CN115795579A - 一种无特征复杂曲面误差分析的快速坐标对齐方法 - Google Patents

一种无特征复杂曲面误差分析的快速坐标对齐方法 Download PDF

Info

Publication number
CN115795579A
CN115795579A CN202211663693.3A CN202211663693A CN115795579A CN 115795579 A CN115795579 A CN 115795579A CN 202211663693 A CN202211663693 A CN 202211663693A CN 115795579 A CN115795579 A CN 115795579A
Authority
CN
China
Prior art keywords
alignment
points
calculating
curved surface
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211663693.3A
Other languages
English (en)
Other versions
CN115795579B (zh
Inventor
何万涛
郭延艳
张洪军
孟祥丽
陈韬
田学军
弓满锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lingnan Normal University
Original Assignee
Lingnan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lingnan Normal University filed Critical Lingnan Normal University
Priority to CN202211663693.3A priority Critical patent/CN115795579B/zh
Publication of CN115795579A publication Critical patent/CN115795579A/zh
Application granted granted Critical
Publication of CN115795579B publication Critical patent/CN115795579B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

一种无特征复杂曲面测量误差分析的快速坐标对齐方法,解决效率高、精度高,稳定性好等问题。采用的方法是,通过对测量点云进行区域特征构建,在构建的特征区域内提取体积最大的四面体,通过在被测零件的CAD数模的抽样点上进行搜索,寻找相似最大四面体,获得初始对齐变换矩阵,在此基础上,通过非线性优化获得最终的精对齐变换矩阵。本发明的有益效果是:本发明的无特征复杂曲面快速、精确坐标系对齐方法,可有效解决复杂曲面测量过程中由于曲面特征不明显造成的对齐效率低、容易出错的难题,具有对齐速度快、配准精度高、稳定性好等优点。

Description

一种无特征复杂曲面误差分析的快速坐标对齐方法
技术领域
本发明属于复杂曲面精密检测领域,具体涉及一种无特征复杂曲面测量误差分析的快速坐标对齐方法。
背景技术
为实现节能减排的目标,对发动机类产品性能提出了更高的要求,为此,无特征复杂曲面在航空(发动机整体叶轮)、核电(汽轮机叶片)、舰船(大型螺旋桨桨叶)等关系国计民生的行业中应用越来越广泛。现有的基于扫描的三坐标测量和基于结构光的扫描测量都能够快速获取无特征复杂曲面的高精度三维点云,但是如何对这类无特征复杂曲面进行精确、高效和稳定的坐标系对齐,也就是将测量点云和其CAD模型快速精确的统一到同一坐标系下,一直是困扰复杂曲面误差分析的难点问题。
坐标系对齐是复杂曲面精度分析的关键步骤,一般分为预对齐和精对齐两步来完成。数据预对齐是后续精对齐优化的重要前提条件,好的预对齐结果会加快精对齐优化的收敛速度、提高精对齐优化的精度和稳定性。数据预对齐主要有以下两种方法:①人机交互的方法,该方法耗时,效率低,无法实现数据预对齐的自动化。②数值计算的方法,通过提取测量数据和其CAD模型的不变特征来计算刚体变化矩阵实现数对齐,是实现不依靠任何先验知识的自动数据对齐的最有前景的方法。常用的不变特征有曲线、体积等简单几何信息,法矢、曲率等微分信息,Spin-Image、Surface Signatures等局部曲面片特征信息。但是这些方法针对无特征复杂曲面,存在计算效率低、不稳地,甚至是无法完成对齐的问题。为了解决上述难题,发明了一种无特征复杂曲面误差分析的快速坐标对齐方法。
发明内容
本发明的目的在于提供一种无特征复杂曲面误差分析的快速坐标对齐方法,解决无特征复杂曲误差分析过程中坐标系对齐难度大、耗时和不稳定等问题。实现无特征复杂曲面的快速误差分析,该方法具有速度快、精度高、稳定性好等特点。
本发明实现发明目的采用的技术方案具体由以下步骤实现:
步骤1.计算扫描获得的复杂曲面三维点P={pi(xi,yi,zi),i=1,2,…,n},的最大内接球的球心c=[xc,yc,zc]T和内接球的半径R,半径R为球心c到点云边界的最小距离;
步骤2.计算出复杂曲面三维点云中与内接圆的相交的三维点,并由相交的三维点构成一个圆形;
步骤3.通过步骤1建立的球体内的三维点拟合平面M,将平面M沿着法向量v移动平面M,将步骤1建立的球体的球心点c设置在平面M上,获得新的平面Mn,然后计算步骤2中获得的圆形区域点与平面Mn的距离,并将其存储在列表H中;
步骤4.从步骤3的列表H中取一个距离值最大的点,从其他点取三个距离为R的点作为共面点,获得非共面四点基
Figure SMS_1
Figure SMS_2
计算四个非共面点的任意两个点的距离,用d1~d6表示,非共面四点构成四面体;
步骤5.将CAD三维模型抽样成三维点Q={qi(xi,yi,zi),i=1,2,…,m},并按步骤1计算Q的中心c′和内接球半径R′;
步骤6.计算搜索距离
Figure SMS_3
和搜索次数
Figure SMS_4
步骤7.使用步骤6计算的ε和n,以及步骤1计算的半径R在CAD三维模型抽样点云Q上选择对应位置,以生成候选区域;
步骤8.将交比不变原理推广到三维空间,在步骤7确定的候选区域上搜索与步骤4中的
Figure SMS_5
类似的所有四点基
Figure SMS_6
步骤9.计算步骤8中的
Figure SMS_7
组成的所有四面体,并与步骤4中计算的四面体进行比较,计算变换向量T;
步骤10.使用所有计算的T将P变换为Q,并计算匹配率h阈值,当匹配率h大于匹配率h阈值,将计算出的变换矩阵为初对齐变换矩阵;
步骤11.在步骤10的基础上,采用迭代最近点(ICP,Iterative Closest Point)算法计算最佳精对齐变换矩阵,完成测量点云与CAD设计数模坐标精对齐。
本发明的有益效果是:本发明的无特征复杂曲面快速、精确坐标系对齐方法,可有效解决复杂曲面测量过程中由于曲面特征不明显造成的对齐效率低、容易出错的难题,具有对齐速度快、配准精度高、稳定性好等优点。
下面结合附图对本发明进行详细描述。
附图说明
附图1为本发明的流程图。
具体实施方式
参看附图,
本发明的目的是实现无特征复杂曲面点云与其CAD模型快速对齐问题,为进行复杂曲面的快速精确误差分析提供保障,具体由以下步骤实现:
步骤1.计算扫描获得的复杂曲面三维点P={pi(xi,yi,zi),i=1,2,…,n},的最大内接球的球心c=[xc,yc,zc]T和内接球的半径R,半径R为球心c到点云边界的最小距离。
为了提高后续对齐计算的稳定性,内接球半径要尽可能的最大化,该步骤计算球心c的方法可以采用公知的重心法来求解,半径R通过计算球心c到点云边界的最小距离来确定,具体为:给定的复杂曲面三维离散点云P={pi(xi,yi,zi),i=1,2,…,n},则三维离散点云的重心
Figure SMS_8
用pG来代替内接球的球心坐标c=[xc,yc,zc]T,计算c点到点云边界的最小距离,该距离作为内接球的最大半径R。
步骤2.计算出复杂曲面三维点云中与内接圆的相交的三维点,并由相交的三维点构成一个圆形;
步骤3.通过步骤1建立的球体内的三维点拟合平面M,将平面M沿着法向量v移动平面M,将步骤1建立的球体的球心点c设置在平面M上,获得新的平面Mn,然后计算步骤2中获得的圆形区域点与平面Mn的距离,并将其存储在列表H中;
步骤4.从步骤3的列表中取一个距离值最大的点,从其他点取三个距离为R的点作为共面点,获得最佳非共面四点基
Figure SMS_9
Figure SMS_10
计算四个非共面点的任意两个点的距离,用d1~d6表示,并构成四面体。
步骤5.将三维模型抽样成三维点Q={qi(xi,yi,zi),i=1,2,…,m},并计算Q的中心c′和内接球半径E′,R′和E采用同样的方法计算;
步骤6.计算搜索距离
Figure SMS_11
和搜索次数
Figure SMS_12
步骤7.使用步骤6计算的ε和n,以及步骤1计算的半径R在模板Q上选择合理的对应位置,以生成最佳候选区域。
步骤8.将交比不变原理推广到三维空间,在步骤7确定的候选区域上搜索与步骤4中的
Figure SMS_13
类似的所有四点基
Figure SMS_14
步骤9.计算步骤8中的
Figure SMS_15
组成的所有四面体,并与步骤4中计算的四面体进行比较,计算变换向量T;
步骤10.使用所有计算的T将P变换为Q,并计算匹配率h阈值,当匹配率h大于匹配率h阈值,将计算出的变换矩阵为初对齐变换矩阵;
步骤11.在步骤10的基础上,采用迭代最近点(ICP,Iterative Closest Point)算法计算最佳精对齐变换矩阵,完成测量点云与CAD设计数模坐标精对齐。
本发明实施例中,所述的步骤1中,该步骤计算球心c的方法为重心法来求解。
本发明实施例中,所述的步骤10中,匹配率h阈值设置大于为80-90%。匹配率h阈值设置大于根据要求的误差精度决定匹配率h阈值的取值范围。

Claims (3)

1.无特征复杂曲面测量误差分析的快速坐标对齐方法,该方法借助于非线性优化算法计算出测量点云的精对齐变换矩阵实现与CAD设计数模坐标对齐,其特征在于:该方法由以下步骤实现:
步骤1.计算扫描获得的复杂曲面三维点P={pi(xi,yi,zi),i=1,2,…,n},的最大内接球的球心c=[xc,yc,zc]T和内接球的半径R,半径R为球心c到点云边界的最小距离;
步骤2.计算出复杂曲面三维点云中与内接圆的相交的三维点,并由相交的三维点构成一个圆形;
步骤3.通过步骤1建立的球体内的三维点拟合平面M,将平面M沿着法向量v移动平面M,将步骤1建立的球体的球心点c设置在平面M上,获得新的平面Mn,然后计算步骤2中获得的圆形区域点与平面Mn的距离,并将其存储在列表H中;
步骤4.从步骤3的列表H中取一个距离值最大的点,从其他点取三个距离为R的点作为共面点,获得非共面四点基
Figure FDA0004013826540000011
Figure FDA0004013826540000012
计算四个非共面点的任意两个点的距离,用d1~d6表示,非共面四点构成四面体;
步骤5.将CAD三维模型抽样成三维点Q={qi(xi,yi,zi),i=1,2,…,m},并按步骤1计算Q的中心c′和内接球半径R′;
步骤6.计算搜索距离
Figure FDA0004013826540000013
和搜索次数
Figure FDA0004013826540000014
步骤7.使用步骤6计算的ε和n,以及步骤1计算的半径R在CAD三维模型抽样点云Q上选择对应位置,以生成候选区域;
步骤8.将交比不变原理推广到三维空间,在步骤7确定的候选区域上搜索与步骤4中的
Figure FDA0004013826540000021
类似的所有四点基
Figure FDA0004013826540000022
步骤9.计算步骤8中的
Figure FDA0004013826540000023
组成的所有四面体,并与步骤4中计算的四面体进行比较,计算变换向量T;
步骤10.使用所有计算的T将P变换为Q,并计算匹配率h阈值,当匹配率h大于匹配率h阈值,将计算出的变换矩阵为初对齐变换矩阵;
步骤11.在步骤10的基础上,采用迭代最近点(ICP,Iterative Closest Point)算法计算最佳精对齐变换矩阵,完成测量点云与CAD设计数模坐标精对齐。
2.根据权利要求1所述的无特征复杂曲面测量误差分析的快速坐标对齐方法,其特征在于:所述的步骤1中,该步骤计算球心c的方法为重心法来求解。
3.根据权利要求1所述的无特征复杂曲面测量误差分析的快速坐标对齐方法,其特征在于:所述的步骤10中,匹配率h阈值设置大于为80-90%。
CN202211663693.3A 2022-12-23 2022-12-23 无特征复杂曲面测量误差分析的快速坐标对齐方法 Active CN115795579B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211663693.3A CN115795579B (zh) 2022-12-23 2022-12-23 无特征复杂曲面测量误差分析的快速坐标对齐方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211663693.3A CN115795579B (zh) 2022-12-23 2022-12-23 无特征复杂曲面测量误差分析的快速坐标对齐方法

Publications (2)

Publication Number Publication Date
CN115795579A true CN115795579A (zh) 2023-03-14
CN115795579B CN115795579B (zh) 2023-06-27

Family

ID=85427803

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211663693.3A Active CN115795579B (zh) 2022-12-23 2022-12-23 无特征复杂曲面测量误差分析的快速坐标对齐方法

Country Status (1)

Country Link
CN (1) CN115795579B (zh)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070195084A1 (en) * 2006-02-03 2007-08-23 Chi-Fai Cheung Methods and apparatus of aligning surfaces
CN101692257A (zh) * 2009-09-25 2010-04-07 华东理工大学 一种复杂曲面的配准方法
CN104392488A (zh) * 2014-12-11 2015-03-04 福州大学 针对激光扫描仪与三坐标测量臂的点云数据自动配准方法
CN106875439A (zh) * 2017-02-20 2017-06-20 天津大学 基于三维点云模型的单晶硅棒外形尺寸测量方法
WO2017156396A1 (en) * 2016-03-11 2017-09-14 Cyberoptics Corporation Field calibration of three-dimensional non-contact scanning system
WO2018061010A1 (en) * 2016-09-28 2018-04-05 Pixtier Maps Ltd. Point cloud transforming in large-scale urban modelling
CN111488709A (zh) * 2020-04-16 2020-08-04 湖北汽车工业学院 一种零件平面度误差分析方法、误差分析系统及计算机
EP3757861A1 (en) * 2019-06-25 2020-12-30 Faro Technologies, Inc. Conversion of point cloud data points into computer-aided design (cad) objects
US11037346B1 (en) * 2020-04-29 2021-06-15 Nanjing University Of Aeronautics And Astronautics Multi-station scanning global point cloud registration method based on graph optimization
CN113052881A (zh) * 2021-03-24 2021-06-29 王程 提取极点的室内三维点云自动化配准方法
CN113269673A (zh) * 2021-04-26 2021-08-17 西安交通大学 一种基于标准球架的三维点云拼接方法
CN113327275A (zh) * 2021-06-18 2021-08-31 哈尔滨工业大学 一种基于多约束点到局部曲面投影的点云双视角精配准方法
CN114266783A (zh) * 2021-12-15 2022-04-01 江苏集萃智能光电系统研究所有限公司 一种高效高精度计算刚性点云曲面之间距离的方法
WO2022160384A1 (zh) * 2021-01-26 2022-08-04 浙江大学 图像引导机器人微创外科手术的物理空间与图像空间配准方法
WO2022165876A1 (zh) * 2021-02-06 2022-08-11 湖南大学 一种基于wgan的无监督多视角三维点云联合配准方法
CN115187676A (zh) * 2022-08-03 2022-10-14 重庆中科摇橹船信息科技有限公司 一种高精度线激光三维重建标定方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070195084A1 (en) * 2006-02-03 2007-08-23 Chi-Fai Cheung Methods and apparatus of aligning surfaces
CN101692257A (zh) * 2009-09-25 2010-04-07 华东理工大学 一种复杂曲面的配准方法
CN104392488A (zh) * 2014-12-11 2015-03-04 福州大学 针对激光扫描仪与三坐标测量臂的点云数据自动配准方法
WO2017156396A1 (en) * 2016-03-11 2017-09-14 Cyberoptics Corporation Field calibration of three-dimensional non-contact scanning system
WO2018061010A1 (en) * 2016-09-28 2018-04-05 Pixtier Maps Ltd. Point cloud transforming in large-scale urban modelling
CN106875439A (zh) * 2017-02-20 2017-06-20 天津大学 基于三维点云模型的单晶硅棒外形尺寸测量方法
EP3757861A1 (en) * 2019-06-25 2020-12-30 Faro Technologies, Inc. Conversion of point cloud data points into computer-aided design (cad) objects
CN111488709A (zh) * 2020-04-16 2020-08-04 湖北汽车工业学院 一种零件平面度误差分析方法、误差分析系统及计算机
US11037346B1 (en) * 2020-04-29 2021-06-15 Nanjing University Of Aeronautics And Astronautics Multi-station scanning global point cloud registration method based on graph optimization
WO2022160384A1 (zh) * 2021-01-26 2022-08-04 浙江大学 图像引导机器人微创外科手术的物理空间与图像空间配准方法
WO2022165876A1 (zh) * 2021-02-06 2022-08-11 湖南大学 一种基于wgan的无监督多视角三维点云联合配准方法
CN113052881A (zh) * 2021-03-24 2021-06-29 王程 提取极点的室内三维点云自动化配准方法
CN113269673A (zh) * 2021-04-26 2021-08-17 西安交通大学 一种基于标准球架的三维点云拼接方法
CN113327275A (zh) * 2021-06-18 2021-08-31 哈尔滨工业大学 一种基于多约束点到局部曲面投影的点云双视角精配准方法
CN114266783A (zh) * 2021-12-15 2022-04-01 江苏集萃智能光电系统研究所有限公司 一种高效高精度计算刚性点云曲面之间距离的方法
CN115187676A (zh) * 2022-08-03 2022-10-14 重庆中科摇橹船信息科技有限公司 一种高精度线激光三维重建标定方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
YANNICK CAMPION;: "New insights into the membrane topology of the phagocyte NADPH oxidase: Characterization of an anti-gp91-phox conformational monoclonal antibody", BIOCHIMIE, vol. 89, no. 9, pages 1145 - 1158, XP022206546, DOI: 10.1016/j.biochi.2007.01.010 *
何万涛 等: "Nondestructive inspection of curved clad composites with subsurface defects by combination active thermography and three-dimensional (3D) structural optical imaging", INFRARED PHYSICS AND TECHNOLOGY, no. 97, pages 424 - 431 *
何万涛 等;: "微细特征三维测量系统标定的精确椭圆提取方法", 传感器与微系统, vol. 38, no. 11, pages 23 - 25 *
何万涛: "航空叶片非接触光学测量的转轴精密标定方法", 黑龙江科技大学报, pages 181 - 185 *
张学昌;唐艳梅;梁涛;: "基于球面特征的点云配准方法研究", 机械科学与技术, no. 12, pages 53 - 58 *
欧攀;周锴;吴帅;: "基于球体及平面模型的双Kinect空间位置的标定方法", 激光与光电子学进展, no. 04, pages 372 - 379 *
谭高山;张丽艳;刘胜兰;: "复杂曲面误差评估的最小区域包容配准算法", 计算机集成制造系统, no. 02, pages 175 - 180 *
高尚鹏;徐家川;李迪;: "基于UG的车身点云数据快速对齐方法", 汽车技术, no. 05, pages 59 - 61 *

Also Published As

Publication number Publication date
CN115795579B (zh) 2023-06-27

Similar Documents

Publication Publication Date Title
CN101692257B (zh) 一种复杂曲面的配准方法
CN111080684B (zh) 一种点邻域尺度差异描述的点云配准方法
CN102169579A (zh) 密集点云模型快速精确配准方法
CN106871880A (zh) 采用三维坐标计算肋位、半宽和高度进行船舶合拢的方法
CN108376408A (zh) 一种基于曲率特征的三维点云数据快速加权配准方法
CN111986219B (zh) 一种三维点云与自由曲面模型的匹配方法
CN115409886B (zh) 一种基于点云的零件几何特征测量方法、装置及系统
CN104484508A (zh) 复杂曲面零件非接触式三维匹配检测优化方法
CN112446123B (zh) 一种整体叶盘三坐标测量机测头位姿规划方法
CN110103071B (zh) 一种变形复杂零件的数字化寻位加工方法
CN104463826A (zh) 一种新的点云并行Softassign配准算法
WO2023087971A1 (zh) 一种基于滑动窗数据回溯的等值线匹配方法
CN103106632A (zh) 一种基于均值漂移的不同精度三维点云数据的融合方法
CN113192116A (zh) 基于结构光相机的航空叶片厚度参数量测方法
CN106446343A (zh) 一种径流叶轮直纹叶片参数化型线的自动提取方法
CN113961738A (zh) 一种多特征铸件三维模型检索方法及装置
CN113033668A (zh) 基于样本欧氏距离的ls-svm算法测深训练样本抽稀方法
CN111504191A (zh) 一种基于三维激光扫描的航空零件自动快速测量方法
CN115795579A (zh) 一种无特征复杂曲面误差分析的快速坐标对齐方法
CN106354935A (zh) 基于核外电子概率密度分布的复杂曲面零件匹配检测方法
CN113706381A (zh) 一种三维点云数据的拼接方法及装置
CN109458955B (zh) 基于平面度约束的离轴圆条纹投影测量零相位点求解方法
CN201576308U (zh) 一种复杂曲面的配准系统
CN109948299A (zh) 一种压气机叶片中弧线计算方法
CN116127614A (zh) 基于求解风包络的动力定位能力分析方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant