CN115763533A - Groove filling medium leakage-isolating homoepitaxial GaN HEMT device and manufacturing method thereof - Google Patents
Groove filling medium leakage-isolating homoepitaxial GaN HEMT device and manufacturing method thereof Download PDFInfo
- Publication number
- CN115763533A CN115763533A CN202211623684.1A CN202211623684A CN115763533A CN 115763533 A CN115763533 A CN 115763533A CN 202211623684 A CN202211623684 A CN 202211623684A CN 115763533 A CN115763533 A CN 115763533A
- Authority
- CN
- China
- Prior art keywords
- layer
- thickness
- gan
- torr
- source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 16
- 238000011049 filling Methods 0.000 title claims abstract description 15
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims abstract description 63
- 230000004888 barrier function Effects 0.000 claims abstract description 63
- 238000002955 isolation Methods 0.000 claims abstract description 61
- 229910052751 metal Inorganic materials 0.000 claims abstract description 32
- 239000002184 metal Substances 0.000 claims abstract description 32
- 239000000463 material Substances 0.000 claims abstract description 24
- 229910002601 GaN Inorganic materials 0.000 claims description 93
- 238000000034 method Methods 0.000 claims description 74
- 230000008569 process Effects 0.000 claims description 59
- 238000005516 engineering process Methods 0.000 claims description 30
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 25
- 238000005229 chemical vapour deposition Methods 0.000 claims description 25
- 229910002704 AlGaN Inorganic materials 0.000 claims description 24
- 238000003780 insertion Methods 0.000 claims description 23
- 230000037431 insertion Effects 0.000 claims description 23
- 238000000151 deposition Methods 0.000 claims description 22
- 238000001451 molecular beam epitaxy Methods 0.000 claims description 17
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 16
- 230000003071 parasitic effect Effects 0.000 claims description 13
- 238000005530 etching Methods 0.000 claims description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 11
- 238000000206 photolithography Methods 0.000 claims description 11
- 239000000758 substrate Substances 0.000 claims description 11
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 10
- 238000001312 dry etching Methods 0.000 claims description 10
- 229910052733 gallium Inorganic materials 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 10
- 229910052757 nitrogen Inorganic materials 0.000 claims description 10
- 239000000126 substance Substances 0.000 claims description 10
- 229910052782 aluminium Inorganic materials 0.000 claims description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 9
- 238000005566 electron beam evaporation Methods 0.000 claims description 9
- 229910052739 hydrogen Inorganic materials 0.000 claims description 9
- 238000009713 electroplating Methods 0.000 claims description 8
- 239000001257 hydrogen Substances 0.000 claims description 8
- 238000005498 polishing Methods 0.000 claims description 8
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 7
- 229910003460 diamond Inorganic materials 0.000 claims description 7
- 239000010432 diamond Substances 0.000 claims description 7
- 229910003855 HfAlO Inorganic materials 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 5
- 229910045601 alloy Inorganic materials 0.000 claims description 5
- 229910021529 ammonia Inorganic materials 0.000 claims description 5
- -1 c-BN Inorganic materials 0.000 claims description 5
- 230000008021 deposition Effects 0.000 claims description 5
- 238000004544 sputter deposition Methods 0.000 claims description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 4
- 238000000231 atomic layer deposition Methods 0.000 claims description 4
- 229910052796 boron Inorganic materials 0.000 claims description 4
- 229910052738 indium Inorganic materials 0.000 claims description 4
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 4
- 229910052706 scandium Inorganic materials 0.000 claims description 4
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 claims description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 3
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 3
- 229910000077 silane Inorganic materials 0.000 claims description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims 3
- 229910052698 phosphorus Inorganic materials 0.000 claims 3
- 239000011574 phosphorus Substances 0.000 claims 3
- XYFCBTPGUUZFHI-UHFFFAOYSA-N phosphine group Chemical group P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 claims 2
- 229910052727 yttrium Inorganic materials 0.000 claims 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims 1
- DLIOSYYYCBMDCP-UHFFFAOYSA-N cyclopenta-1,3-diene;scandium(3+) Chemical group [Sc+3].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 DLIOSYYYCBMDCP-UHFFFAOYSA-N 0.000 claims 1
- 150000002902 organometallic compounds Chemical class 0.000 claims 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 claims 1
- 229910052710 silicon Inorganic materials 0.000 claims 1
- 239000010703 silicon Substances 0.000 claims 1
- 238000004381 surface treatment Methods 0.000 claims 1
- LALRXNPLTWZJIJ-UHFFFAOYSA-N triethylborane Chemical group CCB(CC)CC LALRXNPLTWZJIJ-UHFFFAOYSA-N 0.000 claims 1
- 238000001657 homoepitaxy Methods 0.000 abstract description 3
- 230000017525 heat dissipation Effects 0.000 abstract description 2
- 230000015556 catabolic process Effects 0.000 description 6
- 229910001873 dinitrogen Inorganic materials 0.000 description 5
- 230000008020 evaporation Effects 0.000 description 5
- 238000001704 evaporation Methods 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- 238000005137 deposition process Methods 0.000 description 4
- 238000000227 grinding Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000009616 inductively coupled plasma Methods 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000000407 epitaxy Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 230000003446 memory effect Effects 0.000 description 2
- 230000006911 nucleation Effects 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 238000004151 rapid thermal annealing Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 239000000370 acceptor Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000011982 device technology Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001534 heteroepitaxy Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000005533 two-dimensional electron gas Effects 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
Images
Landscapes
- Junction Field-Effect Transistors (AREA)
Abstract
Description
技术领域technical field
本发明属于半导体器件技术领域,特别涉及一种同质外延GaN高电子迁移率晶体管HEMT,可用于制作微波功率放大器和射频集成电路芯片。The invention belongs to the technical field of semiconductor devices, in particular to a homoepitaxial GaN high electron mobility transistor HEMT, which can be used for making microwave power amplifiers and radio frequency integrated circuit chips.
背景技术Background technique
第三代宽禁带半导体材料GaN在高频率、高功率、高效率固态微波毫米波器件和功率放大器中具有重要应用,成为近年来微电子器件领域的研究热点和战略竞争点。GaN材料拥有强的自发极化和压电极化效应,其异质结材料中高面密度和高迁移率的二维电子气是实现器件高效开关和高频高功率应用的关键。作为主流的器件结构,GaN HEMT经过近三十年的结构创新和工艺改进,已经在宽带通信和信息感知领域获得了市场化应用。The third-generation wide-bandgap semiconductor material GaN has important applications in high-frequency, high-power, high-efficiency solid-state microwave and millimeter-wave devices and power amplifiers, and has become a research hotspot and strategic competition point in the field of microelectronic devices in recent years. GaN materials have strong spontaneous polarization and piezoelectric polarization effects, and the two-dimensional electron gas with high surface density and high mobility in its heterojunction materials is the key to realizing high-efficiency switching of devices and high-frequency and high-power applications. As a mainstream device structure, GaN HEMT has gained market application in the fields of broadband communication and information perception after nearly 30 years of structural innovation and process improvement.
为进一步提高GaN HEMT器件的工作频率、输出功率和工作效率,器件结构设计创新和新材料应用及其器件工艺开发成为提高器件性能的主要途径,其中材料外延由异质外延向自支撑氮化镓衬底上同质外延发展。GaN HEMT器件在Si、SiC或蓝宝石衬底上异质外延时,材料中存在高密度的位错缺陷,会引起器件垂直漏电和可靠性下降,而同质外延界面寄生漏电通道成为限制击穿电压的主要因素。常规的GaN HEMT器件结构如图1所示,自下而上的结构分别为:衬底、成核层、GaN缓冲层、沟道层、插入层、势垒层,势垒层上设有栅电极,源漏区欧姆接触上分别设有源电极和漏电极。该器件结构存在以下缺点:In order to further improve the working frequency, output power and work efficiency of GaN HEMT devices, the innovation of device structure design and the application of new materials and the development of device technology have become the main ways to improve the performance of devices, in which the material epitaxy has changed from heteroepitaxy to self-supporting gallium nitride Homoepitaxial growth on substrates. When GaN HEMT devices are heteroepitaxial on Si, SiC or sapphire substrates, there are high-density dislocation defects in the material, which will cause vertical leakage and reliability degradation of the device, while the parasitic leakage channels at the homoepitaxial interface become the limit breakdown main factor of voltage. The conventional GaN HEMT device structure is shown in Figure 1. The bottom-up structure is: substrate, nucleation layer, GaN buffer layer, channel layer, insertion layer, barrier layer, and the barrier layer is provided with a gate An electrode, a source electrode and a drain electrode are respectively arranged on the ohmic contacts of the source and drain regions. This device structure has the following disadvantages:
一是在异质外延的GaN缓冲层中,由晶格失配导致的高密度位错会沿着材料外延方向进入器件有源区,对载流子输运产生散射,同时形成垂直漏电通道,降低了器件击穿电压,使器件可靠性发生退化。One is that in the heteroepitaxial GaN buffer layer, the high-density dislocations caused by lattice mismatch will enter the active region of the device along the epitaxial direction of the material, scattering the carrier transport, and forming a vertical leakage channel at the same time. The breakdown voltage of the device is reduced, and the reliability of the device is degraded.
二是异质外延GaN缓冲层需要采用成核层结构,该结构的生长工艺、材料质量和厚度直接决定其上GaN外延材料的结晶质量和输运特性,工艺控制难度大且重复性和一致性差。The second is that the heteroepitaxial GaN buffer layer needs to adopt a nucleation layer structure. The growth process, material quality and thickness of the structure directly determine the crystal quality and transport characteristics of the GaN epitaxial material on it. The process control is difficult and the repeatability and consistency are poor. .
三是同质外延GaN缓冲层时,自支撑氮化镓衬底和GaN材料的同质外延界面处存在高浓度n型的Si杂质,该杂质难以完全去除且会引入寄生漏电沟道,会严重降低同质外延GaN HEMT器件击穿电压和输出功率密度。Third, when the GaN buffer layer is homoepitaxial, there is a high concentration of n-type Si impurities at the homoepitaxial interface between the self-supporting GaN substrate and the GaN material, which is difficult to completely remove and will introduce parasitic leakage channels, which will seriously Reduce the breakdown voltage and output power density of homoepitaxial GaN HEMT devices.
四是同质外延GaN缓冲层时,为了解决同质外延界面寄生漏电问题,采用原位生长引入Fe或C杂质进行补偿,这样会引起杂质扩散和记忆效应,且C杂质作为深能级受主不适合用于微波功率器件中。Fourth, in the homoepitaxial GaN buffer layer, in order to solve the problem of parasitic leakage at the homoepitaxial interface, in-situ growth is used to introduce Fe or C impurities to compensate, which will cause impurity diffusion and memory effects, and C impurities act as deep level acceptors Not suitable for use in microwave power devices.
五是自支撑氮化镓单晶衬底热导率较低,会限制同质外延GaN HEMT器件在更高温度下的正常工作,不能满足大功率和高温应用场合。Fifth, the thermal conductivity of the self-supporting GaN single crystal substrate is low, which will limit the normal operation of homoepitaxial GaN HEMT devices at higher temperatures, and cannot meet high-power and high-temperature applications.
发明内容Contents of the invention
本发明目的在于针对上述已有技术的缺点,提出凹槽填充介质隔离漏电的同质外延GaN HEMT器件及其制作方法,以阻断同质外延界面的寄生漏电通道,实现极低缺陷氮化镓材料外延生长,提高器件散热效率、输出功率密度和可靠性。The purpose of the present invention is to address the shortcomings of the above-mentioned prior art, and propose a homoepitaxial GaN HEMT device and a manufacturing method thereof with groove filling dielectric isolation leakage, so as to block the parasitic leakage channel of the homoepitaxial interface and realize extremely low-defect gallium nitride Material epitaxial growth improves device heat dissipation efficiency, output power density and reliability.
本发明的技术方案是这样实现的:Technical scheme of the present invention is realized like this:
1.一种凹槽填充介质隔离漏电的同质外延GaN HEMT器件,自下而上包括GaN衬底、GaN缓冲层、背势垒层、沟道层、AlN插入层、势垒层和绝缘栅介质,AlN插入层和势垒层左右两侧分别设有欧姆接触,欧姆接触上分别设有源、漏电极,绝缘栅介质上设有栅电极,其特征在于:1. A homoepitaxial GaN HEMT device with groove filling dielectric isolation leakage, comprising a GaN substrate, a GaN buffer layer, a back barrier layer, a channel layer, an AlN insertion layer, a barrier layer and an insulating gate from bottom to top Ohmic contacts are provided on the left and right sides of the medium, the AlN insertion layer and the barrier layer, the source and drain electrodes are respectively provided on the ohmic contacts, and the gate electrode is provided on the insulating gate dielectric, which is characterized in that:
所述GaN衬底与GaN缓冲层之间刻蚀有凹槽,该凹槽中和GaN衬底背面均填充且覆盖高热导率材料作为漏电隔离层,以阻断同质外延界面寄生漏电通道;A groove is etched between the GaN substrate and the GaN buffer layer, the groove and the back of the GaN substrate are filled and covered with a high thermal conductivity material as a leakage isolation layer, so as to block the parasitic leakage channel of the homoepitaxial interface;
所述源电极欧姆接触区下设有至漏电隔离层的通孔,该通孔中与漏电隔离层的下部均设有背电极,以减小器件寄生电容,实现更好的高频特性。A through hole to the leakage isolation layer is provided under the ohmic contact area of the source electrode, and a back electrode is provided in the through hole and the lower part of the leakage isolation layer to reduce the parasitic capacitance of the device and achieve better high-frequency characteristics.
进一步,GaN衬底采用自支撑氮化镓衬底;Further, the GaN substrate adopts a self-supporting gallium nitride substrate;
进一步,所述GaN缓冲层,其厚度为300nm-6000nm;Further, the thickness of the GaN buffer layer is 300nm-6000nm;
进一步,所述背势垒层,采用渐变组分AlGaN、AlGaN/GaN超晶格、AlGaN/AlN超晶格中的任意一种,厚度为50nm-100nm;Further, the back barrier layer adopts any one of graded composition AlGaN, AlGaN/GaN superlattice, and AlGaN/AlN superlattice, with a thickness of 50nm-100nm;
进一步,所述沟道层,采用InxGa1-xN,其中组分0≤x≤1,其厚度为10nm-30nm;Further, the channel layer adopts In x Ga 1-x N, wherein the composition 0≤x≤1, and its thickness is 10nm-30nm;
进一步,所述AlN插入层,其厚度为1nm-2nm;Further, the AlN insertion layer has a thickness of 1nm-2nm;
进一步,所述势垒层,采用AlN、AlGaN、InAlN、ScAlN、AlPN、BAlN、BPN、YAlN中的任意一种,其厚度为3nm-30nm;Further, the barrier layer is any one of AlN, AlGaN, InAlN, ScAlN, AlPN, BAlN, BPN, YAlN, and its thickness is 3nm-30nm;
进一步,所述凹槽,深入GaN缓冲层的厚度为100-200nm;Further, the thickness of the groove deep into the GaN buffer layer is 100-200nm;
进一步,所述漏电隔离层,采用金刚石、c-BN、AlN中的任意一种,其厚度为10μm-20μm;Further, the leakage isolation layer is any one of diamond, c-BN, and AlN, and its thickness is 10 μm-20 μm;
进一步,所述绝缘栅介质层,采用Al2O3、HfO2、HfAlO介质层中的任一种,其厚度为3nm-20nm。Further, the insulating gate dielectric layer is any one of Al 2 O 3 , HfO 2 , and HfAlO dielectric layers, and its thickness is 3nm-20nm.
2.一种凹槽填充介质隔离漏电的同质外延GaN HEMT器件的制作方法,包括如下步骤:2. A method for making a homoepitaxial GaN HEMT device with dielectric isolation leakage for filling grooves, comprising the steps of:
1)在GaN衬底基片上,利用金属有机物化学气相淀积技术或分子束外延方法生长厚度为300nm-6000nm的GaN缓冲层;1) On the GaN substrate, a GaN buffer layer with a thickness of 300nm-6000nm is grown by metal-organic chemical vapor deposition technology or molecular beam epitaxy;
2)采用金属有机物化学气相淀积技术或分子束外延方法,在GaN缓冲层上生长厚度为50nm-100nm的背势垒层;2) growing a back barrier layer with a thickness of 50nm-100nm on the GaN buffer layer by metal-organic chemical vapor deposition technology or molecular beam epitaxy;
3)采用金属有机物化学气相淀积技术或分子束外延方法,在背势垒层上生长厚度为10nm-30nm的沟道层;3) growing a channel layer with a thickness of 10nm-30nm on the back barrier layer by metal organic chemical vapor deposition technology or molecular beam epitaxy;
4)采用金属有机物化学气相淀积技术或分子束外延方法,在沟道层上生长厚度为1nm-2nm的AlN插入层;4) growing an AlN insertion layer with a thickness of 1nm-2nm on the channel layer by metal-organic chemical vapor deposition technology or molecular beam epitaxy;
5)采用金属有机物化学气相淀积技术或分子束外延方法,在AlN插入层上生长厚度为3nm-30nm的势垒层;5) growing a barrier layer with a thickness of 3nm-30nm on the AlN insertion layer by metal organic chemical vapor deposition technology or molecular beam epitaxy;
6)采用化学机械抛光方法,从GaN衬底背面减薄其厚度至50μm-150μm;6) Using a chemical mechanical polishing method to reduce the thickness of the GaN substrate from the backside to 50 μm-150 μm;
7)采用光刻工艺在GaN衬底背面选定需要刻蚀的区域,采用干法刻蚀工艺刻蚀GaN衬底和GaN缓冲层,刻蚀出深入GaN缓冲层深度为100nm-200nm的凹槽;7) Use a photolithography process to select the area to be etched on the back of the GaN substrate, use a dry etching process to etch the GaN substrate and the GaN buffer layer, and etch a groove with a depth of 100nm-200nm deep into the GaN buffer layer ;
8)在刻蚀后的凹槽中和GaN衬底背面淀积厚度为10μm-20μm的漏电隔离层,并在淀积后对漏电隔离层表面进行化学机械抛光处理,平整材料表面;8) Deposit a leakage isolation layer with a thickness of 10 μm-20 μm in the etched groove and the back of the GaN substrate, and perform chemical mechanical polishing on the surface of the leakage isolation layer after deposition to smooth the surface of the material;
9)采用光刻工艺在势垒层两端选定器件源、漏欧姆接触区图形,并对其进行干法刻蚀处理至沟道层上方,形成欧姆接触区凹槽;9) Using a photolithography process to select device source and drain ohmic contact area patterns at both ends of the barrier layer, and dry-etching them to the top of the channel layer to form grooves in the ohmic contact area;
10)采用金属有机物化学气相淀积技术或分子束外延方法,在欧姆接触区凹槽中生长厚度为4nm-32nm的Si掺杂n型GaN层,其中Si掺杂浓度为(1~5)×1020cm-3,形成欧姆接触区;10) Using metal-organic chemical vapor deposition technology or molecular beam epitaxy, grow a Si-doped n-type GaN layer with a thickness of 4nm-32nm in the groove of the ohmic contact region, wherein the Si doping concentration is (1-5)× 10 20 cm -3 , forming an ohmic contact area;
11)采用电子束蒸发工艺,在源电极和漏电极欧姆接触区淀积欧姆接触金属Ti/Al/Ni/Au,并在830℃氮气气氛下退火,形成源电极和漏电极;11) Using an electron beam evaporation process, deposit ohmic contact metal Ti/Al/Ni/Au in the ohmic contact area of the source electrode and the drain electrode, and anneal in a nitrogen atmosphere at 830°C to form the source electrode and the drain electrode;
12)采用原子层淀积工艺,在势垒层上淀积厚度为3nm-20nm的绝缘栅介质层;12) Depositing an insulating gate dielectric layer with a thickness of 3nm-20nm on the barrier layer by using an atomic layer deposition process;
13)采用光刻工艺在绝缘栅介质层表面选定栅电极图形,在该图形上再采用电子束蒸发工艺淀积Ni/Au金属组合,形成栅电极;13) Selecting a gate electrode pattern on the surface of the insulating gate dielectric layer by photolithography, and depositing a Ni/Au metal combination on the pattern by electron beam evaporation process to form a gate electrode;
14)采用背道工艺在漏电隔离层下进行背孔刻蚀,形成从漏电隔离层到源电极下方欧姆接触区的通孔;14) Carry out backhole etching under the leakage isolation layer by using the back channel process to form a through hole from the leakage isolation layer to the ohmic contact area under the source electrode;
15)采用磁溅射工艺向孔壁填充TiW作为合金阻挡层,再向通孔内填满Au,并通过电镀工艺继续在漏电隔离层上电镀厚度为8μm-10μm的Au,在漏电隔离层底部形成背电极,完成器件制作。15) Use magnetic sputtering process to fill the hole wall with TiW as an alloy barrier layer, then fill the through hole with Au, and continue to electroplate Au with a thickness of 8 μm-10 μm on the leakage isolation layer through the electroplating process, and at the bottom of the leakage isolation layer A back electrode is formed to complete device fabrication.
本发明与现有技术相比具有如下优点:Compared with the prior art, the present invention has the following advantages:
1.本发明由于采用自支撑GaN衬底进行GaN HEMT材料同质外延,能实现GaN异质结材料的零应力外延,有效降低异质外延GaN材料中的位错密度,提高材料晶体质量,减少垂直漏电沟道,提高器件击穿电压和输出功率。1. Since the present invention uses a self-supporting GaN substrate for GaN HEMT material homoepitaxy, it can realize zero-stress epitaxy of GaN heterojunction materials, effectively reduce the dislocation density in heteroepitaxial GaN materials, improve material crystal quality, and reduce The vertical leakage channel improves the breakdown voltage and output power of the device.
2.本发明由于采用凹槽填充介质的漏电隔离层,将GaN缓冲层与GaN衬底之间同质外延界面形成的寄生漏电沟道有效阻断,能提高GaN HEMT器件击穿电压。2. The present invention effectively blocks the parasitic leakage channel formed by the homoepitaxial interface between the GaN buffer layer and the GaN substrate due to the use of the leakage isolation layer of the groove filling medium, and can improve the breakdown voltage of the GaN HEMT device.
3.本发明由于采用凹槽填充介质的漏电隔离层来阻断同质外延界面形成的寄生漏电沟道,没有引入原位Fe或C掺杂来补偿同质外延界面寄生Si杂质,因而材料生长工艺简单,且无记忆效应和微波射频损耗。3. The present invention uses the leakage isolation layer of the groove filling medium to block the parasitic leakage channel formed at the homoepitaxial interface, and does not introduce in-situ Fe or C doping to compensate the parasitic Si impurities at the homoepitaxial interface, so that the material grows The process is simple, and there is no memory effect and microwave radio frequency loss.
4.本发明由于将源电极通过通孔引到衬底背面,减小了器件寄生电容,能实现更好的高频特性,同时可将其作为金属热沉材料键合到其他衬底上,实现GaN HEMT器件的转移。4. In the present invention, since the source electrode is led to the back of the substrate through the through hole, the parasitic capacitance of the device is reduced, better high-frequency characteristics can be achieved, and it can be bonded to other substrates as a metal heat sink material at the same time. Realize the transfer of GaN HEMT devices.
5.本发明由于在凹槽中填充高热导率漏电隔离层材料,并结合漏电隔离层背部的背电极金属,可以将器件有源区产生的热量高效耗散,实现更好的器件高温特性,提高器件可靠性和工作温度上限。5. The present invention can efficiently dissipate the heat generated in the active area of the device by filling the groove with a high thermal conductivity leakage isolation layer material and combining the back electrode metal on the back of the leakage isolation layer to achieve better high temperature characteristics of the device. Improves device reliability and upper operating temperature limit.
附图说明Description of drawings
图1是传统GaN HEMT器件结构图;Figure 1 is a structural diagram of a traditional GaN HEMT device;
图2是本发明凹槽填充介质隔离漏电的同质外延GaN HEMT器件结构图;Fig. 2 is a structural diagram of a homoepitaxial GaN HEMT device with groove filling dielectric isolation leakage of the present invention;
图3是本发明制作凹槽填充介质隔离漏电的同质外延GaN HEMT器件工艺流程示意图。Fig. 3 is a schematic diagram of the process flow of the invention for manufacturing a homoepitaxial GaN HEMT device with dielectric isolation leakage filled in grooves.
具体实施方式Detailed ways
参照图2,本发明的凹槽填充介质隔离漏电的同质外延GaN HEMT器件结构,包括GaN衬底1、GaN缓冲层2、背势垒层3、沟道层4、AlN插入层5、势垒层6、凹槽7、漏电隔离层8、绝缘栅介质9、背电极10,AlN插入层5和势垒层6左右两侧分别设有欧姆接触区,欧姆接触区上分别设有源、漏电极,绝缘栅介质上设有栅电极。其中:Referring to Fig. 2, the homoepitaxial GaN HEMT device structure of the groove filling dielectric isolation leakage of the present invention comprises a
所述GaN衬底1,采用自支撑氮化镓衬底;The
所述GaN缓冲层2位于GaN衬底1的上方,其厚度为300nm-6000nm;The
所述GaN衬底1与GaN缓冲层2之间设有凹槽7,其深入GaN缓冲层2深度为100nm-200nm;A
所述凹槽7中和GaN衬底1背面填充且覆盖漏电隔离层8,以阻断同质外延界面寄生漏电通道;The
所述漏电隔离层8,采用金刚石、c-BN、AlN中的任意一种,其厚度为10μm-20μm;The leakage isolation layer 8 is any one of diamond, c-BN, and AlN, and its thickness is 10 μm-20 μm;
所述的背势垒层3位于GaN缓冲层2的上方,其采用渐变组分AlGaN、AlGaN/GaN超晶格、AlGaN/AlN超晶格中的任意一种,厚度为50nm-100nm;The
所述的沟道层4位于背势垒层3的上方,其采用InxGa1-xN,组分0≤x≤1,厚度为10nm-30nm;The
所述的AlN插入层5位于沟道层4的上方,其厚度为1nm-2nm;The
所述的势垒层6位于AlN插入层5的上方,采用AlN、AlGaN、InAlN、ScAlN、AlPN、BAlN、BPN、YAlN中的任意一种,其厚度为3nm-30nm;The
所述的绝缘栅介质层9位于势垒层6的上方,其采用Al2O3、HfO2、HfAlO介质层中的任一种,厚度为3nm-20nm;The insulating gate dielectric layer 9 is located above the
所述的源电极通过背道工艺,从漏电隔离层背部刻蚀通孔至欧姆接触区,并在通孔中填充金属和漏电隔离层8上电镀金属形成背电极10。The source electrode is etched from the back of the leakage isolation layer to the ohmic contact area through the back channel process, and the back electrode 10 is formed by filling the through hole with metal and electroplating metal on the leakage isolation layer 8 .
参照图3,本发明制作凹槽填充介质隔离漏电的同质外延GaN HEMT器件方法,给出如下三种实施例。Referring to FIG. 3 , the present invention provides the method for manufacturing a homoepitaxial GaN HEMT device with dielectric isolation leakage filled with grooves, and provides the following three embodiments.
实施例一,制作采用自支撑氮化镓衬底,金刚石漏电隔离层、渐变组分AlGaN背势垒层厚度为100nm、GaN沟道厚度为30nm、Al0.25Ga0.75N势垒层厚度为30nm的同质外延GaNHEMT器件。
步骤一,淀积GaN缓冲层,如图3(a)。
使用金属有机物化学气相淀积技术在GaN衬底上淀积厚度为6000nm的GaN缓冲层,其淀积的工艺条件是:温度为1250℃,压强为50Torr,氨气流量为2000sccm,镓源流量为150sccm,氢气流量为3000sccm。A GaN buffer layer with a thickness of 6000nm is deposited on a GaN substrate by using metal organic chemical vapor deposition technology. 150sccm, hydrogen flow rate is 3000sccm.
步骤二,淀积渐变组分AlGaN背势垒层,如图3(b)。
使用金属有机物化学气相淀积技术在GaN缓冲层上淀积厚度为100nm的渐变组分AlGaN背势垒层,其淀积的工艺条件是:1250℃,压强为50Torr,氨气流量为2000sccm,镓源流量为150sccm,铝源流量为20sccm,氢气流量为3000sccm。A graded composition AlGaN back barrier layer with a thickness of 100nm is deposited on the GaN buffer layer by metal-organic chemical vapor deposition technology. The source flow rate is 150 sccm, the aluminum source flow rate is 20 sccm, and the hydrogen gas flow rate is 3000 sccm.
步骤三,淀积GaN沟道层,如图3(c)。
使用金属有机物化学气相淀积技术在渐变组分AlGaN背势垒层上淀积30nm厚的GaN沟道层,其淀积的工艺条件是:在温度为1250℃,压强为50Torr,镓源流量为150sccm,氨气流量为2000sccm,氢气流量为3000sccm。Use metal organic chemical vapor deposition technology to deposit a 30nm thick GaN channel layer on the graded composition AlGaN back barrier layer. The deposition process conditions are: at a temperature of 1250 ° C, a pressure of 50 Torr, and a gallium source flow rate of 150sccm, the flow rate of ammonia gas is 2000sccm, and the flow rate of hydrogen gas is 3000sccm.
步骤四,淀积AlN插入层,如图3(d)。
使用金属有机物化学气相淀积技术在GaN沟道层上淀积厚度为1nm的AlN插入层,其淀积的工艺条件是:温度为1250℃,压强为50Torr,铝源流量为20sccm,氨气流量为2000sccm,氢气流量为3000sccm。A metal-organic chemical vapor deposition technique was used to deposit an AlN insertion layer with a thickness of 1nm on the GaN channel layer. is 2000 sccm, and the hydrogen flow rate is 3000 sccm.
步骤五,淀积AlGaN势垒层,如图3(e)。Step five, depositing an AlGaN barrier layer, as shown in Fig. 3(e).
使用金属有机物化学气相淀积技术在AlN插入层上淀积厚度为30nm的Al0.25Ga0.75N势垒层,其淀积的工艺条件是:温度为1250℃,压强为50Torr,氨气流量为2000sccm,镓源流量为60sccm,铝源流量为20sccm,氢气流量为3000sccm。A metal-organic chemical vapor deposition technique is used to deposit an Al 0.25 Ga 0.75 N barrier layer with a thickness of 30 nm on the AlN insertion layer. The deposition process conditions are: temperature 1250 ° C, pressure 50 Torr, ammonia gas flow rate 2000 sccm , Ga source flow is 60sccm, aluminum source flow is 20sccm, hydrogen flow is 3000sccm.
步骤六,减薄GaN衬底,如图3(f)。Step six, thinning the GaN substrate, as shown in Figure 3(f).
使用化学机械抛光方法减薄GaN衬底至50μm。先粗磨高速减薄,后细磨提高GaN衬底背面平整度。The GaN substrate was thinned to 50 μm using chemical mechanical polishing. First rough grinding for high-speed thinning, and then fine grinding to improve the flatness of the GaN substrate backside.
步骤七,刻蚀GaN衬底和GaN缓冲层,形成凹槽,如图3(g)。Step seven, etching the GaN substrate and the GaN buffer layer to form grooves, as shown in Figure 3(g).
使用光刻工艺在GaN衬底背面选定刻蚀区域,采用干法刻蚀工艺刻蚀GaN衬底和GaN缓冲层,刻蚀出深入GaN缓冲层深度为100nm的凹槽。A photolithographic process is used to select an etching area on the back of the GaN substrate, a dry etching process is used to etch the GaN substrate and the GaN buffer layer, and a groove with a depth of 100nm deep into the GaN buffer layer is etched.
步骤八,淀积金刚石漏电隔离层,如图3(h)。Step 8, depositing a diamond leakage isolation layer, as shown in Figure 3(h).
采用微波等离子体化学气相淀积技术在凹槽中和GaN衬底背面淀积厚度为10μm的金刚石漏电隔离层,淀积后再对金刚石漏电隔离层表面进行化学机械抛光处理,其淀积的工艺条件是:微波功率1400W,气压21kPa,等离子体功率密度700W/cm3,温度850℃,CH4体积分数1.0%,H2流量200ml/min。Using microwave plasma chemical vapor deposition technology to deposit a diamond leakage isolation layer with a thickness of 10 μm in the groove and on the back of the GaN substrate, after deposition, chemical mechanical polishing is performed on the surface of the diamond leakage isolation layer. The deposition process The conditions are: microwave power 1400W, air pressure 21kPa, plasma power density 700W/cm 3 , temperature 850°C, CH 4 volume fraction 1.0%, H 2 flow rate 200ml/min.
步骤九,干法刻蚀,形成源漏欧姆接触区凹槽,如图3(i)。Step 9, dry etching to form grooves in the source and drain ohmic contact regions, as shown in FIG. 3(i).
采用光刻工艺在Al0.25Ga0.75N势垒层两侧选定源电极和漏电极欧姆接触区图形,使用RIE干法刻蚀技术对势垒层两端处理至沟道层上方,形成源漏欧姆接触区凹槽,其刻蚀的工艺条件是:Cl2流量为15sccm,反应室压强为12mTorr,电极功率为180W。Use photolithography to select the ohmic contact pattern of the source electrode and drain electrode on both sides of the Al 0.25 Ga 0.75 N barrier layer, and use RIE dry etching technology to process the two ends of the barrier layer to the top of the channel layer to form the source and drain The etching process conditions for the groove of the ohmic contact area are: the flow rate of Cl 2 is 15 sccm, the pressure of the reaction chamber is 12 mTorr, and the electrode power is 180 W.
步骤十,制作欧姆接触区,如图3(j)。Step ten, making ohmic contact area, as shown in Fig. 3(j).
使用金属有机物化学气相淀积技术在欧姆接触区凹槽中淀积厚度为31nm的Si掺杂n型GaN层,其中Si掺杂浓度为1×1020cm-3,形成左右欧姆接触区域,其淀积的工艺条件是:温度为1250℃,压强为50Torr,氨气流量为2000sccm,镓源流量为150sccm,氢气流量为3000sccm,硅烷流量为500sccm。A Si-doped n-type GaN layer with a thickness of 31nm was deposited in the groove of the ohmic contact region using metal organic chemical vapor deposition technology, in which the Si doping concentration was 1×10 20 cm -3 to form the left and right ohmic contact regions. The deposition process conditions are: temperature 1250°C, pressure 50 Torr, ammonia gas flow 2000 sccm, gallium source flow 150 sccm, hydrogen gas flow 3000 sccm, silane flow 500 sccm.
步骤十一,制作源电极和漏电极,如图3(k)。Step eleven, making source and drain electrodes, as shown in Figure 3(k).
采用电子束蒸发工艺,分别在源电极和漏电极欧姆接触区上淀积厚度为0.02μm/0.05μm/0.04μm/0.04μm的Ti/Al/Ni/Au金属组合,并在温度为830℃的氮气气氛中快速热退火30s,形成源电极和漏电极,其淀积金属的工艺条件是:真空度小于1.2×10-3Pa,功率为400W,蒸发速率为 Using the electron beam evaporation process, the Ti/Al/Ni/Au metal combination with a thickness of 0.02μm/0.05μm/0.04μm/0.04μm is deposited on the ohmic contact area of the source electrode and the drain electrode respectively, and the temperature is 830℃. Rapid thermal annealing in nitrogen atmosphere for 30s to form source electrode and drain electrode. The process conditions for depositing metal are: vacuum degree is less than 1.2×10 -3 Pa, power is 400W, and evaporation rate is
步骤十二,淀积Al2O3绝缘栅介质层,如图3(l)。In step 12, deposit an Al 2 O 3 insulating gate dielectric layer, as shown in FIG. 3(l).
使用原子层淀积工艺在Al0.25Ga0.75N势垒层上生长厚度为10nm的Al2O3绝缘栅介质层。An Al 2 O 3 insulating gate dielectric layer with a thickness of 10 nm is grown on the Al 0.25 Ga 0.75 N barrier layer by atomic layer deposition.
步骤十三,制作栅电极,如图3(m)。Step thirteen, making a gate electrode, as shown in FIG. 3(m).
采用光刻工艺在Al2O3绝缘栅介质层上制作掩膜,使用电子束蒸发技术在Al2O3绝缘栅介质层选定区域上淀积金属,制作栅极,其中所淀积的金属为Ni/Au金属组合,金属厚度为0.02μm/0.3μm,其淀积的工艺条件是:真空度小于1.4×10-3Pa,功率范围为400~800W,蒸发速率为 Use photolithography to make a mask on the Al 2 O 3 insulating gate dielectric layer, use electron beam evaporation technology to deposit metal on the selected area of the Al 2 O 3 insulating gate dielectric layer, and make the gate, in which the deposited metal It is a Ni/Au metal combination, the metal thickness is 0.02μm/0.3μm, the process conditions for its deposition are: the vacuum degree is less than 1.4×10 -3 Pa, the power range is 400-800W, and the evaporation rate is
步骤十四,采用背道工艺进行刻蚀,形成通孔,如图3(n)。In step fourteen, etching is performed using a backtracking process to form via holes, as shown in FIG. 3(n).
采用背道工艺,使用感应耦合等离子体刻蚀技术形成从漏电隔离层到源电极下方欧姆接触区的通孔。A back channel process is adopted to form a via hole from the leakage isolation layer to the ohmic contact region under the source electrode by using an inductively coupled plasma etching technique.
步骤十五,向通孔内填充金属并在漏电隔离层上电镀金属,如图3(o)。Step fifteen, filling the through hole with metal and electroplating metal on the leakage isolation layer, as shown in FIG. 3( o ).
采用磁溅射工艺向孔壁填充TiW作为合金阻挡层,再向通孔内填满Au,并通过电镀工艺继续在漏电隔离层上电镀厚度为8μm的Au,在漏电隔离层底部形成背电极,完成器件制作。Fill the hole wall with TiW as an alloy barrier layer by using the magnetic sputtering process, then fill the through hole with Au, and continue to electroplate Au with a thickness of 8 μm on the leakage isolation layer through the electroplating process, and form a back electrode at the bottom of the leakage isolation layer. Complete device fabrication.
实施例二,制作采用自支撑氮化镓衬底,c-BN漏电隔离层、AlGaN/GaN超晶格背势垒层厚度为80nm、In0.1Ga0.9N沟道层厚度为20nm、Sc0.18Al0.82N势垒层厚度为10nm的GaN HEMT器件。
步骤1,在GaN衬底上淀积GaN缓冲层,如图3(a)。
使用金属有机物化学气相淀积技术,在温度为1150℃,压强为60Torr,氨气流量为2000sccm,镓源流量为90sccm,氢气流量为3000sccm的工艺条件下,在GaN衬底上淀积厚度为3000nm的GaN缓冲层。Using metal-organic chemical vapor deposition technology, under the process conditions of temperature 1150°C, pressure 60Torr, ammonia flow rate 2000sccm, gallium source flow rate 90sccm, hydrogen flow rate 3000sccm, the deposition thickness is 3000nm on the GaN substrate GaN buffer layer.
步骤2,在GaN缓冲层上淀积AlGaN/GaN超晶格背势垒层,如图3(b)。
使用金属有机物化学气相外延技术,在温度为1150℃,压强为60Torr,氨气流量为2000sccm,镓源流量为90sccm,铝源流量为25sccm,氢气流量为3000sccm的工艺条件下,在GaN衬底上生长周期为20、厚度为80nm的Al0.2Ga0.8N/GaN超晶格背势垒层。Using metal-organic chemical vapor phase epitaxy technology, under the process conditions of temperature 1150°C, pressure 60Torr, ammonia flow rate 2000sccm, gallium source flow rate 90sccm, aluminum source flow rate 25sccm, hydrogen flow rate 3000sccm, on a GaN substrate An Al 0.2 Ga 0.8 N/GaN superlattice back barrier layer with a growth period of 20 and a thickness of 80 nm.
步骤3,在AlGaN/GaN超晶格背势垒层上淀积In0.1Ga0.9N沟道层,如图3(c)。
使用金属有机物化学气相淀积技术,在温度为700℃,压强为300Torr,氨气流量为2000sccm,铟源流量为120sccm,镓源流量为60sccm,氮气流量为3000sccm的工艺条件下,在AlGaN/GaN超晶格背势垒层上淀积厚度为20nm的In0.1Ga0.9N沟道层。Using metal-organic chemical vapor deposition technology, under the process conditions of temperature 700°C, pressure 300Torr, ammonia flow rate 2000sccm, indium source flow rate 120sccm, gallium source flow rate 60sccm, nitrogen flow rate 3000sccm, AlGaN/GaN An In 0.1 Ga 0.9 N channel layer with a thickness of 20 nm is deposited on the superlattice back barrier layer.
步骤4,在In0.1Ga0.9N沟道层上淀积AlN插入层,如图3(d)。
使用金属有机物化学气相淀积技术,在温度为700℃,压强为300Torr,铝源流量为25sccm,氨气流量为2000sccm,氮气流量为3000sccm的工艺条件下,在In0.1Ga0.9N沟道层上淀积厚度为1.5nm的AlN插入层。Using metal organic chemical vapor deposition technology, under the process conditions of temperature 700 ℃, pressure 300 Torr, aluminum source flow rate 25 sccm, ammonia gas flow rate 2000 sccm, nitrogen gas flow rate 3000 sccm, on the In 0.1 Ga 0.9 N channel layer An AlN insertion layer is deposited to a thickness of 1.5 nm.
步骤5,在AlN插入层上淀积Sc0.18Al0.82N势垒层,如图3(e)。
使用金属有机物化学气相淀积技术,在温度为1000℃,压强为300Torr,铝源流量为25sccm,钪源流量为10sccm,氨气流量为2000sccm,氮气流量为3000sccm的工艺条件下,在AlN插入层上淀积厚度为10nm的Sc0.18Al0.82N势垒层。Using metal organic chemical vapor deposition technology, under the process conditions of temperature 1000 ℃, pressure 300 Torr, aluminum source flow rate 25 sccm, scandium source flow rate 10 sccm, ammonia gas flow rate 2000 sccm, nitrogen gas flow rate 3000 sccm, the AlN insertion layer A Sc 0.18 Al 0.82 N barrier layer with a thickness of 10 nm is deposited thereon.
步骤6,减薄GaN衬底,如图3(f)。
使用化学机械抛光方法,先粗磨高速减薄,然后细磨提高GaN衬底背面平整度,将其厚度减薄至100μm。Using the chemical mechanical polishing method, the rough grinding is used to reduce the thickness at high speed, and then the fine grinding is used to improve the flatness of the back surface of the GaN substrate, and the thickness is reduced to 100 μm.
步骤7,刻蚀GaN衬底和GaN缓冲层,形成凹槽,如图3(g)。
使用光刻工艺在GaN衬底背面选定刻蚀区域,采用干法刻蚀工艺刻蚀GaN衬底和GaN缓冲层,刻蚀出深入GaN缓冲层深度为150nm的凹槽。A photolithographic process is used to select an etching area on the back of the GaN substrate, a dry etching process is used to etch the GaN substrate and the GaN buffer layer, and a groove with a depth of 150 nm deep into the GaN buffer layer is etched.
步骤8,在GaN衬底背面淀积漏电隔离层,如图3(h)。Step 8, depositing a leakage isolation layer on the back of the GaN substrate, as shown in FIG. 3(h).
采用金属有机物化学气相技术,在温度为1300℃,压强为400Torr,硼源流量为20μmol/min,氨气流量为3000sccm,氢气流量为2000sccm的条件下,在凹槽中和GaN衬底背面淀积厚度为15μm的立方氮化硼(c-BN),淀积后再对c-BN漏电隔离层表面进行化学机械抛光处理。Using metal-organic chemical vapor phase technology, under the conditions of temperature 1300°C, pressure 400Torr, boron source flow rate 20μmol/min, ammonia flow rate 3000sccm, hydrogen flow rate 2000sccm, deposit in the groove and on the back of the GaN substrate Cubic boron nitride (c-BN) with a thickness of 15 μm is deposited, and then chemical mechanical polishing is performed on the surface of the c-BN leakage isolation layer.
步骤9,干法刻蚀,形成源漏欧姆接触区凹槽,如图3(i)。Step 9, dry etching to form grooves in the source and drain ohmic contact regions, as shown in FIG. 3(i).
采用光刻工艺在Sc0.18Al0.82N势垒层表面选定源电极和漏电极欧姆接触区图形,使用RIE干法刻蚀技术,在Cl2流量为20sccm,反应室压强为15mTorr,电极功率为200W的工艺条件下,对势垒层两端处理至沟道层上方,形成源漏欧姆接触区凹槽。Use photolithography to select the ohmic contact pattern of source electrode and drain electrode on the surface of Sc 0.18 Al 0.82 N barrier layer, use RIE dry etching technology, when the Cl 2 flow rate is 20 sccm, the reaction chamber pressure is 15 mTorr, and the electrode power is Under the process condition of 200W, both ends of the barrier layer are processed to the top of the channel layer to form grooves in the source and drain ohmic contact regions.
步骤10,制作源漏欧姆接触区,如图3(j)。Step 10, making source-drain ohmic contact regions, as shown in Figure 3(j).
使用金属有机物化学气相淀积技术,在温度为1150℃,压强为60Torr,氨气流量为2000sccm,镓源流量为90sccm,氢气流量为3000sccm,硅烷流量为800sccm的工艺条件下,向欧姆接触区凹槽区域淀积厚度为11.5nm的Si掺杂n型GaN层,其中Si离子浓度为3×1020cm-3,形成欧姆接触区。Using metal-organic chemical vapor deposition technology, under the process conditions of temperature 1150°C, pressure 60Torr, ammonia gas flow rate 2000sccm, gallium source flow rate 90sccm, hydrogen flow rate 3000sccm, silane flow rate 800sccm, concave to the ohmic contact area A Si-doped n-type GaN layer with a thickness of 11.5nm is deposited in the trench region, where the concentration of Si ions is 3×10 20 cm -3 , forming an ohmic contact region.
步骤11,制作源电极和漏电极,如图3(k)。Step 11, making the source electrode and the drain electrode, as shown in Fig. 3(k).
采用电子束蒸发工艺,在真空度小于1.2×10-3Pa,功率为400W,蒸发速率为的工艺条件下,分别在源电极和漏电极欧姆接触区上淀积厚度为0.02μm/0.05μm/0.04μm/0.04μm的Ti/Al/Ni/Au金属组合,并在温度为830℃的氮气气氛下快速热退火30s,形成源电极和漏电极。Using electron beam evaporation process, the vacuum degree is less than 1.2×10 -3 Pa, the power is 400W, and the evaporation rate is Under the process conditions, the Ti/Al/Ni/Au metal combination with a thickness of 0.02μm/0.05μm/0.04μm/0.04μm is deposited on the ohmic contact area of the source electrode and the drain electrode respectively, and the nitrogen gas at a temperature of 830°C Rapid thermal annealing under atmosphere for 30s to form source and drain electrodes.
步骤12,使用原子层淀积工艺,在Sc0.18Al0.82N势垒层上淀积厚度为20nm的HfO2绝缘栅介质层,如图3(l)。In step 12, an insulating gate dielectric layer of HfO 2 with a thickness of 20 nm is deposited on the Sc 0.18 Al 0.82 N barrier layer by using an atomic layer deposition process, as shown in FIG. 3(l).
步骤13,在绝缘栅介质上制作栅电极,如图3(m)。Step 13, fabricating a gate electrode on the insulating gate dielectric, as shown in FIG. 3(m).
采用光刻工艺在HfO2绝缘栅介质层上选定栅极图形,使用电子束蒸发技术,在真空度小于1.2×10-3Pa,功率为600W,蒸发速率为的工艺条件下,在HfO2绝缘栅介质层上淀积金属,制作栅极,其中所淀积的金属为Ni/Au金属组合,金属厚度为0.04μm/0.5μm。The gate pattern is selected on the HfO 2 insulating gate dielectric layer by photolithography, and the electron beam evaporation technology is used. The vacuum degree is less than 1.2×10 -3 Pa, the power is 600W, and the evaporation rate is Under the process conditions, metal is deposited on the HfO 2 insulating gate dielectric layer to make the gate, wherein the deposited metal is a Ni/Au metal combination, and the metal thickness is 0.04 μm/0.5 μm.
步骤14,采用背道工艺进行刻蚀,形成通孔,如图3(n)。In step 14, etching is performed using a backtracking process to form via holes, as shown in FIG. 3(n).
采用背道工艺在漏电隔离层下进行通孔刻蚀,使用感应耦合等离子体刻蚀技术形成从漏电隔离层到源电极下方欧姆接触区的通孔。A back channel process is used to etch a via hole under the leakage isolation layer, and an inductively coupled plasma etching technique is used to form a via hole from the leakage isolation layer to the ohmic contact region below the source electrode.
步骤15,向通孔内填充金属并在漏电隔离层上电镀金属,如图3(o)。Step 15, filling the through hole with metal and electroplating metal on the leakage isolation layer, as shown in FIG. 3( o ).
采用磁溅射工艺向孔壁填充TiW作为合金阻挡层,再向通孔内填满Au,并通过电镀工艺继续在漏电隔离层上电镀厚度为9μm的Au,在漏电隔离层底部形成背电极,完成器件制作。Fill the hole wall with TiW as an alloy barrier layer by using the magnetic sputtering process, then fill the through hole with Au, and continue to electroplate Au with a thickness of 9 μm on the leakage isolation layer through the electroplating process, and form a back electrode at the bottom of the leakage isolation layer. Complete device fabrication.
实施例三,制作采用自支撑氮化镓衬底,AlN漏电隔离层、AlGaN/AlN背势垒层厚度为50nm、InN沟道层厚度为10nm、AlN势垒层厚度为3nm的GaN HEMT器件。
步骤A,选用自支撑GaN衬底,设定温度为750℃,氮气流量为0.6sccm,镓束流平衡蒸气压为3.5×10-7Torr,氮等离子体射频源功率为350W的工艺条件,采用分子束外延方法,在GaN衬底上淀积厚度为300nm的GaN缓冲层,如图3(a)。In step A, a self-supporting GaN substrate is selected, the set temperature is 750°C, the flow rate of nitrogen gas is 0.6 sccm, the equilibrium vapor pressure of the gallium beam is 3.5×10 -7 Torr, and the power of the nitrogen plasma radio frequency source is 350W. In the molecular beam epitaxy method, a GaN buffer layer with a thickness of 300nm is deposited on the GaN substrate, as shown in Figure 3(a).
步骤B,设定温度为750℃,氮气流量为0.6sccm,镓束流平衡蒸气压为3.5×10- 7Torr,铝束流平衡蒸气压为1.2×10-7Torr,氮等离子体射频源功率为350W的工艺条件,采用分子束外延方法,在GaN缓冲层上淀积厚度为50nm的AlGaN/AlN超晶格背势垒层,如图3(b)。Step B, set the temperature to 750°C, nitrogen flow rate to 0.6 sccm, gallium beam equilibrium vapor pressure to 3.5×10 -7 Torr, aluminum beam equilibrium vapor pressure to 1.2× 10 -7 Torr , nitrogen plasma RF source power The process condition is 350W, and the AlGaN/AlN superlattice back barrier layer with a thickness of 50nm is deposited on the GaN buffer layer by molecular beam epitaxy, as shown in Figure 3(b).
步骤C,设定温度为550℃,氮气流量为0.6sccm,铟束流平衡蒸气压为2.0×10- 7Torr,氮等离子体射频源功率为350W的工艺条件,采用分子束外延方法,在AlGaN/AlN超晶格背势垒层上淀积厚度为10nm的InN沟道层,如图3(c)。Step C, set the process conditions at a temperature of 550°C, a nitrogen gas flow rate of 0.6 sccm, an indium beam equilibrium vapor pressure of 2.0×10 - 7 Torr, and a nitrogen plasma radio frequency source power of 350 W, using molecular beam epitaxy. Deposit an InN channel layer with a thickness of 10nm on the back barrier layer of the /AlN superlattice, as shown in Figure 3(c).
步骤D,设定温度为550℃,氮气流量为0.6sccm,铝束流平衡蒸气压为1.2×10- 7Torr,氮等离子体射频源功率为350W的工艺条件,采用分子束外延方法,在InN沟道层上淀积厚度为2nm的AlN插入层,如图3(d)。In step D, set the process conditions at a temperature of 550°C, a nitrogen flow rate of 0.6 sccm, an aluminum beam equilibrium vapor pressure of 1.2×10 - 7 Torr, and a nitrogen plasma radio frequency source power of 350 W, using molecular beam epitaxy. An AlN insertion layer with a thickness of 2nm is deposited on the channel layer, as shown in Figure 3(d).
步骤E,设定温度为720℃,氮气流量为0.6sccm,铝束流平衡蒸气压为1.2×10- 7Torr,氮等离子体射频源功率为350W的工艺条件,采用分子束外延方法,在AlN插入层上淀积厚度为3nm的AlN势垒层,如图3(e)。Step E, set the process conditions at a temperature of 720°C, a nitrogen gas flow rate of 0.6 sccm, an aluminum beam equilibrium vapor pressure of 1.2×10 - 7 Torr, and a nitrogen plasma radio frequency source power of 350 W, using molecular beam epitaxy. An AlN barrier layer with a thickness of 3nm is deposited on the insertion layer, as shown in Figure 3(e).
步骤F,使用化学机械抛光方法,先粗磨高速减薄,再细磨提高GaN衬底背面平整度,将其厚度减薄至150μm,如图3(f)。Step F, using chemical mechanical polishing method, first rough grinding and high-speed thinning, and then fine grinding to improve the flatness of the back surface of the GaN substrate, and reduce its thickness to 150 μm, as shown in Figure 3(f).
步骤G,使用光刻工艺在GaN衬底背面选定刻蚀区域,采用干法刻蚀工艺从背面刻蚀GaN衬底和GaN缓冲层,刻蚀出深入GaN缓冲层厚度为200nm的凹槽,如图3(g)。Step G, using a photolithography process to select an etching area on the back of the GaN substrate, using a dry etching process to etch the GaN substrate and the GaN buffer layer from the back, and etching a groove deep into the GaN buffer layer with a thickness of 200nm, Figure 3(g).
步骤H,设定温度为400℃,真空度小于10-4Pa,压强40Torr,直流溅射功率5kW,铝源流量110sccm,氩气流量为45sccm,氨气流量1000sccm的工艺条件,采用物理气相淀积技术,在凹槽中和GaN衬底背面淀积厚度为20μm的AlN漏电隔离层,淀积后再对AlN漏电隔离层表面进行化学机械抛光处理,如图3(h)。In step H, the set temperature is 400°C, the vacuum degree is less than 10 -4 Pa, the pressure is 40Torr, the DC sputtering power is 5kW, the aluminum source flow rate is 110 sccm, the argon gas flow rate is 45 sccm, and the ammonia gas flow rate is 1000 sccm process conditions, using physical vapor deposition In the deposition technology, an AlN leakage isolation layer with a thickness of 20 μm is deposited in the groove and on the back of the GaN substrate. After deposition, the surface of the AlN leakage isolation layer is chemically mechanically polished, as shown in Figure 3(h).
步骤I,采用光刻工艺,在AlN势垒层表面选定源电极和漏电极欧姆接触区,设定Cl2流量为10sccm,反应室压强为10mTorr,电极功率为180W的工艺条件,使用RIE干法刻蚀技术,对势垒层两端处理至沟道层上方,形成源漏欧姆接触区凹槽,如图3(i)。Step I, adopt photolithography process, select the ohmic contact area of source electrode and drain electrode on the surface of AlN barrier layer, set Cl The flow rate is 10sccm, the reaction chamber pressure is 10mTorr, the process condition of electrode power is 180W, use RIE dry Etching technology is used to process both ends of the barrier layer to the top of the channel layer to form grooves in the source and drain ohmic contact regions, as shown in Figure 3(i).
步骤J,设定温度为750℃,氮气流量为0.6sccm,镓束流平衡蒸气压为3.5×10- 7Torr,硅束流平衡蒸气压为2.8×10-8Torr,氮等离子体射频源功率为350W的工艺条件,使用分子束外延技术,向欧姆接触区凹槽区域淀积厚度为5nm的Si掺杂n型GaN层,Si离子浓度为5×1020cm-3,形成欧姆接触区,如图3(j)。In step J, set the temperature to 750°C, nitrogen flow rate to 0.6 sccm, gallium beam equilibrium vapor pressure to 3.5×10 -7 Torr, silicon beam equilibrium vapor pressure to 2.8× 10 -8 Torr , nitrogen plasma RF source power The process condition is 350W, using molecular beam epitaxy technology, depositing a Si-doped n-type GaN layer with a thickness of 5nm in the groove area of the ohmic contact area, and the concentration of Si ions is 5×10 20 cm -3 to form an ohmic contact area. Figure 3(j).
步骤K,设定真空度小于1.2×10-3Pa,功率为500W,蒸发速率为的工艺条件,采用电子束蒸发工艺,分别在源电极和漏电极欧姆接触区上淀积厚度为0.02μm/0.2μm/0.05μm/0.05μm的Ti/Al/Ni/Au金属组合,并在温度为830℃的氮气气氛下快速热退火30s,形成源电极和漏电极,如图3(k)。Step K, set the vacuum degree to be less than 1.2×10 -3 Pa, the power is 500W, and the evaporation rate is According to the process conditions, the electron beam evaporation process is used to deposit the Ti/Al/Ni/Au metal combination with a thickness of 0.02μm/0.2μm/0.05μm/0.05μm on the ohmic contact area of the source electrode and the drain electrode respectively. Rapid thermal annealing under nitrogen atmosphere at 830°C for 30s to form source and drain electrodes, as shown in Figure 3(k).
步骤L,使用原子层淀积工艺在AlN势垒层上淀积厚度为3nm的HfAlO绝缘栅介质层,如图3(l)。In step L, an HfAlO insulating gate dielectric layer with a thickness of 3 nm is deposited on the AlN barrier layer by atomic layer deposition, as shown in FIG. 3(l).
步骤M,采用光刻工艺在HfAlO绝缘栅介质层上选定栅极图形,设定真空度小于1.2×10-3Pa,功率为500W,蒸发速率为的工艺条件,使用电子束蒸发技术,在HfAlO绝缘栅介质层上淀积厚度为0.03μm/0.4μm的Ni/Au金属组合,制作栅极,如图3(m)。In step M, the gate pattern is selected on the HfAlO insulating gate dielectric layer by photolithography, the vacuum degree is set to be less than 1.2×10 -3 Pa, the power is 500W, and the evaporation rate is According to the process conditions, electron beam evaporation technology is used to deposit Ni/Au metal combination with a thickness of 0.03μm/0.4μm on the HfAlO insulating gate dielectric layer to make the gate, as shown in Figure 3(m).
步骤N,采用背道工艺在漏电隔离层下进行刻蚀通孔,使用感应耦合等离子体刻蚀技术形成从漏电隔离层到源电极下方欧姆接触区的通孔,如图3(n)。In step N, the through hole is etched under the leakage isolation layer by using the back channel process, and the through hole from the leakage isolation layer to the ohmic contact region under the source electrode is formed by using inductively coupled plasma etching technology, as shown in FIG. 3(n).
步骤O,采用磁溅射工艺向孔壁填充TiW作为合金阻挡层,再向通孔内填满Au,并通过电镀工艺继续在漏电隔离层上电镀厚度为10μm的Au,在漏电隔离层底部形成背电极,完成器件制作,如图3(o)。In step O, the magnetic sputtering process is used to fill the hole wall with TiW as an alloy barrier layer, and then fill the through hole with Au, and continue to electroplate Au with a thickness of 10 μm on the leakage isolation layer through the electroplating process, forming a The back electrode completes the device fabrication, as shown in Figure 3(o).
以上描述仅是本发明的三个具体事例,并未构成对本发明的任何限制,显然对于本领域的专业人员来说,在了解了本发明的内容和原理后,都可能在不背离本发明原理、结构的情况下,进行形式和细节的各种修改和改变,例如,势垒层除过AlN、AlGaN、ScAlN以外,还可以使用InAlN、AlPN、BAlN、BPN或YAlN中的任意一种,但是这些基于本发明思想的修正和改变仍在本发明的权利要求范围之内。The above descriptions are only three specific examples of the present invention, and do not constitute any limitation to the present invention. Obviously, for those skilled in the art, after understanding the content and principle of the present invention, it is possible without departing from the principle of the present invention. , In the case of the structure, various modifications and changes are made in the form and details. For example, the barrier layer can use any one of InAlN, AlPN, BAlN, BPN or YAlN in addition to AlN, AlGaN, ScAlN, but These amendments and changes based on the idea of the present invention are still within the scope of the claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211623684.1A CN115763533A (en) | 2022-12-16 | 2022-12-16 | Groove filling medium leakage-isolating homoepitaxial GaN HEMT device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211623684.1A CN115763533A (en) | 2022-12-16 | 2022-12-16 | Groove filling medium leakage-isolating homoepitaxial GaN HEMT device and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115763533A true CN115763533A (en) | 2023-03-07 |
Family
ID=85346390
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211623684.1A Pending CN115763533A (en) | 2022-12-16 | 2022-12-16 | Groove filling medium leakage-isolating homoepitaxial GaN HEMT device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115763533A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116581210A (en) * | 2023-07-10 | 2023-08-11 | 江西兆驰半导体有限公司 | Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode |
-
2022
- 2022-12-16 CN CN202211623684.1A patent/CN115763533A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116581210A (en) * | 2023-07-10 | 2023-08-11 | 江西兆驰半导体有限公司 | Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode |
CN116581210B (en) * | 2023-07-10 | 2023-09-19 | 江西兆驰半导体有限公司 | Light-emitting diode epitaxial wafer and preparation method thereof, light-emitting diode |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113314590B (en) | Nitride high electron mobility transistor and manufacturing method thereof | |
CN112542508B (en) | ScAlN/GaN high electron mobility transistor and manufacturing method thereof | |
CN112736131B (en) | YAlN/GaN high electron mobility transistor and manufacturing method thereof | |
CN113314597B (en) | Nitrogen polar surface gallium nitride high electron mobility transistor and manufacturing method thereof | |
CN112133749A (en) | P-type cap layer enhanced HEMT device and preparation method thereof | |
CN113555431B (en) | Homoepitaxy gallium nitride high electron mobility transistor based on P-type GaN leakage isolation layer and manufacturing method | |
CN115763533A (en) | Groove filling medium leakage-isolating homoepitaxial GaN HEMT device and manufacturing method thereof | |
CN114823303A (en) | Semiconductor device and method of making the same | |
CN112216739B (en) | Low thermal resistance silicon-based gallium nitride microwave and millimeter wave device material structure and preparation method | |
CN117438457B (en) | Recessed gate GaN-based HEMT device and preparation method thereof | |
CN112951910A (en) | BAlN/GaN high electron mobility transistor and manufacturing method thereof | |
CN109300974B (en) | Nonpolar InAlN/GaN high electron mobility transistor and preparation method thereof | |
CN111211161A (en) | Bidirectional heat-dissipation longitudinal gallium nitride power transistor and preparation method thereof | |
CN112768409B (en) | GaN HEMT integrated device and its preparation method | |
CN212542443U (en) | Gallium nitride transistor structure and gallium nitride-based epitaxial structure | |
CN113314598A (en) | Diamond-based nitrogen polar surface gallium nitride high-electron-mobility transistor and manufacturing method thereof | |
CN112768359A (en) | Method for preparing radio frequency semiconductor device and structure thereof | |
CN114582726A (en) | A kind of GaN-based HEMT device and its manufacturing method | |
CN114361121A (en) | Novel diamond-based vertical GaN-HEMT device with p-SnO gate cap layer and preparation method thereof | |
CN113594044A (en) | Semiconductor device and preparation method thereof | |
CN113628962A (en) | III-nitride enhanced HEMT device and manufacturing method thereof | |
CN111640671B (en) | Gallium nitride-based high electron mobility transistor and preparation method thereof | |
TWI797751B (en) | Semiconductor structure and fabrication method thereof | |
CN115719764A (en) | Transition metal nitride barrier high electron mobility transistor and manufacturing method thereof | |
CN116247080A (en) | Nitrogen polar surface gallium nitride transistor and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |