forage was significantly improved, and the flowering time was significantly delayed (about 20 days), which is much higher than the current alfalfa varieties.
本发明的有益效果是:首次应用所述蒺藜苜蓿MtWUSCHEL基因在复叶物种苜蓿中过表达显著提高了转基因植株的叶片面积并延迟了开花时间(见图1和图2),结果显示可以使紫花苜蓿的开花时间延迟高达20天,并且可以使叶片面积提高约11%。预示本发明所述应用有望在培育新型豆科牧草植物品种中发挥重要的作用,此也为作物改良性提供了新的理论依据和实践基础,对促进我国草业经济作物的生产具有重大意义。The beneficial effect of the present invention is that the overexpression of the MtWUSCHEL gene of Medicago truncatula in the compound-leaf species alfalfa for the first time significantly increases the leaf area of the transgenic plants and delays the flowering time (see Figures 1 and 2), and the results show that the flowering time of alfalfa can be delayed by up to 20 days, and the leaf area can be increased by about 11%. It is predicted that the application of the present invention is expected to play an important role in the cultivation of new leguminous forage plant varieties, which also provides a new theoretical basis and practical foundation for crop improvement, and is of great significance to promoting the production of cash crops in my country's grass industry.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1.过表达MtWUS基因的转基因紫花苜蓿株系的开花时间分析。Figure 1. Flowering time analysis of transgenic alfalfa lines overexpressing the MtWUS gene.
其中,A是WT和MtWUS过表达植株整株表型,B是WT植株顶端开花表型,C-E是MtWUS过表达植株不同株系顶端未开花表型,F是WT和MtWUS过表达植株第一朵花出现的节间位置数统计,G是WT和MtWUS过表达植株第一朵花出现的天数统计;WT为野生型,OE-1、OE-3和OE-5为MtWUS过表达植株不同株系。Among them, A is the whole plant phenotype of WT and MtWUS overexpressing plants, B is the top flowering phenotype of WT plants, C-E are the top non-flowering phenotypes of different strains of MtWUS overexpressing plants, F is the statistical number of internode positions where the first flower appears in WT and MtWUS overexpressing plants, and G is the statistical number of days for the first flower to appear in WT and MtWUS overexpressing plants; WT is the wild type, and OE-1, OE-3 and OE-5 are different strains of MtWUS overexpressing plants.
结果显示紫花苜蓿的野生型植株在40天左右开花,过表达MtWUS基因的转基因紫花苜蓿植株在60天左右开花,这说明MtWUS基因过表达之后明显延迟了紫花苜蓿的开花时间。The results showed that wild-type alfalfa plants bloomed in about 40 days, while transgenic alfalfa plants overexpressing the MtWUS gene bloomed in about 60 days, indicating that overexpression of the MtWUS gene significantly delayed the flowering time of alfalfa.
图2.过表达MtWUS基因的转基因紫花苜蓿株系的叶片表型及相关指标分析。Figure 2. Leaf phenotype and related index analysis of transgenic alfalfa lines overexpressing the MtWUS gene.
其中,A是WT和MtWUS过表达植株叶片表型,B是WT和MtWUS过表达植株叶面积统计,C是WT和MtWUS过表达植株叶片长宽比统计,D是WT和MtWUS过表达植株叶片粗蛋白含量测定,E是WT和MtWUS过表达植株鲜重统计,F是WT和MtWUS过表达植株叶片总叶绿素、叶绿素a及叶绿素b含量统计;WT为野生型,OE-1、OE-3和OE-5为MtWUS过表达植株不同株系。Among them, A is the leaf phenotype of WT and MtWUS overexpressing plants, B is the leaf area statistics of WT and MtWUS overexpressing plants, C is the length-width ratio statistics of leaves of WT and MtWUS overexpressing plants, D is the crude protein content determination of leaves of WT and MtWUS overexpressing plants, E is the fresh weight statistics of WT and MtWUS overexpressing plants, F is the total chlorophyll, chlorophyll a and chlorophyll b content statistics of leaves of WT and MtWUS overexpressing plants; WT is the wild type, OE-1, OE-3 and OE-5 are different strains of MtWUS overexpressing plants.
结果显示:与野生型相比,过表达MtWUS基因的转基因紫花苜蓿植株的叶片变大并且叶片颜色更加绿。为此选取生长状态一致的野生型和MtWUS过表达植株,分别统计叶片面积、叶片宽长比、叶片粗蛋白含量、鲜重和叶绿素含量。测定结果发现MtWUS过表达植株的叶片面积、叶片宽长比、叶片粗蛋白含量、鲜重和叶绿素含量明显高于野生型,表明了MtWUS基因在改良豆科牧草中有显著作用。The results showed that compared with the wild type, the leaves of transgenic alfalfa plants overexpressing the MtWUS gene became larger and the leaves were greener. For this purpose, the wild type and MtWUS overexpressing plants with the same growth status were selected to calculate the leaf area, leaf width-to-length ratio, leaf crude protein content, fresh weight and chlorophyll content. The results showed that the leaf area, leaf width-to-length ratio, leaf crude protein content, fresh weight and chlorophyll content of the MtWUS overexpressing plants were significantly higher than those of the wild type, indicating that the MtWUS gene plays a significant role in improving legume forage.
具体实施方式Detailed ways
下面结合具体附图和实施例对本发明内容进行详细说明。如下所述例子仅是本发明的较佳实施方式而已,应该说明的是,下述说明仅仅是为了解释本发明,并非对本发明作任何形式上的限制,凡是依据本发明的技术实质对实施方式所做的任何简单修改,等同变化与修饰,均属于本发明技术方案的范围内。The present invention is described in detail below in conjunction with specific drawings and embodiments. The examples described below are only preferred embodiments of the present invention. It should be noted that the following description is only for the purpose of explaining the present invention and does not limit the present invention in any form. Any simple modification, equivalent changes and modifications made to the embodiments according to the technical essence of the present invention are within the scope of the technical solution of the present invention.
下述实施例中,所使用的实验方法,未做具体说明的,均为常规方法,例如可以参考《分子克隆实验指南》(Sambrook和Russell,2001)。In the following examples, the experimental methods used, unless otherwise specified, are conventional methods, for example, reference may be made to Molecular Cloning Laboratory Manual (Sambrook and Russell, 2001).
下述实施例中,所使用的材料、试剂、菌株、载体等,如无特殊说明,均可从商业途径得到。In the following examples, the materials, reagents, strains, vectors, etc. used, unless otherwise specified, can be obtained from commercial sources.
本实施例中所述的pEarleyGate103过表达载体构建见“Keith W Earley,JeremyR Haag,Olga Pontes,Kristen Opper,Tom Juehne,Keming Song,Craig SPikaard.2006.Gateway-compatible vectors for plant functional genomics andproteomics.Plant J.”一文。The construction of the pEarleyGate103 overexpression vector described in this example is described in “Keith W Earley, Jeremy R Haag, Olga Pontes, Kristen Opper, Tom Juehne, Keming Song, Craig S Pikaard. 2006. Gateway-compatible vectors for plant functional genomics and proteomics. Plant J.”
10×N6大量盐母液(1L):MgSO4·7H2O 1.85g,KNO3 28.3g,(NH4)2SO4 4.63g,CaCl2·2H2O 1.66g,KH2PO4 4g。10×N6 bulk salt mother solution (1 L): MgSO 4 ·7H 2 O 1.85 g, KNO 3 28.3 g, (NH 4 ) 2 SO 4 4.63 g, CaCl 2 ·2H 2 O 1.66 g, KH 2 PO 4 4 g.
1000×SH微量盐母液(100mL):MnSO4·H2O 1g,H3BO3 500mg,ZnSO4·7H2O 100mg,KI 100mg,Na2MoO4·2H2O 10mg,CuSO4·5H2O 20mg,CoCl2·6H2O 10mg。1000×SH trace salt mother solution (100 mL): MnSO 4 ·H 2 O 1 g, H 3 BO 3 500 mg, ZnSO 4 ·7H 2 O 100 mg, KI 100 mg, Na 2 MoO 4 ·2H 2 O 10 mg, CuSO 4 ·5H 2 O 20 mg, CoCl 2 ·6H 2 O 10 mg.
1000×SH有机母液(100mL):烟酸500mg,盐酸吡哆醇500mg,盐酸硫胺素500mg。1000×SH organic mother liquor (100 mL): nicotinic acid 500 mg, pyridoxine hydrochloride 500 mg, thiamine hydrochloride 500 mg.
50×EDFS铁盐母液(500mL):NaFe·EDTA 3.487g。50×EDFS iron salt mother solution (500 mL): NaFe·EDTA 3.487 g.
SH9培养基(1L)的配方为:10×N6大量盐母液100mL,1000×SH微量盐母液1mL,1000×SH有机母液1mL,50×EDFS铁盐母液20mL,肌醇100mg,蔗糖20g,pH调整至5.8。固体培养基中加入7g琼脂。The formula of SH9 medium (1L) is: 100 mL of 10×N6 macro-salt stock solution, 1 mL of 1000×SH micro-salt stock solution, 1 mL of 1000×SH organic stock solution, 20 mL of 50×EDFS iron salt stock solution, 100 mg of inositol, 20 g of sucrose, and the pH is adjusted to 5.8. 7 g of agar is added to the solid medium.
SM4培养基(1L)的配方为:MURASHIGE&SKOOG(MS)BASAL MEDIUM(M519)(PhytoTechnology LaboratoriesTM)4.43g,2,4-D储存液(10mg/mL)0.4mL,6-BAP储存液(1mg/mL)0.2mL,蔗糖30g,pH调整至5.8。固体培养基中加入3g植物凝胶。The formula of SM4 medium (1L) is: 4.43 g of MURASHIGE & SKOOG (MS) BASAL MEDIUM (M519) (PhytoTechnology LaboratoriesTM), 0.4 mL of 2,4-D stock solution (10 mg/mL), 0.2 mL of 6-BAP stock solution (1 mg/mL), 30 g of sucrose, and the pH is adjusted to 5.8. 3 g of phytagel is added to the solid medium.
MSBK培养基(1L)的配方为:MURASHIGE&SKOOG(MS)BASAL MEDIUM(M519)(PhytoTechnology LaboratoriesTM)4.43g,激动素(1mg/mL)1mL,6-BAP储存液(1mg/mL)0.5mL,蔗糖30g,pH调整至5.8。固体培养基中加入3g植物凝胶。The formula of MSBK medium (1L) is: 4.43 g of MURASHIGE & SKOOG (MS) BASAL MEDIUM (M519) (PhytoTechnology LaboratoriesTM), 1 mL of kinetin (1 mg/mL), 0.5 mL of 6-BAP stock solution (1 mg/mL), 30 g of sucrose, and the pH is adjusted to 5.8. 3 g of phytagel is added to the solid medium.
1/2MS培养基(1L)的配方为:MURASHIGE&SKOOG(MS)BASAL MEDIUM(M519)(PhytoTechnology LaboratoriesTM)2.215g,蔗糖12g,pH调整至5.8。固体培养基中加入7g琼脂。The formula of 1/2MS medium (1L) is: 2.215 g of MURASHIGE & SKOOG (MS) BASAL MEDIUM (M519) (PhytoTechnology LaboratoriesTM), 12 g of sucrose, pH adjusted to 5.8. 7 g of agar is added to the solid medium.
实施例1过表达蒺藜苜蓿MtWUS基因转紫花苜蓿植株的获得Example 1 Obtaining transgenic alfalfa plants overexpressing the Medicago truncatula MtWUS gene
1.过表达MtWUS载体的构建1. Construction of MtWUS overexpression vector
1.1通过生物信息学网站NCBI获得如SEQ ID No.1所示的MtWUS基因的编码序列。根据该编码序列设计引物MtWUS-F(CACCATGGAACAGCCTCAACAACAACAAC)和MtWUS-R(TTAATTAGCATAATCTGGTGACCTACAGC)。利用TRIzol试剂盒提取蒺藜苜蓿总RNA,反转录为cDNA。以cDNA为模板,利用RT-PCR方法扩增MtWUS基因的全长CDS序列。利用Gateway技术将MtWUS基因序列连入pEarleyGate103载体,转化大肠杆菌,鉴定阳性克隆,测序。将获得的过表达载体pEarleyGate103-MtWUS,转化农杆菌EHA105,鉴定阳性克隆,-80℃保存备用。1.1 Obtain the coding sequence of the MtWUS gene as shown in SEQ ID No. 1 through the bioinformatics website NCBI. Design primers MtWUS-F (CACCATGGAACAGCCTCAACAACAACAAC) and MtWUS-R (TTAATTAGCATAATCTGGTGACCTACAGC) based on the coding sequence. Use the TRIzol kit to extract total RNA from Medicago truncatula and reverse transcribe it into cDNA. Using cDNA as a template, the full-length CDS sequence of the MtWUS gene was amplified by RT-PCR. Use Gateway technology to connect the MtWUS gene sequence into the pEarleyGate103 vector, transform Escherichia coli, identify positive clones, and sequence. Transform the obtained overexpression vector pEarleyGate103-MtWUS into Agrobacterium EHA105, identify positive clones, and store at -80°C for later use.
1.2农杆菌介导的紫花苜蓿叶盘遗传转化1.2 Agrobacterium-mediated genetic transformation of alfalfa leaf discs
将步骤1.1中获得的-80℃保存的农杆菌划线接种于YEP固体培养基(含100mg/L利福平和50mg/L卡那霉素),28℃倒置培养2天,挑单克隆进行菌落PCR鉴定。挑阳性单菌落接种于添加利福平和卡那霉素的YEP液体培养基过夜培养,至OD600为0.8,28℃4000rpm离心15min,弃上清,用转化液将菌稀释至OD600为0.2,备用。The Agrobacterium obtained in step 1.1 and stored at -80℃ was streaked and inoculated into YEP solid medium (containing 100mg/L rifampicin and 50mg/L kanamycin), inverted and cultured at 28℃ for 2 days, and single clones were selected for colony PCR identification. Positive single colonies were selected and inoculated into YEP liquid medium supplemented with rifampicin and kanamycin for overnight culture until OD 600 was 0.8, centrifuged at 28℃ 4000rpm for 15min, supernatant was discarded, and the bacteria were diluted to OD 600 of 0.2 with transformation solution for later use.
1.3外植体的准备1.3 Explant preparation
取紫花苜蓿从顶芽往下数第3-5片完全展开的复叶作为外植体,采集后在超净工作台中用含有0.1%TritonX 100和30%次氯酸钠的漂白水(有效成分为0.5%次氯酸钠)消毒15min,再用无菌水清洗3遍后备用。The 3rd to 5th fully expanded compound leaves of alfalfa from the terminal bud were taken as explants. After collection, they were disinfected in a clean bench with bleach containing 0.1% TritonX 100 and 30% sodium hypochlorite (the active ingredient is 0.5% sodium hypochlorite) for 15 minutes, and then washed with sterile water for 3 times before use.
1.4农杆菌的侵染和共培养1.4 Agrobacterium infection and co-cultivation
将步骤1.3中获得的外植体放入盛有步骤1.2制备的侵染菌液中,抽真空至-0.09MPa维持10min,然后缓慢放气,于脱色摇床上轻摇10min。将外植体放置在无菌滤纸上,吸净侵染液后,摆放在共培养培养基上,22℃黑暗培养3天。Place the explants obtained in step 1.3 into the infection solution prepared in step 1.2, evacuate to -0.09 MPa and maintain for 10 min, then slowly release the air and gently shake on a decolorizing shaker for 10 min. Place the explants on sterile filter paper, absorb the infection solution, place them on the co-culture medium, and culture them in the dark at 22°C for 3 days.
1.5愈伤组织诱导和分化1.5 Callus induction and differentiation
将外植体转移至含有抗生素PPT(3mg/L)和头孢霉素500mg/L的SM4固体培养基上诱导抗性愈伤,22℃,16h光照/8h黑暗培养,每2周继代一次,共3次;随后将愈伤转移至含有筛选抗生素PPT(3mg/L)和头孢霉素500mg/L的MSBK固体培养基上诱导芽分化,22℃,16h光照/8h黑暗培养,持续3周;将胚性愈伤转移至含有筛选抗生素抗生素PPT(3mg/L)和头孢霉素200mg/L的SH9固体培养基上继续诱导芽分化,22℃,16h光照/8h黑暗培养,每3周继代一次,直至产生再生苗;将再生苗转移至1/2MS固体培养基上生根,每3-4周继代一次,22℃,16h光照/8h黑暗培养,生根后移栽至土中。The explants were transferred to SM4 solid medium containing antibiotic PPT (3 mg/L) and cephalosporin 500 mg/L to induce resistant callus, cultured at 22°C, 16 h light/8 h dark, subcultured every 2 weeks, for a total of 3 times; the callus was then transferred to MSBK solid medium containing screening antibiotic PPT (3 mg/L) and cephalosporin 500 mg/L to induce bud differentiation, cultured at 22°C, 16 h light/8 h dark, for 3 weeks; the embryonic callus was transferred to SH9 solid medium containing screening antibiotic PPT (3 mg/L) and cephalosporin 200 mg/L to continue inducing bud differentiation, cultured at 22°C, 16 h light/8 h dark, subcultured every 3 weeks, until regenerated seedlings were produced; the regenerated seedlings were transferred to 1/2MS solid medium for rooting, subcultured every 3-4 weeks, cultured at 22°C, 16 h light/8 h dark, and transplanted into soil after rooting.
1.5紫花苜蓿再生苗的鉴定1.5 Identification of alfalfa regeneration seedlings
取再生苗的一个小叶片提取基因组DNA,然后进行PCR检测。以质粒pEarleyGate103-MtWUS载体为阳性对照,引物为35S-F(GCACAATCCCACTATCCTTC)和MtWUS-R(TTAATTAGCATAATCTGGTGACCTACAGC)进行PCR扩增。确定获得过表达蒺藜苜蓿MtWUS基因的转基因植株。A small leaf of the regenerated seedling was taken to extract genomic DNA, and then PCR was performed. The plasmid pEarleyGate103-MtWUS vector was used as a positive control, and the primers 35S-F (GCACAATCCCACTATCCTTC) and MtWUS-R (TTAATTAGCATAATCTGGTGACCTACAGC) were used for PCR amplification. The transgenic plants overexpressing the MtWUS gene of Medicago truncatula were determined.
PCR所用的酶为北京全式金生物的DNA Polymerase(目录号:AP111-01),具体使用方法见说明书。The enzyme used in PCR was from Beijing Quanshijin Biotechnology Co., Ltd. DNA Polymerase (Catalog Number: AP111-01). For specific usage, see the instruction manual.
实施例2过表达蒺藜苜蓿MtWUS基因转紫花苜蓿植株的开花时间统计分析Example 2 Statistical analysis of flowering time of transgenic alfalfa plants overexpressing the Medicago truncatula MtWUS gene
通过从蒺藜苜蓿中克隆MtWUS基因,利用农杆菌EHA105转化紫花苜蓿,最后筛选获得在紫花苜蓿背景下的过表达蒺藜苜蓿MtWUS基因的转基因紫花苜蓿株系。对转基因植株的表型进行分析,结果见图1。By cloning the MtWUS gene from Medicago truncatula, transforming alfalfa using Agrobacterium EHA105, and finally screening to obtain a transgenic alfalfa strain that overexpresses the Medicago truncatula MtWUS gene in the alfalfa background, the phenotype of the transgenic plants was analyzed, and the results are shown in Figure 1.
结果显示过表达植株可以显著延迟开花时间。野生型的开花时间在40天左右,而过表达植株的开花时间在60天左右,延迟了近20天(图1G)。此外与野生型相比,过表达植株开花时的节间数也显著增加(图1F)。The results showed that the overexpression plants could significantly delay the flowering time. The flowering time of the wild type was about 40 days, while the flowering time of the overexpression plants was about 60 days, which was delayed by nearly 20 days (Figure 1G). In addition, compared with the wild type, the number of internodes in the overexpression plants at the time of flowering was also significantly increased (Figure 1F).
实施例3过表达蒺藜苜蓿MtWUS基因转紫花苜蓿植株的株型分析Example 3 Plant type analysis of transgenic alfalfa plants overexpressing the Medicago truncatula MtWUS gene
通过从蒺藜苜蓿中克隆MtWUS基因,利用农杆菌EHA105转化紫花苜蓿,最后筛选获得在紫花苜蓿背景下的过表达蒺藜苜蓿MtWUS基因的转基因紫花苜蓿株系。对过表达蒺藜苜蓿MtWUS基因转基因植株的表型进行分析,结果见图2。By cloning the MtWUS gene from Medicago truncatula, transforming alfalfa using Agrobacterium EHA105, and finally screening out transgenic alfalfa lines overexpressing the MtWUS gene of Medicago truncatula in the alfalfa background, the phenotype of the transgenic plants overexpressing the MtWUS gene of Medicago truncatula was analyzed, and the results are shown in Figure 2.
结果显示:与野生型相比,过表达MtWUS基因的转基因紫花苜蓿植株的叶片变大并且叶片颜色更加绿,即过表达植株的叶片面积与野生型相比显著增加,可以使叶片面积提高约11%(图2A-B)。为此选取生长状态一致的野生型和MtWUS过表达植株,分别统计叶片面积、叶片宽长比、叶片粗蛋白含量、鲜重和叶绿素含量。测定结果显示MtWUS过表达植株的叶片面积、叶片宽长比、叶片粗蛋白含量、鲜重和叶绿素含量均明显高于野生型(图2C-F),表明了MtWUS基因在改良豆科牧草中有显著作用。The results showed that compared with the wild type, the leaves of the transgenic alfalfa plants overexpressing the MtWUS gene became larger and the leaves were greener, that is, the leaf area of the overexpressed plants increased significantly compared with the wild type, and the leaf area could be increased by about 11% (Figure 2A-B). For this purpose, the wild type and MtWUS overexpressed plants with the same growth status were selected, and the leaf area, leaf width-to-length ratio, leaf crude protein content, fresh weight and chlorophyll content were respectively counted. The results showed that the leaf area, leaf width-to-length ratio, leaf crude protein content, fresh weight and chlorophyll content of the MtWUS overexpressed plants were significantly higher than those of the wild type (Figure 2C-F), indicating that the MtWUS gene has a significant effect in improving legume forage.
实施例4过表达蒺藜苜蓿MtWUS基因转紫花苜蓿植株的牧草品质分析Example 4 Analysis of forage quality of transgenic alfalfa plants overexpressing the Medicago truncatula MtWUS gene
通过从蒺藜苜蓿中克隆MtWUS基因,利用农杆菌EHA105转化紫花苜蓿,最后筛选获得在紫花苜蓿背景下的过表达蒺藜苜蓿MtWUS基因的转基因紫花苜蓿株系。对过表达蒺藜苜蓿MtWUS基因转基因植株的牧草品质进行分析,结果见表1。By cloning the MtWUS gene from Medicago truncatula, transforming alfalfa using Agrobacterium EHA105, and finally screening out transgenic alfalfa lines overexpressing the MtWUS gene of Medicago truncatula in the alfalfa background, the forage quality of the transgenic plants overexpressing the MtWUS gene of Medicago truncatula was analyzed, and the results are shown in Table 1.
选取生长状态一致的野生型和过表达植株,通过近红外质谱分析,分别测定野生型和过表达植株中的各项品质相关指标。Wild-type and overexpression plants with the same growth status were selected, and various quality-related indicators in the wild-type and overexpression plants were measured by near-infrared mass spectrometry.
表1:品质相关指标检测结果Table 1: Test results of quality related indicators
结果表明,过表达植株粗蛋白、粗脂肪、水溶性糖的含量相比野生型都明显升高,另外氮、钾和植物碳的含量相比野生型也明显提高。这表明过表达MtWUS基因明显提高了紫花苜蓿的牧草品质。The results showed that the crude protein, crude fat, and water-soluble sugar contents of the overexpressed plants were significantly higher than those of the wild type, and the nitrogen, potassium, and plant carbon contents were also significantly higher than those of the wild type. This indicates that overexpression of the MtWUS gene significantly improves the forage quality of alfalfa.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210951822.2A CN115819531B (en) | 2022-08-09 | 2022-08-09 | Application of overexpression of MtWUSCHEL gene in increasing leaf area and delaying flowering of leguminous forage |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210951822.2A CN115819531B (en) | 2022-08-09 | 2022-08-09 | Application of overexpression of MtWUSCHEL gene in increasing leaf area and delaying flowering of leguminous forage |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115819531A CN115819531A (en) | 2023-03-21 |
CN115819531B true CN115819531B (en) | 2024-05-07 |
Family
ID=85523075
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210951822.2A Active CN115819531B (en) | 2022-08-09 | 2022-08-09 | Application of overexpression of MtWUSCHEL gene in increasing leaf area and delaying flowering of leguminous forage |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115819531B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116640772B (en) * | 2023-05-24 | 2024-07-23 | 山东大学 | A plant multi-flag petal control gene and its encoded protein and application |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102703450A (en) * | 2012-05-24 | 2012-10-03 | 安徽农业大学 | Corn WUS1 gene promoter and application thereof |
CN107779456A (en) * | 2017-12-06 | 2018-03-09 | 山东大学 | M. truncatula MtWOX11 genes and its application in seed fatty acid content is improved |
CN110885844A (en) * | 2019-11-29 | 2020-03-17 | 中国农业大学 | Alfalfa gene MsCYP20-3B and its application |
WO2020108620A1 (en) * | 2018-11-29 | 2020-06-04 | 中国科学院分子植物科学卓越创新中心 | Target gene for improving regeneration ability of plants, regulatory molecule and application thereof |
CN113151303A (en) * | 2021-05-21 | 2021-07-23 | 浙江大学 | Cabbage stem cell determination related gene BrWUS1 and application thereof |
CN113412333A (en) * | 2019-03-11 | 2021-09-17 | 先锋国际良种公司 | Method for clonal plant production |
CN113564198A (en) * | 2021-07-20 | 2021-10-29 | 山东大学 | Application of RNAi (ribonucleic acid interference) on PALM1 gene to increase number of small leaves of leguminous forage |
-
2022
- 2022-08-09 CN CN202210951822.2A patent/CN115819531B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102703450A (en) * | 2012-05-24 | 2012-10-03 | 安徽农业大学 | Corn WUS1 gene promoter and application thereof |
CN107779456A (en) * | 2017-12-06 | 2018-03-09 | 山东大学 | M. truncatula MtWOX11 genes and its application in seed fatty acid content is improved |
WO2020108620A1 (en) * | 2018-11-29 | 2020-06-04 | 中国科学院分子植物科学卓越创新中心 | Target gene for improving regeneration ability of plants, regulatory molecule and application thereof |
CN113412333A (en) * | 2019-03-11 | 2021-09-17 | 先锋国际良种公司 | Method for clonal plant production |
CN110885844A (en) * | 2019-11-29 | 2020-03-17 | 中国农业大学 | Alfalfa gene MsCYP20-3B and its application |
CN113151303A (en) * | 2021-05-21 | 2021-07-23 | 浙江大学 | Cabbage stem cell determination related gene BrWUS1 and application thereof |
CN113564198A (en) * | 2021-07-20 | 2021-10-29 | 山东大学 | Application of RNAi (ribonucleic acid interference) on PALM1 gene to increase number of small leaves of leguminous forage |
Non-Patent Citations (2)
Title |
---|
A timing mechanism for stem cell maintenance and differentiation in the Arabidopsis floral meristem;Sun, B等;《Genes & Development》;20090831;第23卷(第15期);1791-1804 * |
拟南芥WUSCHEL和AGAMOUS-Like 15基因的克隆及对烟草的转化;林庆光;《中国优秀硕士学位论文全文数据库 农业科技辑》;20080331;D047-101 * |
Also Published As
Publication number | Publication date |
---|---|
CN115819531A (en) | 2023-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110872598B (en) | Cotton drought-resistant related gene GhDT1 and application thereof | |
CN113337520A (en) | Upland cotton GhA0749 and GhD0744 transcription factors and application thereof in flowering regulation | |
US20250027100A1 (en) | USE OF MfERF026 GENE REGULATION IN GROWTH, DEVELOPMENT, AND STRESS TOLERANCE OF MEDICAGO SATIVA | |
CN113512558B (en) | A method for improving tomato resistance to bacterial wilt | |
CN115819531B (en) | Application of overexpression of MtWUSCHEL gene in increasing leaf area and delaying flowering of leguminous forage | |
CN103627716B (en) | Obtaining method and application for gene used for modifying plant type of maize and improving maize yield | |
CN114703198B (en) | Cloning and Application of a Tomato Transporter SlZIF1 | |
CN116063428A (en) | Application of GhABF3 Gene in Regulating Flowering Period of Plants | |
CN102732553B (en) | Improve the gene engineering method and material of plant products | |
CN118726410A (en) | WRKY40 transcription factor of peanut for promoting drought tolerance and early flowering in plants and its application | |
CN118726383A (en) | Gene PagGRF12a regulating the development of poplar leaves and stems and its application | |
CN112626084A (en) | Strawberry MYB transcription factor FvMYB24 gene, expression protein and application | |
CN104610438B (en) | Cotton stress response related protein GhGeBP and coding gene and application thereof | |
CN115820724B (en) | Application of UNOPENED FLOWER gene in regulating and controlling number of alfalfa small leaves | |
CN114149998B (en) | Wheat TaPT1 gene and application thereof | |
CN102174570B (en) | Plant expression vector for controlling artificially synthesized antimicrobial peptide gene by using specific vascular promoter and method for culturing anti-verticillium wilt cotton by using same | |
CN117431249A (en) | Application of sesame SiWAKL6 gene and its encoded protein in disease resistance breeding | |
WO2023087761A1 (en) | APPLICATION OF SOYBEAN GIBBERELLIN 3β-HYDROXYLASE ENCODING GENE GMGA3OX1 | |
CN102174571A (en) | Method for culturing anti-greensickness cotton by using artificially synthesized antimicrobial peptide gene | |
CN109652425B (en) | Application of rice OsHIR3 gene and method for obtaining disease-resistant rice | |
CN112063597A (en) | Maize multi-copper oxidase encoding gene ZmDEK559-2 and its application | |
CN116286705B (en) | Broussonetia papyrifera homocysteine thiomethyltransferase gene BpHMT2 and application thereof | |
CN104560906B (en) | Specifically expressed protein C YP734A1 like 1 and its application in fibrocyte | |
CN118562862B (en) | A protein capable of simultaneously improving rice yield and brown planthopper resistance, its nucleotide sequence and application | |
CN116254288B (en) | Application of a Chunlan MIR156b gene in regulating plant flowering time |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |