CN115763947B - 安时级钠离子软包电池 - Google Patents

安时级钠离子软包电池 Download PDF

Info

Publication number
CN115763947B
CN115763947B CN202211383081.9A CN202211383081A CN115763947B CN 115763947 B CN115763947 B CN 115763947B CN 202211383081 A CN202211383081 A CN 202211383081A CN 115763947 B CN115763947 B CN 115763947B
Authority
CN
China
Prior art keywords
sodium
equal
electrode plate
negative electrode
pole piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211383081.9A
Other languages
English (en)
Other versions
CN115763947A (zh
Inventor
李福军
张彤
高苏宁
房恒义
任猛
陈军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN202211383081.9A priority Critical patent/CN115763947B/zh
Publication of CN115763947A publication Critical patent/CN115763947A/zh
Application granted granted Critical
Publication of CN115763947B publication Critical patent/CN115763947B/zh
Priority to US18/498,113 priority patent/US20240154113A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及一种钠离子软包电池,属于新能源材料与器件技术领域,包括正极极片、隔膜、预钠负极极片、电解液、极耳、铝塑膜包装,以Z字形方式依次将1~30片正极极片、2~31片预钠负极极片叠片,加入电解液并封装得到,其特征在于:所述正极极片中含有O3层状氧化物正极材料,化学式为NaaNibZncFedMneTi(1‑b‑c‑d‑e)O2,0.8≤a≤1,0.2<b≤0.5,0<c≤0.1,0<d≤0.2,0.2<e≤0.5,所述预钠负极极片中含有硬碳负极材料,所述正极极片双面密度为28‑33mg/cm2;所述负极极片双面密度为14‑16mg/cm2,电池容量为0.1‑10Ah。本发明钠离子软包电池循环寿命长,可广泛应用于新能源汽车,以及大规模储能等领域。

Description

安时级钠离子软包电池
技术领域
本发明属于新能源材料与器件技术领域,具体涉及一种安时级别钠离子软包电池。
背景技术
钠资源在地球上储量非常丰富,元素含量约为23000ppm(锂含量仅约17ppm),且分布于全球各地,不受地域限制。所以在资源方面,钠离子电池比锂离子电池具有更大的优势。研究钠离子电池可避免锂短缺导致的新能源电池发展存在的资源问题,并可逐步取代环境污染严重的铅酸电池,还可以沿用现有锂离子电池的材料及电池生产工序和生产装备,被认为是大规模储能领域的变革性技术之一,其产业化前景相当乐观,具有重要的经济价值和战略意义。
近年来,不同技术路线的钠离子电池已被广泛研究。同时,大规模储能领域的快速发展对低成本、高容量、长循环寿命的钠离子电池需求也日益增加。当前钠离子电池的研究主要集中在实验室阶段的纽扣小电池上,不能直观反映出电池体系内部存在的真实问题,缺少专利对最常见的软包电池进行研究。因此,开发和优化钠离子软包电池的组装工艺对其商业化应用具有重要意义。
CN114976211A公开了一种钠离子软包电池,该专利基于硫酸盐正极及硬碳负极,软包电池仅能几十毫安时的容量,且循环稳定性较差。正负极的压实密度不高,难以进行大容量软包电池的组装。同时对于关键的补钠技术及正负极容量匹配问题没有优化。
发明内容
本发明的目的是克服现有技术的问题,提供一种钠离子软包电池,该软包电池选用O3层状氧化物作为正极材料,商业化硬碳为负极材料,结合新型化学预钠硬碳负极可弥补钠离子的不可逆损失。同时,对钠离子软包电池的组装工艺也进行了优化,选用较高的压实密度能够实现大容量软包电池的组装,优化正负极的面密度以及容量比,可以实现不同安时级别钠离子软包电池的稳定运行。
实现本发明目的的技术方案如下:
本发明提供了一种安时级别钠离子软包电池,包括正极极片、隔膜、预钠负极极片、电解液、极耳、铝塑膜包装,以Z字形方式依次将1~30片正极极片、2~31片预钠负极极片叠片,加入电解液并封装得到,其特征在于:所述正极极片中含有O3层状氧化物正极材料,化学式为NaaNibZncFedMneTi(1-b-c-d-e)O2,0.8≤a≤1,0.2<b≤0.5,0<c≤0.1,0<d≤0.2,0.2<e≤0.5,所述预钠负极极片中含有硬碳负极材料,所述正极极片单面密度为14-18mg/cm2,双面密度为28-36mg/cm2;所述负极极片单面密度为7-10mg/cm2,双面密度为14-20mg/cm2,正极极片模切尺寸为53.5mm~83mm*83.5mm~163mm,负极极片模切尺寸为55.5mm~85mm*85.5mm~165mm,电池容量为0.1-10Ah。
进一步地,所述O3层状氧化物正极材料的制备方法为:按1:0.3:0.1:0.1:0.3:0.2摩尔计量比例称取碳酸钠、氧化镍、氧化锌、三氧化二铁、二氧化锰、二氧化钛,粉碎混合后,在空气中煅烧,煅烧温度为800-1100℃,升温速率为1~5℃/min,煅烧时间为12-20小时。
进一步地,所述正极极片的制备方法为将O3层状氧化物正极材料、Super-p、PVDF按照93:3:4的质量比来称取,将上述三种材料分散在N-甲基吡咯烷酮溶剂中,混合均匀后涂布到铝箔上,80~100℃真空条件下干燥10~15h,获得正极极片,将正极极片辊压至压实密度为2.6g/cm3~3.0g/cm3,再模切至尺寸53.5mm~83mm*83.5mm~163mm。优选地,正极极片模切尺寸为163*83mm和83.5*53.5mm的一种。
进一步地,所述预钠负极极片的制备方法为将硬碳负极材料、Super-p、丁苯橡胶、羧甲基纤维素按照93:3:2:2的质量比来称取,将上述四种材料分散在纯水中,混合均匀后涂布到铝箔上,70~90℃真空条件下干燥10~15h,获得负极极片,将负极极片辊压至压实密度为1.0g/cm3~1.5g/cm3,再模切至尺寸55.5mm~85mm*85.5mm~165mm,再将负极极片在二苯甲酮-钠溶液中浸泡2~4h,后使用四氢呋喃溶液清洗,70~90℃真空条件下干燥8~12h,获得预钠负极极片。优选地,负极极片模切尺寸为165.5*85.5mm和85.5*55.5mm的一种。
进一步地,预钠溶液的溶剂为乙二醇二甲醚,溶质为二苯甲酮与钠,溶质浓度为0.001-2mol/L。制备方法为:先将二苯甲酮加入乙二醇二甲醚中,再加入钠块,形成二苯甲酮与钠的饱和溶液。
进一步地,所述电解液的浓度为1mol/L,溶质为六氟磷酸钠,溶剂为碳酸甲乙酯、碳酸乙烯酯和碳酸二甲酯以1:1:1体积比混合的混合液。
本发明的优点:
1.本发明利用O3层状氧化物正极材料优异的稳定性,可实现软包电池优异的长循环稳定性。同时,新型化学预钠硬碳负极可弥补电芯首圈钠离子的不可逆损失,从而获得较高的首圈库伦效率。选用合适的压实密度可以实现大容量电池的组装,同时可以减少电解液的加入量,有利于电池的长循环稳定性。
2.本发明提供了不同安时级别钠离子电池及其制备方法,组装工艺易于操作,利于大规模化生产;软包电池成本低廉,循环寿命长,可广泛应用于新能源汽车,以及大规模储能等领域。
附图说明
图1是实施例1所示软包电池的首圈充放电曲线;
图2是实施例1所示软包电池的容量循环对比图;
图3是实施例2所示软包电池的首圈充放电曲线;
图4是实施例2所示软包电池的容量循环对比图;
图5是实施例3所示软包电池的首圈充放电曲线;
图6是实施例3所示软包电池的容量循环对比图;
图7是实施例4所示软包电池的首圈充放电曲线;
图8是实施例1-4所示软包电池的实物图。
具体实施方式
下面结合附图对本发明进行详细、完整地描述。
实施例1:
本实施例提供一种百毫安时级钠离子软包电池,正极材料为O3层状氧化物,负极为商业化硬碳。
正极极片制备:将活性材料、导电剂、粘结剂按93:3:4的质量比混合,即称取1000gO3层状氧化物正极材料32gSuper-p和43g聚偏氟乙烯控制N-甲基吡咯烷酮溶剂的添加量,在粘度为8000cps时双面涂布到铝箔上,90℃真空条件下干燥12h,单位面积上活性材料的质量为29-32mg/cm2。其中O3层状氧化物正极材料的制备方法为:将碳酸钠、氧化镍、氧化锌、三氧化二铁、二氧化锰及二氧化钛按1:0.3:0.1:0.1:0.3:0.2摩尔计量比例粉碎混合,在空气中煅烧,煅烧温度为900℃,升温速率为5℃/min,煅烧时间为15小时。
负极极片制备:将活性材料、导电剂、粘结剂1、粘结剂2按93:3:2:2的质量比混合,即称取600gO3层状氧化物正极材料,19.5gSuper-p,12.9g丁苯橡胶及12.9g羧甲基纤维素,控制去离子水的添加量,在粘度为4500cps时双面涂布到铝箔上,90℃真空条件下干燥12h,单位面积上活性材料的质量为14-18mg/cm2
正负极片的辊压:选择130微米的辊缝对硬碳负极片进行辊压,得到的负极片压实密度为1.02-1.1g/cm3,选择110微米的辊缝对正极极片进行辊压,得到的正极片压实密度为2.6-2.8g/cm3
极片模切:将正极片模切成宽53.5mm,长83.5mm,极耳长度为8mm,宽度为6mm的正极极片;将负极片模切成宽55.5mm,长85.5mm,极耳长度为8mm,宽度为6mm的负极极片。
负极预钠:在惰性气氛保护下,将模切后的负极极片放入浓度为1mol/L的二苯甲酮-钠的乙二醇二甲醚溶液中,2h后取出并用四氢呋喃洗涤三遍,80℃真空条件下干燥12h,获得预钠后的负极极片。
软包电池制备:将4片正极极片、celgard2400隔膜、5片预钠后负极极片按Z字形顺序依次叠片,使用专用胶带固定。选择0.1*8*60mm的铝极耳对正负极片进行焊接在外部用铝塑膜封闭,在80℃真空条件下干燥8h控制水分在20ppm以下,后注入4ml1MNaPF6/EC+EMC+DMC(1:1:1,体积比)电解液,在静置机内进行3次真空、充气操作,将电芯真空封装并静置24h后获得钠离子软包电池。
软包电池化成:以0.02C电流充电至3.4V,0.05C充电至3.8V后常温搁置24h,再以0.1C充电到4.0V。然后以0.2C电流恒流放电至终止电压1.8V,完成电池的化成。
软包电池二封与测试:将化成结束的软包电池的气囊剪掉,进行真空二封;软包电池在0.1C-2C倍率下进行循环测试,充放电截止电压为1.8V和3.9V。
图8所示为组装的软包电池实物图,该软包电池在1C倍率条件下循环性能如图1,2所示,软包电池首圈放电容量为205mAh,经过900圈循环后仍有185mAh的放电容量。
实施例2:
本实施例提供一种1安时级钠离子软包电池,正极材料为O3层状氧化物,负极为商业化硬碳。
正极极片制备:将活性材料、导电剂、粘结剂按93:3:4的质量比混合,即称取1000gO3层状氧化物正极材料32gSuper-p和43g聚偏氟乙烯控制N-甲基吡咯烷酮溶剂的添加量,在粘度为8000cps时双面涂布到铝箔上,90℃真空条件下干燥12h,单位面积上活性材料的质量为29-32mg/cm2。其中O3层状氧化物正极材料的制备方法为:将碳酸钠、氧化镍、氧化锌、三氧化二铁、二氧化锰及二氧化钛按1:0.3:0.1:0.1:0.3:0.2摩尔计量比例粉碎混合,在空气中煅烧,煅烧温度为900℃,升温速率为5℃/min,煅烧时间为15小时。
负极极片制备:将活性材料、导电剂、粘结剂1、粘结剂2按93:3:2:2的质量比混合,即称取600gO3层状氧化物正极材料,19.5gSuper-p,12.9g丁苯橡胶及12.9g羧甲基纤维素,控制去离子水的添加量,在粘度为4500cps时双面涂布到铝箔上,90℃真空条件下干燥12h,单位面积上活性材料的质量为14-18mg/cm2
正负极片的辊压:选择130微米的辊缝对硬碳负极片进行辊压,得到的负极片压实密度为1.02-1.1g/cm3,选择110微米的辊缝对正极极片进行辊压,得到的正极片压实密度为2.6-2.8g/cm3
极片模切:将正极片模切成宽53.5mm,长83.5mm,极耳长度为8mm,宽度为6mm的正极极片;将负极片模切成宽55.5mm,长85.5mm,极耳长度为8mm,宽度为6mm的负极极片。
负极预钠:在惰性气氛保护下,将模切后的负极极片放入浓度为1mol/L的二苯甲酮-钠的乙二醇二甲醚溶液中,2h后取出并用四氢呋喃洗涤三遍,80℃真空条件下干燥12h,获得预钠后的负极极片。
软包电池制备:将11片正极极片、celgard2400隔膜、12片预钠后负极极片按Z字形顺序依次叠片,使用专用胶带固定。选择0.1*8*60mm的铝极耳对正负极片进行焊接在外部用铝塑膜封闭,在80℃真空条件下干燥8h,控制水分在20ppm以下,后注入8ml1MNaPF6/EC+EMC+DMC(1:1:1,体积比)电解液,在静置机内进行3次真空、充气操作,将电芯真空封装并静置24h后获得钠离子软包电池。
软包电池化成:以0.02C电流充电至3.4V,0.05C充电至3.8V后常温搁置24h,再以0.1C充电到4.0V。然后以0.2C电流恒流放电至终止电压1.8V,完成电池的化成。
软包电池二封与测试:将化成结束的软包电池的气囊剪掉,进行真空二封;软包电池在0.1C-2C倍率下进行循环测试,充放电截止电压为1.8V和3.9V。
图8所示为组装的软包电池实物图,该软包电池在0.1C倍率条件下循环性能如图3,4所示,软包电池首圈放电容量为1470mAh,经过110圈循环后仍有1400mAh的放电容量。
实施例3:
本实施例提供一种5安时级钠离子软包电池,正极材料为O3层状氧化物,负极为商业化硬碳。
正极极片制备:将活性材料、导电剂、粘结剂按93:3:4的质量比混合,即称取1000gO3层状氧化物正极材料32gSuper-p和43g聚偏氟乙烯控制N-甲基吡咯烷酮溶剂的添加量,在粘度为8000cps时双面涂布到铝箔上,90℃真空条件下干燥12h,单位面积上活性材料的质量为29-32mg/cm2。其中O3层状氧化物正极材料的制备方法为:将碳酸钠、氧化镍、氧化锌、三氧化二铁、二氧化锰及二氧化钛按1:0.3:0.1:0.1:0.3:0.2摩尔计量比例粉碎混合,在空气中煅烧,煅烧温度为900℃,升温速率为5℃/min,煅烧时间为15小时。
负极极片制备:将活性材料、导电剂、粘结剂1、粘结剂2按93:3:2:2的质量比混合,即称取600gO3层状氧化物正极材料,19.5gSuper-p,12.9g丁苯橡胶及12.9g羧甲基纤维素,控制去离子水的添加量,在粘度为4500cps时双面涂布到铝箔上,90℃真空条件下干燥12h,单位面积上活性材料的质量为14-18mg/cm2
正负极片的辊压:选择130微米的辊缝对硬碳负极片进行辊压,得到的负极片压实密度为1.02-1.1g/cm3,选择110微米的辊缝对正极极片进行辊压,得到的正极片压实密度为2.6-2.8g/cm3
极片模切:正极片模切成宽83mm,长163mm,极耳长度为8mm,宽度为6mm的正极极片;将负极片模切成宽85.5mm,长165.5mm,极耳长度为8mm,宽度为6mm的负极极片。
负极预钠:在惰性气氛保护下,将模切后的负极极片放入浓度为1mol/L的二苯甲酮-钠的乙二醇二甲醚溶液中,2h后取出并用四氢呋喃洗涤三遍,80℃真空条件下干燥12h,获得预钠后的负极极片。
软包电池制备:将14片正极极片、celgard2400隔膜、15片预钠后负极极片按Z字形顺序依次叠片,使用专用胶带固定。选择0.15*12*60mm的铝极耳对正负极片进行焊接,在外部用铝塑膜封闭,在80℃真空条件下干燥8h,控制水分在20ppm以下,后注入25ml1MNaPF6/EC+EMC+DMC(1:1:1,体积比)电解液,在静置机内进行3次真空、充气操作,将电芯真空封装并静置24h后获得钠离子软包电池。
软包电池化成:以0.02C电流充电至3.4V,0.05C充电至3.8V后常温搁置24h,再以0.1C充电到4.0V。然后以0.2C电流恒流放电至终止电压1.8V,完成电池的化成。
软包电池二封与测试:将化成结束的软包电池的气囊剪掉,进行真空二封;软包电池在0.1C-2C倍率下进行循环测试,充放电截止电压为1.8V和3.9V。
图8所示为组装的软包电池实物图,该软包电池在0.2C倍率条件下循环性能如图5,6所示,软包电池首圈放电容量为5770mAh,经过900圈循环后仍有4880mAh的放电容量。
实施例4:
本实施例提供一种8安时级钠离子软包电池,正极材料为O3层状氧化物,负极为商业化硬碳。
正极极片制备:将活性材料、导电剂、粘结剂按93:3:4的质量比混合,即称取1000gO3层状氧化物正极材料32gSuper-p和43g聚偏氟乙烯控制N-甲基吡咯烷酮溶剂的添加量,在粘度为8000cps时双面涂布到铝箔上,90℃真空条件下干燥12h,单位面积上活性材料的质量为29-32mg/cm2。其中O3层状氧化物正极材料的制备方法为:将碳酸钠、氧化镍、氧化锌、三氧化二铁、二氧化锰及二氧化钛按1:0.3:0.1:0.1:0.3:0.2摩尔计量比例粉碎混合,在空气中煅烧,煅烧温度为900℃,升温速率为5℃/min,煅烧时间为15小时。
负极极片制备:将活性材料、导电剂、粘结剂1、粘结剂2按93:3:2:2的质量比混合,即称取600gO3层状氧化物正极材料,19.5gSuper-p,12.9g丁苯橡胶及12.9g羧甲基纤维素,控制去离子水的添加量,在粘度为4500cps时双面涂布到铝箔上,90℃真空条件下干燥12h,单位面积上活性材料的质量为14-18mg/cm2
正负极片的辊压:选择130微米的辊缝对硬碳负极片进行辊压,得到的负极片压实密度为1.02-1.1g/cm3,选择110微米的辊缝对正极极片进行辊压,得到的正极片压实密度为2.6-2.8g/cm3
极片模切:正极片模切成宽83mm,长163mm,极耳长度为8mm,宽度为6mm的正极极片;将负极片模切成宽85.5mm,长165.5mm,极耳长度为8mm,宽度为6mm的负极极片。
负极预钠:在惰性气氛保护下,将模切后的负极极片放入浓度为1mol/L的二苯甲酮-钠的乙二醇二甲醚溶液中,2h后取出并用四氢呋喃洗涤三遍,80℃真空条件下干燥12h,获得预钠后的负极极片。
软包电池制备:将23片正极极片、celgard2400隔膜、24片预钠后负极极片按Z字形顺序依次叠片,使用专用胶带固定。选择0.15*12*60mm的铝极耳对正负极片进行焊接,在外部用铝塑膜封闭,在80℃真空条件下干燥8h,控制水分在20ppm以下,后注入45ml1MNaPF6/EC+EMC+DMC(1:1:1,体积比)电解液,在静置机内进行3次真空、充气操作,将电芯真空封装并静置24h后获得钠离子软包电池。
软包电池化成:以0.02C电流充电至3.4V,0.05C充电至3.8V后常温搁置24h,再以0.1C充电到4.0V。然后以0.2C电流恒流放电至终止电压1.8V,完成电池的化成。
软包电池二封与测试:将化成结束的软包电池的气囊剪掉,进行真空二封;软包电池在0.1C-2C倍率下进行循环测试,充放电截止电压为1.8V和3.9V。
图8所示为组装的软包电池实物图,该软包电池在0.1C倍率条件下电化学性能如图7所示,软包电池首圈放电容量为8100mAh。
以上所述的仅是本发明的优选实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (6)

1.一种安时级别钠离子软包电池,包括正极极片、隔膜、预钠负极极片、电解液、极耳、铝塑膜包装,以Z字形方式依次将1~30片正极极片、2~31片预钠负极极片叠片,加入电解液并封装得到,其特征在于:所述正极极片中含有O3层状氧化物正极材料,化学式为NaaNibZncFedMneTi(1-b-c-d-e)O2,0.8≤a≤1,0.2<b≤0.5,0<c≤0.1,0<d≤0.2,0.2<e≤0.5,所述预钠负极极片中含有硬碳负极材料,所述正极极片双面密度为28-33mg/cm2;所述负极极片双面密度为14-16mg/cm2,正极极片压实密度为2.6g/cm3~3.0g/cm3,模切尺寸为53.5mm~83mm*83.5mm~163mm,负极极片压实密度为1.0g/cm3~1.5g/cm3,模切尺寸为55.5mm~85mm*85.5mm~165mm,电池容量为0.1-10Ah;所述预钠负极极片是将负极极片在二苯甲酮-钠溶液中浸泡,后清洗,真空条件下干燥获得。
2.根据权利要求1所述的安时级别钠离子软包电池,其特征在于,所述O3层状氧化物正极材料的制备方法为:将碳酸钠、氧化镍、氧化锌、三氧化二铁、二氧化锰及二氧化钛按1:0.3:0.1:0.1:0.3:0.2摩尔计量比例粉碎混合,在空气中煅烧,煅烧温度为800-1100℃,升温速率为1~5℃/min,煅烧时间为12-20小时。
3.根据权利要求2所述的安时级别钠离子软包电池,其特征在于,所述正极极片的制备方法为将O3层状氧化物正极材料、Super-p、PVDF按照93:3:4的质量比混合,并双面涂布到铝箔上80~100℃真空条件下干燥10~15h,获得正极极片,将正极极片辊压至压实密度为2.6g/cm3~3.0g/cm3,再模切至尺寸53.5mm~83mm*83.5mm~163mm。
4.根据权利要求3所述的安时级别钠离子软包电池,其特征在于,所述预钠负极极片的制备方法为将硬碳负极材料、Super-p、丁苯橡胶、羧甲基纤维素按照93:3:2:2的质量混合后双面涂布到铝箔上,70~90℃真空条件下干燥10~15h,获得负极极片,将负极极片辊压至压实密度为1.0g/cm3~1.5g/cm3,再模切至尺寸55.5mm~85mm*85.5mm~165mm,再将负极极片在二苯甲酮-钠溶液中浸泡2~4h,后使用四氢呋喃溶液清洗,70~90℃真空条件下干燥8~12h,获得预钠负极极片。
5.根据权利要求4所述的安时级别钠离子软包电池,其特征在于,二苯甲酮-钠溶液的浓度为0.001-2mol/L。
6.根据权利要求5所述的安时级别钠离子软包电池,其特征在于,所述电解液的浓度为1mol/L,溶质为六氟磷酸钠,溶剂为碳酸甲乙酯、碳酸乙烯酯和碳酸二甲酯以1~2:1~3:1~5体积比混合的混合液。
CN202211383081.9A 2022-11-07 2022-11-07 安时级钠离子软包电池 Active CN115763947B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202211383081.9A CN115763947B (zh) 2022-11-07 2022-11-07 安时级钠离子软包电池
US18/498,113 US20240154113A1 (en) 2022-11-07 2023-10-31 Ampere-hour-scale sodium-ion pouch cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211383081.9A CN115763947B (zh) 2022-11-07 2022-11-07 安时级钠离子软包电池

Publications (2)

Publication Number Publication Date
CN115763947A CN115763947A (zh) 2023-03-07
CN115763947B true CN115763947B (zh) 2023-06-16

Family

ID=85356844

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211383081.9A Active CN115763947B (zh) 2022-11-07 2022-11-07 安时级钠离子软包电池

Country Status (2)

Country Link
US (1) US20240154113A1 (zh)
CN (1) CN115763947B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116315141A (zh) * 2023-03-10 2023-06-23 东莞格林德能源有限公司 卷绕式高倍率钠离子的卷芯、电池及制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115036444A (zh) * 2021-03-03 2022-09-09 厦门稀土材料研究所 一种预锂化、预钠化复合负极材料及其制备方法和应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11024840B2 (en) * 2019-01-07 2021-06-01 Global Graphene Group, Inc. Alkali metal-sulfur secondary battery containing a non-electronically conductive anode-protecting layer
CN112864450A (zh) * 2021-01-14 2021-05-28 天能帅福得能源股份有限公司 一种锂离子电池及其制备方法
CN114790013B (zh) * 2021-01-26 2023-10-13 中国科学院物理研究所 自补钠的钠离子电池正极活性材料及其制备方法和应用
CN113178548A (zh) * 2021-04-27 2021-07-27 清华大学深圳国际研究生院 预钠化石墨烯负极极片及其制备方法和钠离子电池
CN114883522B (zh) * 2022-04-20 2024-05-28 南京邮电大学 一种类高熵多元层状过渡金属氧化物正极材料及其制备方法与应用
CN114976211A (zh) * 2022-07-14 2022-08-30 江苏众钠能源科技有限公司 一种钠离子软包电芯电池的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115036444A (zh) * 2021-03-03 2022-09-09 厦门稀土材料研究所 一种预锂化、预钠化复合负极材料及其制备方法和应用

Also Published As

Publication number Publication date
US20240154113A1 (en) 2024-05-09
CN115763947A (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
CN103050290B (zh) 一种内结合超级电容器
CN104157844B (zh) 一种纳微结构的高倍率富锂锰基正极材料及其制备方法
CN103915649A (zh) 一种高能量密度锂离子电池及其制备方法
CN103794776A (zh) 一种高电压、高压实锂离子电池复合正极材料及制备方法
CN103311540B (zh) 一种锂离子电池正极材料及其制备方法
CN106532041A (zh) 一种用于钠离子电池的氟硅酸锰钠正极材料及其制备方法
CN114551854B (zh) 一种高能量密度和长循环寿命水系锌基二次电池
CN109817868A (zh) 一种高电压、高安全锂离子电池及其制备方法
CN107104246A (zh) 一种电压降抑制型富锂锰基全电池及其制备方法
US20240154113A1 (en) Ampere-hour-scale sodium-ion pouch cell
CN110071341A (zh) 一种退役锂离子电池的修复方法
CN103855373A (zh) 五氧化二钒/石墨烯复合材料及其制备方法和应用
CN101587952A (zh) 复合钴酸锂正极材料和制备方法及其应用
CN103035948A (zh) 一种尖晶石钛酸锂储能型锂离子二次电池用非碳酸酯基新型电解液体系
CN105185978A (zh) 用作负极活性物质的含锰氧化合物及其制备方法和用途
CN107768664A (zh) 一种钼掺杂的富锂锰基正极材料及其制备方法
CN101399120A (zh) 一种新型的混合超级电容器
杨汉西 et al. Recent development of aqueous sodium ion batteries and their key materials
CN102185146A (zh) 稀土掺杂的磷酸锰锂正极材料及其制备方法
CN106784657A (zh) 一种钠和铁共掺杂制备高性能锰酸锂正极材料的方法
CN105591106A (zh) 一种钠离子电池正极材料及其制备方法
CN103280569B (zh) 一种类石墨烯包覆富锂层状镍锰酸锂及制备方法和应用
CN107195884A (zh) 一种偏硅酸锂掺杂石墨烯锂离子电池负极材料及其制备方法
CN102522564A (zh) 制备钠掺杂锂离子电池正极材料磷酸钒锂的流变相方法
CN111916777B (zh) 一种轻量化贫液结构的盐水电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant