CN115682298A - 室内机的滤网检测方法、室内机、空调器和可读存储介质 - Google Patents

室内机的滤网检测方法、室内机、空调器和可读存储介质 Download PDF

Info

Publication number
CN115682298A
CN115682298A CN202110855017.5A CN202110855017A CN115682298A CN 115682298 A CN115682298 A CN 115682298A CN 202110855017 A CN202110855017 A CN 202110855017A CN 115682298 A CN115682298 A CN 115682298A
Authority
CN
China
Prior art keywords
value
filter screen
static pressure
indoor unit
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110855017.5A
Other languages
English (en)
Inventor
杨坤
周柏松
庄立强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GD Midea Heating and Ventilating Equipment Co Ltd
Hefei Midea Heating and Ventilating Equipment Co Ltd
Original Assignee
GD Midea Heating and Ventilating Equipment Co Ltd
Hefei Midea Heating and Ventilating Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GD Midea Heating and Ventilating Equipment Co Ltd, Hefei Midea Heating and Ventilating Equipment Co Ltd filed Critical GD Midea Heating and Ventilating Equipment Co Ltd
Priority to CN202110855017.5A priority Critical patent/CN115682298A/zh
Priority to PCT/CN2022/082789 priority patent/WO2023005243A1/zh
Priority to EP22847863.2A priority patent/EP4328509A4/en
Publication of CN115682298A publication Critical patent/CN115682298A/zh
Priority to US18/515,158 priority patent/US20240093894A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/39Monitoring filter performance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • F24F11/526Indication arrangements, e.g. displays giving audible indications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/082Investigating permeability by forcing a fluid through a sample
    • G01N15/0826Investigating permeability by forcing a fluid through a sample and measuring fluid flow rate, i.e. permeation rate or pressure change
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0084Filters or filtering processes specially modified for separating dispersed particles from gases or vapours provided with safety means
    • B01D46/0086Filter condition indicators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0084Filters or filtering processes specially modified for separating dispersed particles from gases or vapours provided with safety means
    • B01D46/009Identification of filter type or position thereof, e.g. by transponders or bar codes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/40Pressure, e.g. wind pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/60Energy consumption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N2015/084Testing filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Human Computer Interaction (AREA)
  • Signal Processing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Fuzzy Systems (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明提出了一种室内机的滤网检测方法、室内机、空调器和可读存储介质,其中室内机的滤网检测方法包括:获取滤网在设定风量值下的第一阻力差值;确定室内机运行过程中的第一机外静压值;根据第一机外静压值和设定机外静压值,与第一阻力差值的数值关系,确定滤网的脏堵情况。本发明通过滤网的第一阻力差值、第一机外静压值和设定机外静压值的数值关系对滤网的脏堵情况进行检测,实现了在空调器在运行过程中能够及时确定滤网的脏堵情况。

Description

室内机的滤网检测方法、室内机、空调器和可读存储介质
技术领域
本发明属于空调器控制技术领域,具体而言,涉及一种室内机的滤网检测方法、一种室内机的滤网检测装置、一种室内机、一种空调器和一种可读存储介质。
背景技术
空调器运行的过程中,室内机会将换热后的空气经过滤网排出,滤网能够对空气中的灰尘进行过滤,在室内机使用一段时间后,滤网上会积累大量的灰尘,造成滤网堵塞,不仅会空调的换热性能,还会影响滤网对空气的过滤效果。现有的空调器中不存在对滤网脏堵情况准确检测的功能。因此,如何对空调器滤网的脏堵情况进行检测,成为亟需解决的问题。
发明内容
本发明旨在解决现有技术或相关技术中存在的技术问题之一。
为此,本发明的第一方面提出了一种室内机的滤网检测方法。
本发明的第二方面提出了一种室内机的滤网检测装置。
本发明的第三方面提出了一种室内机。
本发明的第四方面提出了一种空调器。
本发明的第五方面提出了一种可读存储介质。
有鉴于此,根据本发明的第一方面提出了一种室内机的滤网检测方法,室内机包括滤网,滤网检测方法包括:获取滤网在设定风量值下的第一阻力差值;确定室内机运行过程中的第一机外静压值;根据第一机外静压值和设定机外静压值,与第一阻力差值的数值关系,确定滤网的脏堵情况。
本发明提供的室内机的滤网检测方法能够检测室内机的滤网是否存在脏堵情况。室内机运行时开始换热前的空气经过室内机的回风口进入室内机,室内机的滤网设置在回风口处,用于对经过回风口的空气进行过滤,起到净化空气的作用。
滤网具有初始阻力值和终止阻力值,其中初始阻力值为滤网出厂后的阻力值,即滤网在初始洁净状态下的阻力值,终止阻力值为滤网在需要清洗或更换情况下的阻力值,通过终止阻力值与初始阻力值进行差值计算能够得到阻力差值。空调器以不同风量运行的情况下,则滤网的阻力差值也不相同。在控制室内机以设定风量运行的情况下,获取与设定风量对应的第一阻力差值。确定室内机当前运行状态下的第一机外静压值,第一机外静压值为室内机当前硬件条件下,以设定风量值运行过程中的机外静压值。设定机外静压值为预存的与设定风量值对应的机外静压值,且设定机外静压值,其中,设定机外静压值为在空调器安装完成后采集得到的,即滤网在全新状态下空调器运行所采集到的机外静压值为设定机外静压值。根据第一机外静压值、设定机外静压值与第一阻力差值的数值关系,能够对滤网的脏堵情况进行判定。
可以理解的是,随着滤网的脏堵则空调器运行时采集到的机外静压值会产生变化,故根据第一机外静压值、设定机外静压值与第一阻力差值的数值关系能够对滤网的脏堵情况进行判定。
本发明通过滤网的第一阻力差值和空调器的静压差值对滤网的脏堵情况进行检测,实现了在空调器在运行过程中能够及时确定滤网的脏堵情况,相比于现有技术,提高了滤网脏堵情况判定的准确性和及时性。
值得说明的是,阻力差值由滤网的初始阻力值与终止阻力值做差值计算得到的,阻力差值为滤网由初始洁净状态至脏堵状态的阻力变化值。第一阻力差值与当前室内机的运行风量相关,根据室内机的运行风量确定滤网的第一阻力差值。设定机外静压值为对安装有初始洁净状态下滤网的室内机进行检测得到的机外静压值。第一机外静压值为空调器室内机运行过程中采集到的机外静压值,即第一机外静压值为滤网已经使用一段时间后,所检测到的机外静压值。故根据第一机外静压值、设定机外静压值与第一阻力差值的数值关系,能够对滤网是否存在脏堵进行判断。
另外,根据本发明提供的上述技术方案中的室内机的滤网检测方法,还可以具有如下附加技术特征:
在一种可能的设计中,室内机还包括风机,确定室内机运行过程中的第一机外静压值的步骤,具体包括:采集风机的运行电流值;根据设定风量值和运行电流值,确定第一机外静压值。
在该设计中,室内机还包括风机,室内机在恒风量运行过程中,风机通入电流,使风机以对应的转速运行,从而使空调器输出恒风量。
具体地,空调器的本地存储区内存储有转速和设定电流的对应曲线,控制风机的按照对应曲线中的转速和电流运行,从而实现对空调器的室内机恒风量输出的控制。
在空调器出厂前,对空调器的室内机在多个机外静压值下进行测试,测试过程中,调节风机的转速,从而使室内机输出的风量达到设定风量值,将室内机的风机当前运行模式下的电流值和机外静压值按照对应关系进行记录,使空调器的本地存储区内存储有风量-电流值-机外静压值的对应关系。在控制空调器的室内机以设定风量值运行的情况下,获取风机的运行电流值。通过运行电流值和设定风量值,根据预存在空调器的本地存储区中的对应关系能够查找确定对应的第一机外静压值。
在出厂前将各个机外静压值下的风量和电流值的对应关系进行存储。在控制空调器运行的过程中,能够通过采集风机的运行电流值能够快速确定第一机外静压值,还提高了得到的第一机外静压值的准确性。
在一种可能的设计中,根据风量值和运行电流值,确定第一机外静压值的步骤,具体包括:根据设定风量值查找电流值与机外静压值的第一对应关系;根据运行电流值和第一对应关系,确定第二机外静压值;获取静压修正值,根据第二机外静压值与静压修正值计算得到第一机外静压值。
在该设计中,室内机能够以不同的风量值运行,在确定第一机外静压值的过程中,需要根据设定风量值通过查表的方式,找到对应的机外静压值与电流值的第一对应关系,再根据风机的运行电流值和第一对应关系查找对应的第二机外静压值。不仅滤网的阻力会计算到第二机外静压值中,室内机中的其他结构部件也会对出风产生阻力,同样也会计入到第二机外静压值中,因此在得到第二机外静压值之后,根据静压修正值对第二机外静压值进行修正计算,从而得到与设定风量值对应的第一机外静压值。
本发明在确定与设定风量值对应的第一机外静压值的过程中,通过静压修正值对查找得到的第二机外静压值进行修正计算,从而使得到的第一静压值仅受到滤网的阻力值影响,进而保证第一机外静压值和设定机外静压值能够反应出滤网的实际脏堵情况。
在一种可能的设计中,室内机包括导风条,导风条设置于室内机的出风口,获取静压修正值的步骤,具体包括:采集导风条的倾斜角度;获取倾斜角度与修正值的第二对应关系,根据倾斜角度和第二对应关系,查找静压修正值。
在该设计中,室内机还包括导风条,导风条设置在室内机的出风口位置,位于滤网的外侧,即室内机工作过程中,排出的控制通滤网过滤后,经过导风条能够改变室内机的出风方向。室内机还包括用于驱动导风条的驱动电机,驱动电机与空调器的控制器相连,用户能够通过控制器控制驱动电机运动,从而使导风条运转至指定角度,从而对空调器的出风方向进行调整。
导风条也会对室内机出风产生阻力,从而影响对室内机的机外静压值的判断。导风条所处的角度不同,则对室内机出风造成的阻力也不相同。在室内机出厂前,通过将导风条产生的阻力值与导风条的倾斜角度按照对应的关系进行存储。导风条对室内机出风产生的阻力为静压修正值,根据室内机的导风条的倾斜角度,通过第二对应关系能够查找到对应的到封条对室内机出风产生的阻力,即静压修正值。本发明为去除导风条对机外静压值的影响,将导风条对室内机出风产生的阻力值作为静压修正值,并通过对第二机外静压值与静压修正值进行计算,从而使得到的第一静压值仅受到滤网的阻力值影响,使第一机外静压值和设定机外静压值能够准确反应出滤网的实际脏堵情况。
在一种可能的设计中,采集风机的运行电流值的步骤之前,还包括:采集风机输出的当前风量值;根据设定风量值确定风量阈值范围,确定当前风量值处于风量阈值范围内达到设定时长。
在该设计中,在采集运行电流值之前需要确定风机输出的风量达到设定值,并且输出的风量保持在稳定状态下。通过对设定风量值进行加减运算从而得到风量阈值范围,风机输出的风量值进入风量阈值范围内,则可以判定风机此时以设定风量值运行。对当前风量值在风量阈值范围内的持续时长进行计时,持续时长达到设定时长,则判定风机处于稳定输出风量值的状态下。本发明在采集运行电流值之前,先判断风机是否达到恒定输出设定风量值,实现了采集设定风量值相对应的运行电流值。通过计时当前风量值在风量阈值范围内的持续时长达到设定时长,再执行采集运行电流值,能够进一步保证采集到的运行电流值为风机处于恒风量运行状态下的电流值,提高了后续根据运行电流值得到的机外静压值的准确性。
在一种可能的设计中,获取滤网在设定风量值下的第一阻力差值的步骤,具体包括:获取风量值与滤网阻力差值的第三对应关系;根据设定风量值和第三对应关系,查找第一阻力差值。
在该设计中,滤网对室内机出风产生的阻力为滤网自身的硬件特性,即滤网的初始阻力值为固定值。在滤网出厂前,对滤网的耐久度进行检测,从而确定滤网的终止阻力值,即当滤网达到终止阻力值时,建议用户对滤网进行更换。
由于室内机输出的风量不同,则滤网阻力值对室内机出风的影响也不相同。在空调器出厂前,对室内机以各个风量值模拟运行,采集室内机以各个风量值运行下滤网的终止阻力值,从而计算得到各个风量值对应的滤网的第一阻力差值。并将第一阻力差值与各个风量值按照第三对应关系进行存储。在空调器安装完成之后,确定是室内机运行过程中恒定输出的设定风量值,并根据第三对应关系对与设定风量值相对应的第一阻力差值进行查找。
在一种可能的设计中,根据设定风量值确定第一阻力差值的步骤,具体包括:获取滤网的第二阻力差值;获取室内机的额定风量值;根据额定风量值、设定风量值和第二阻力差值,计算第一阻力差值。
在该设计中,滤网对室内机出风产生的阻力为滤网自身的硬件特性,即滤网的初始阻力值为固定值。在滤网出厂前,对滤网的耐久度进行检测,从而确定滤网的终止阻力值,即当滤网达到终止阻力值时,建议用户对滤网进行更换。将初始阻力值与终止阻力值进行差值计算,以得到第二阻力差值。
由于室内机输出的风量不同,则滤网阻力值对室内机出风的影响也不相同。室内机在出厂前,在本地存储区预存能够根据第二阻力差值计算得到第一阻力差值的计算公式,公式具体如下:
D1=A×D2×(AFn/AF0)^2;
其中,D1为第一阻力差值,D2为第二阻力差值,A为系数,AF0为额定风量值,AFn为设定风量值。
本发明将获取到的设定风量值,以及存储在本地存储区内的额定风量值、第二阻力差值代入上述公式中,能够计算得到第一阻力差值,其中,系数A的取值范围为(0.8至1.2)。通过上述公式计算得到的第一阻力差值为与设定风量值相对应的滤网的阻力差值。从而提高了后续根据第一阻力差值进行计算的步骤的准确性,进而提高了对滤网脏堵情况判定的精准性,减少误判的可能。
在一种可能的设计中,获取第二阻力差值的步骤,具体包括:获取滤网的第一设定阻力值和第二设定阻力值;根据第一设定阻力值和第二设定阻力值,计算得到第二阻力差值。
在该设计中,滤网的第一阻力值为滤网的初始阻力值,滤网对流过滤网的空气产生的阻力为滤网自身的硬件特性。第二设定阻力值为滤网的终止阻力值,滤网的终止阻力值通过对滤网的耐久度进行检测得到。将初始阻力值与终止阻力值进行差值计算,能够得到第二阻力差值。第二阻力差值为滤网的自身硬件属性。
可以理解的是,由于第二阻力差值为滤网的硬件属性值,故第二阻力差值直接标注在滤网上,或记载于滤网的包装说明上。在用户更换新的滤网后,将第二阻力差值通过控制器输入至空调器的室内机中。室内机能够根据预存在本地存储区中的公式对第一阻力差值进行计算。
在一种可能的设计中,根据第一机外静压值和设定机外静压值,与第一阻力差值的数值关系,确定滤网的脏堵情况的步骤,具体包括:根据第一机外静压值和设定机外静压值,得到静压差值;根据第一阻力差值与静压差值的数值关系,确定滤网的脏堵情况。
在该设计中,将第一机外静压值与设定机外静压值做差值计算,以得到静压差值。由于第一机外静压值和设定机外静压值均与室内机的设定风量下相对应,其中,第一机外静压值为当前滤网状态下,在室内机以设定风量值运行时采集到的机外静压值,设定机外静压值为在室内机出厂前,即滤网初始状态下,在室内机以设定风量值运行时采集到的机外静压值。故通过第一机外静压值与设定机外静压值计算得到的静压差值也与设定风量值相对应。计算得到的静压差值能够准确反应出滤网的实际脏堵情况,故根据处于初始状态下的滤网的第一阻力差值与静压差值能够对滤网的脏堵情况准确判断。
可以理解的是,室内机以不同风量运行,机外静压差值也会不同,将第一阻力差值与室内机的运行风量设置对应关系,在不同的风量下,根据与设定风量值对应的第一机外静压值、设定机外静压值与第一阻力差值的数值关系对滤网的脏堵情况进行判断,能够提高对滤网是否存在脏堵判断的准确性。
在一种可能的设计中,根据第一阻力差值与静压差值的数值关系,确定滤网的脏堵情况的步骤,具体包括:计算静压差值与第一阻力差值的比值;比值大于设定值,确定滤网处于脏堵状态。
在该设计中,第一阻力差值由滤网的初始阻力值与终止阻力值做差值计算得到的,第一阻力差值为滤网由初始洁净状态至脏堵状态的阻力变化值。设定机外静压值为对安装有初始洁净状态下滤网的室内机进行检测得到的机外静压值。第一机外静压值为空调器室内机运行过程中采集到的机外静压值,即第一机外静压值为滤网已经使用一段时间后,所检测到的机外静压值。将静压差值和第一阻力差值进行比值计算,以得到具体的比值,上述比值能够反映出滤网的脏堵程度。通过对比值预设设定值,当比值达到设定值,则认为滤网处于脏堵状态,实现了对滤网是否处于脏堵状态进行检测。
在一种可能的设计中,室内机的滤网检测方法还包括:基于滤网处于脏堵状态,输出第一提示信息,和/或向服务器发送第二提示信息。
在该设计中,空调器还包括遥控器,遥控器上设置有第一显示单元,室内机上设置有第二显示单元和扬声器。
室内机在检测到滤网的状态为脏堵状态,则通过遥控器上的第一显示单元和/或第二显示单元显示第一提示信息,第一提示信息包括文字信息和图标信息,从而实现对用户显示滤网已经脏堵的信息。还可以通过室内机中的扬声器将第一提示信息以音频的形式输出。
室内机还包括通信装置,室内机在检测到滤网的状态为脏堵状态,则通过通信装置将第二提示信息发送给服务器,服务器为厂商的售后平台,厂商能够根据第二提示信息提供相应的增值服务,无需用户自行对滤网进行更换,进一步提高了用户的使用体验。
根据本发明第二方面提出了一种室内机的滤网检测装置,室内机包括滤网,滤网设置于室内机的回风口,滤网检测装置包括:获取模块,用于获取滤网在设定风量值下的第一阻力差值;第一确定模块,用于确定室内机运行过程中的第一机外静压值;第二确定模块,用于根据第一机外静压值和设定机外静压值,与第一阻力差值的数值关系,确定滤网的脏堵情况。
本发明提供的室内机的滤网检测装置能够检测室内机的滤网是否存在脏堵情况。室内机运行时开始换热前的空气经过室内机的回风口进入室内机,室内机的滤网设置在回风口处,用于对经过回风口的空气进行过滤,起到净化空气的作用。
滤网检测装置包括:获取模块、确定模块、计算模块和判断模块。
滤网具有初始阻力值和终止阻力值,其中初始阻力值为滤网出厂后的阻力值,即滤网在初始洁净状态下的阻力值,终止阻力值为滤网在需要清洗或更换情况下的阻力值,通过终止阻力值与初始阻力值进行差值计算能够得到阻力差值。空调器以不同风量运行的情况下,则滤网的阻力差值也不相同。在控制室内机以设定风量运行的情况下,能够获取与设定风量对应的第一阻力差值。室内机处于运行状态下,能够确定室内机的第一机外静压值。第一机外静压值为室内机当前硬件条件下,以设定风量值运行过程中的机外静压值。设定机外静压值为预存的与设定风量值对应的机外静压值,且设定机外静压值,其中,设定机外静压值为在空调器安装完成后采集得到的,即滤网在全新状态下空调器运行所采集到的机外静压值为设定机外静压值。根据第一机外静压值、设定机外静压值与第一阻力差值的数值关系,能够对滤网的脏堵情况进行判定。
可以理解的是,随着滤网的脏堵则空调器运行时采集到的机外静压值会产生变化,故根据第一机外静压值、设定机外静压值与第一阻力差值的数值关系能够对滤网的脏堵情况进行判定。
本发明通过滤网的第一阻力差值和空调器的静压差值对滤网的脏堵情况进行检测,实现了在空调器在运行过程中能够及时确定滤网的脏堵情况,相比于现有技术,提高了滤网脏堵情况判定的准确性和及时性。
值得说明的是,阻力差值由滤网的初始阻力值与终止阻力值做差值计算得到的,阻力差值为滤网由初始洁净状态至脏堵状态的阻力变化值。第一阻力差值与当前室内机的运行风量相关,根据室内机的运行风量确定滤网的第一阻力差值。设定机外静压值为对安装有初始洁净状态下滤网的室内机进行检测得到的机外静压值。第一机外静压值为空调器室内机运行过程中采集到的机外静压值,即第一机外静压值为滤网已经使用一段时间后,所检测到的机外静压值。故根据第一机外静压值、设定机外静压值与第一阻力差值的数值关系,能够对滤网是否存在脏堵进行判断。
可以理解的是,室内机以不同风量运行,机外静压差值也会不会,将第一阻力差值与室内机的运行风量设置对应关系,在不同的风量下,将计算得到的第一机外静压差值与设定风量对应的第一阻力差值进行比较,能够提高对滤网是否存在脏堵判断的准确性。
根据本发明第三方面提出了一种室内机,包括:机壳和设置在风道内的滤网。
机壳形成有风道,滤网设置在风道内。
存储器,存储器中存储有程序或指令;处理器,处理器执行存储在存储器中的程序或指令以实现如上述第一方面中的室内机的滤网检测方法的步骤。因而具有上述第一方面的任一可能设计中的内机的滤网检测方法的全部有益效果,在此不在做过多赘述。
本发明提供的室内机包括机壳和滤网,机壳内形成有风道。室内机还包括回风口,室内机运行时换热前的空气经过回风口进入风道内,滤网设置在风道内,滤网对流经风道的空气进行过滤,起到净化空气的作用。
另外,根据本发明提供的上述技术方案中的室内机,还可以具有如下附加技术特征:
在一种可能的设计中,室内机还包括:导风条,设置于风道的出风口;驱动电机,驱动电机的输出端与导风条相连,用于驱动导风条调整倾斜角度。
在该设计中,室内机还包括导风条和驱动电机。导风条设置在风道的出风口位置,位于滤网的外侧,即室内机工作过程中,排出的控制通滤网过滤后,经过导风条能够改变室内机的出风方向。驱动电机与空调器的控制器相连,用户能够通过控制器控制驱动电机运动,从而使导风条运转至指定角度,从而对空调器的出风方向进行调整。
在一种可能的设计中,室内机还包括:显示装置,与处理器相连,用于输出第一提示信息;和/或通信装置,与处理器相连,用于向服务器发送第二提示信息。
在该设计中,室内机还包括显示装置和/或通信装置。显示装置和/或通信状态与室内机的处理器相连。当检测到室内机的滤网处于堵转状态下,显示装置能够将第一提示信息进行显示输出,显示装置输出第一提示信息能够向用户提示滤网当前处于脏堵状态,需要对滤网进行更换或清洗。通信装置能够将第二提示信息发送至服务器,厂商能够读取服务器中的第二提示信息,并根据第二提示信息提供相应的增值服务器,无需用户自行对滤网进行更换,提高用户的使用体验。
在一些实施例中,空调器还包括遥控器,遥控器上设置有第一显示单元,室内机上设置有第二显示单元和扬声器。
室内机在检测到滤网的状态为脏堵状态,则通过遥控器上的第一显示单元和/或第二显示单元显示第一提示信息,第一提示信息包括文字信息和图标信息,从而实现对用户显示滤网已经脏堵的信息。还可以通过室内机中的扬声器将第一提示信息以音频的形式输出。
在一些实施例中,室内机在每次开机时,通过扬声器以音频形式输出第一提示信息,从而避免用户忽略第一提示信息。
在一些实施例中,滤网的脏堵程度包括:“良好”、“一般脏堵”和“严重脏堵”。不同的脏堵程度对应不同的第一提示信息,使用户能够更加清楚地了解室内机的滤网的当前的脏堵程度。
根据本发明第四方面提出了一种空调器,包括:室内机和室外机。
室外机与室内机相连,室外机内还设置有压缩机,压缩机能够对冷媒进行压缩,压缩后的冷媒经过冷媒管路流经室内机,从而实现空调器的制冷和制热的作用。
室内机选为如第三方面的任一可能设计中的室内机,因而具有上述第三方面的任一可能设计中的室内机的全部有益效果,在此不再做过多赘述。
根据本发明第五方面提出了一种可读存储介质,可读存储介质上存储有程序或指令,程序或指令被处理器执行时实现如上述任一可能设计中的室内机的滤网检测方法的步骤。因而具有上述任一可能设计中的室内机的滤网检测方法的全部有益技术效果,在此不再做过多赘述。
本发明的附加方面和优点将在下面的描述部分中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了本发明的第一个实施例中的室内机的滤网检测方法的示意流程图之一;
图2示出了本发明的第一个实施例中的室内机的滤网检测方法的示意流程图之二;
图3示出了本发明的第一个实施例中的室内机的滤网检测方法的示意流程图之三;
图4示出了本发明的第一个实施例中的室内机的滤网检测方法的示意流程图之四;
图5示出了本发明的第一个实施例中的室内机的滤网检测方法的示意流程图之五;
图6示出了本发明的第一个实施例中的室内机的滤网检测方法的示意流程图之六;
图7示出了本发明的第一个实施例中的室内机的滤网检测方法的示意流程图之七;
图8示出了本发明的第一个实施例中的室内机的滤网检测方法的示意流程图之八;
图9示出了本发明的第一个实施例中的室内机的滤网检测方法的示意流程图之九;
图10示出了本发明的第一个实施例中的室内机的滤网检测方法的示意流程图之十;
图11示出了本发明的第二个实施例中的室内机的滤网检测装置的示意框图;
图12示出了本发明的第三个实施例中的室内机的示意框图;
图13示出了本发明的第四个实施例中的空调器的示意框图。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的其他方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图13描述根据本发明一些实施例的一种室内机的滤网检测方法、一种室内机的滤网检测装置、一种室内机、一种空调器和一种可读存储介质。
实施例一:
如图1所示,本发明的第一个实施例中提供了一种室内机的滤网检测方法,具体包括:
步骤102,获取滤网在设定风量值下的第一阻力差值;
步骤104,确定室内机运行过程中的第一机外静压值;
步骤106,根据第一机外静压值和设定机外静压值,与第一阻力差值的数值关系,确定滤网的脏堵情况。
本实施例提供的室内机的滤网检测方法能够检测室内机的滤网是否存在脏堵情况。室内机运行时开始换热前的空气经过室内机的回风口进入室内机,室内机的滤网设置在回风口处,用于对经过回风口的空气进行过滤,起到净化空气的作用。滤网具有初始阻力值和终止阻力值,其中初始阻力值为滤网出厂后的阻力值,即滤网在初始洁净状态下的阻力值,终止阻力值为滤网在需要清洗或更换情况下的阻力值,通过终止阻力值与初始阻力值进行差值计算能够得到阻力差值。空调器以不同风量运行的情况下,则滤网的阻力差值也不相同。在控制室内机以设定风量运行的情况下,获取与设定风量对应的第一阻力差值。确定室内机当前运行状态下的第一机外静压值,第一机外静压值为室内机当前硬件条件下,以设定风量值运行过程中的机外静压值。设定机外静压值为预存的与设定风量值对应的机外静压值,且设定机外静压值,其中,设定机外静压值为在空调器安装完成后采集得到的,即滤网在全新状态下空调器运行所采集到的机外静压值为设定机外静压值。根据第一机外静压值、设定机外静压值与第一阻力差值的数值关系,能够对滤网的脏堵情况进行判定。
可以理解的是,随着滤网的脏堵则空调器运行时采集到的机外静压值会产生变化,故根据第一机外静压值、设定机外静压值与第一阻力差值的数值关系能够对滤网的脏堵情况进行判定。
值得说明的是,阻力差值由滤网的初始阻力值与终止阻力值做差值计算得到的,阻力差值为滤网由初始洁净状态至脏堵状态的阻力变化值。第一阻力差值与当前室内机的运行风量相关,根据室内机的运行风量确定滤网的第一阻力差值。设定机外静压值为对安装有初始洁净状态下滤网的室内机进行检测得到的机外静压值。
第一机外静压值为空调器室内机运行过程中采集到的机外静压值,即第一机外静压值为滤网已经使用一段时间后,所检测到的机外静压值。故通过根据第一机外静压值、设定机外静压值与第一阻力差值的数值关系,能够对滤网是否存在脏堵进行判断,以及对脏堵程度进行判断。
在上述实施例中,室内机中还设置有风机。
在该实施例中,室内机还包括风机,室内机在恒风量运行过程中,风机通入电流,使风机以对应的转速运行,从而使空调器输出恒风量。
具体地,空调器的本地存储区内存储有转速和设定电流的对应曲线,控制风机的按照对应曲线中的转速和电流运行,从而实现对空调器的室内机恒风量输出的控制。
如图2所示,在上述任一实施例中,滤网检测方法中确定室内机的第一机外静压值的步骤具体包括:
步骤202,采集室内机中的风机的运行电流值;
步骤204,根据运行电流值和室内机运行的设定风量值,得到第一机外静压值。
在该实施例中,在空调器出厂前,对空调器的室内机在多个机外静压值下进行测试,测试过程中,调节风机的转速,从而使室内机输出的风量达到设定风量值,将室内机的风机当前运行模式下的电流值和机外静压值按照对应关系进行记录,使空调器的本地存储区内存储有风量-电流值-机外静压值的对应关系。
在控制空调器的室内机以设定风量值运行的情况下,获取风机的运行电流值。通过运行电流值和设定风量值,根据预存在空调器的本地存储区中的对应关系能够查找确定对应的第一机外静压值。在出厂前将各个机外静压值下的风量和电流值的对应关系进行存储。在控制空调器运行的过程中,能够通过采集风机的运行电流值能够快速确定第一机外静压值,还提高了得到的第一机外静压值的准确性。
在一些实施例中,风量值、风机的电流值和机外静压值的对应关系以表格的形式存储在空调器的本地存储区内。
在这些实施例中,在空调器运行的过程中,通过查表的方式根据运行电流值和设定风量值,查找到对应的机外静压值。
在另外一些实施例中,风量值、风机的电流值和机外静压值的对应关系以函数的形式存储在空调器的本地存储区内。
在这些实施例中,在空调器运行的过程中,获取运行电流值、设定风量值。通过设定函数对运行电流值和设定风量值进行计算,以得到机外静压值。
如图3所示,滤网检测方法中根据运行电流值和室内机运行的设定风量值,得到第一机外静压值的步骤,具体包括:
步骤302,通过设定风量值对电流值与机外静压值的第一对应关系进行查找;
步骤304,根据运行电流值,通过第一对应关系查找到第二机外静压值;
步骤306,获取静压修正值;
步骤308,将第二机外静压值与静压修正值做差值计算,以得到第一机外静压值。
在该实施例中,室内机能够以不同的风量值运行,在确定第一机外静压值的过程中,需要根据设定风量值通过查表的方式,找到对应的机外静压值与电流值的第一对应关系,再根据风机的运行电流值和第一对应关系查找对应的第二机外静压值。不仅滤网的阻力会计算到第二机外静压值中,室内机中的其他结构部件也会对出风产生阻力,同样也会计入到第二机外静压值中,因此在得到第二机外静压值之后,根据静压修正值对第二机外静压值进行修正计算,从而得到与设定风量值对应的第一机外静压值。
本发明在确定与设定风量值对应的第一机外静压值的过程中,通过静压修正值对查找得到的第二机外静压值进行修正计算,从而使得到的第一静压值仅受到滤网的阻力值影响,进而保证第一机外静压值和设定机外静压值能够反应出滤网的实际脏堵情况。
在一些实施例中,将机外静压值、风量值、和电流值,以表格的形式存储在室内机的本地存储区中,具体请参阅表1。
表1
Figure BDA0003183805140000151
在一个具体实施例中,检测到空调器的设定风量值为风量1,并且确定风机的运行电流值为IL2,通过查表可以得到第二机外静压值为P2。
在另一个具体实施例中,检测到空调器的设定风量值为风量1并且确定风机的运行电流值在IL2至IL3之间,则可以确定机外静压值在P2和P3之间,通过对P2和P3进行插值计算,得到与设定风压制对应的第二机外静压值。
在上述任一实施例中,室内机还包括导风条和驱动电机,导风条与驱动电机的输出端相连。
内机还包括导风条,导风条设置在室内机的出风口位置,位于滤网的外侧,即室内机工作过程中,排出的控制通滤网过滤后,经过导风条能够改变室内机的出风方向。室内机还包括用于驱动导风条的驱动电机,驱动电机与空调器的控制器相连,用户能够通过控制器控制驱动电机运动,从而使导风条运转至指定角度,从而对空调器的出风方向进行调整。
如图4所示,在上述任一实施例中,滤网检测方法中获取静压修正值的步骤,具体包括:
步骤402,获取导风条的倾斜角度;
步骤404,确定倾斜角度与修正值的第二对应关系;
步骤406,通过第二对应关系,根据倾斜角度查获对应的静压修正值。
在该实施例中,导风条也会对室内机出风产生阻力,从而影响对室内机的机外静压值的判断。导风条所处的角度不同,则对室内机出风造成的阻力也不相同。在室内机出厂前,通过将导风条产生的阻力值与导风条的倾斜角度按照对应的关系进行存储。导风条对室内机出风产生的阻力为静压修正值,根据室内机的导风条的倾斜角度,通过第二对应关系能够查找到对应的到封条对室内机出风产生的阻力,即静压修正值。本发明为去除导风条对机外静压值的影响,将导风条对室内机出风产生的阻力值作为静压修正值,并通过对第二机外静压值与静压修正值进行计算,从而使得到的第一静压值仅受到滤网的阻力值影响,使第一机外静压值和设定机外静压值能够准确反应出滤网的实际脏堵情况。
在一些实施例中,通过采集驱动电机的转动角度,从而确定导风条倾斜角度。
在另外一些实施例中,在导风条上或驱动电机的输出轴上设置传感器,传感器与室内机的处理器相连,传感器能够直接采集导风条的倾斜角度。
如图5所示,在上述任一实施例中,滤网检测方法中采集室内机中的风机的运行电流值的步骤之前,还包括:
步骤502,在风机运行过程中,采集当前风量值;
步骤504,根据设定风量值查找对应的风量阈值范围;
步骤506,确定当前风量值在风量阈值范围内持续设定时长。
在该实施例中,在采集运行电流值之前需要确定风机输出的风量达到设定值,并且输出的风量保持在稳定状态下。通过对设定风量值进行加减运算从而得到风量阈值范围,风机输出的风量值进入风量阈值范围内,则可以判定风机此时以设定风量值运行。对当前风量值在风量阈值范围内的持续时长进行计时,持续时长达到设定时长,则判定风机处于稳定输出风量值的状态下。本发明在采集运行电流值之前,先判断风机是否达到恒定输出设定风量值,实现了采集设定风量值相对应的运行电流值。通过计时当前风量值在风量阈值范围内的持续时长达到设定时长,再执行采集运行电流值,能够进一步保证采集到的运行电流值为风机处于恒风量运行状态下的电流值,提高了后续根据运行电流值得到的机外静压值的准确性。
如图6所示,在上述任一实施例中,滤网检测方法中根据设定风量值,确定对应的第一阻力差值的步骤,具体包括:
步骤602,确定风量值与滤网阻力差值的第三对应关系;
步骤604,根据第三对应关系,通过设定分两只查找对应的第一阻力差值。
在该实施例中,滤网对室内机出风产生的阻力为滤网自身的硬件特性,即滤网的初始阻力值为固定值。在滤网出厂前,对滤网的耐久度进行检测,从而确定滤网的终止阻力值,即当滤网达到终止阻力值时,建议用户对滤网进行更换。
由于室内机输出的风量不同,则滤网阻力值对室内机出风的影响也不相同。在空调器出厂前,对室内机以各个风量值模拟运行,采集室内机以各个风量值运行下滤网的终止阻力值,从而计算得到各个风量值对应的滤网的第一阻力差值。并将第一阻力差值与各个风量值按照第三对应关系进行存储。在空调器安装完成之后,确定是室内机运行过程中恒定输出的设定风量值,并根据第三对应关系对与设定风量值相对应的第一阻力差值进行查找。
如图7所示,在上述任一实施例中,滤网检测方法中获取滤网与设定风量值相对应的第一阻力差值的步骤,具体包括:
步骤702,获取滤网的第二阻力差值和室内机的额定风量值;
步骤704,根据额定风量值、设定风量值和第二阻力差值,对第一阻力差值进行计算。
在该实施例中,滤网对室内机出风产生的阻力为滤网自身的硬件特性,即滤网的初始阻力值为固定值。在滤网出厂前,对滤网的耐久度进行检测,从而确定滤网的终止阻力值,即当滤网达到终止阻力值时,建议用户对滤网进行更换。将初始阻力值与终止阻力值进行差值计算,以得到第二阻力差值。
由于室内机输出的风量不同,则滤网阻力值对室内机出风的影响也不相同。室内机在出厂前,在本地存储区预存能够根据第二阻力差值计算得到第一阻力差值的计算公式,公式具体如下:
D1=A×D2×(AFn/AF0)^2;
其中,D1为第一阻力差值,D2为第二阻力差值,A为系数,AF0为额定风量值,AFn为设定风量值。
本发明将获取到的设定风量值,以及存储在本地存储区内的额定风量值、第二阻力差值代入上述公式中,能够计算得到第一阻力差值,其中,系数A的取值范围为(0.8至1.2)。通过上述公式计算得到的第一阻力差值为与设定风量值相对应的滤网的阻力差值。从而提高了后续根据第一阻力差值进行计算的步骤的准确性,进而提高了对滤网脏堵情况判定的精准性,减少误判的可能。
如图8所示,在上述任一实施例中,滤网检测方法中获取滤网的第二阻力差值的步骤,具体包括:
步骤802,获取滤网的第一设定阻力值和第二设定阻力值;
步骤804,通过第一设定阻力值和第二设定阻力值做差值计算,以得到第二阻力差值。
在该实施例中,滤网的第一阻力值为滤网的初始阻力值,滤网对流过滤网的空气产生的阻力为滤网自身的硬件特性。第二设定阻力值为滤网的终止阻力值,滤网的终止阻力值通过对滤网的耐久度进行检测得到。将初始阻力值与终止阻力值进行差值计算,能够得到第二阻力差值。第二阻力差值为滤网的自身硬件属性。
可以理解的是,由于第二阻力差值为滤网的硬件属性值,故第二阻力差值直接标注在滤网上,或记载于滤网的包装说明上。在用户更换新的滤网后,将第二阻力差值通过控制器输入至空调器的室内机中。室内机能够根据预存在本地存储区中的公式对第一阻力差值进行计算。
如图9所示,在上述任一实施例中,根据第一机外静压值和设定机外静压值,与第一阻力差值的数值关系,确定滤网的脏堵情况的步骤,具体包括:
步骤902,根据第一机外静压值和设定机外静压值,得到静压差值;
步骤904,根据第一阻力差值与静压差值的数值关系,确定滤网的脏堵情况。
在该实施例中,将第一机外静压值与设定机外静压值做差值计算,以得到静压差值。由于第一机外静压值和设定机外静压值均与室内机的设定风量下相对应,其中,第一机外静压值为当前滤网状态下,在室内机以设定风量值运行时采集到的机外静压值,设定机外静压值为在室内机出厂前,即滤网初始状态下,在室内机以设定风量值运行时采集到的机外静压值。故通过第一机外静压值与设定机外静压值计算得到的静压差值也与设定风量值相对应。计算得到的静压差值能够准确反应出滤网的实际脏堵情况,故根据处于初始状态下的滤网的第一阻力差值与静压差值能够对滤网的脏堵情况准确判断。
通过滤网的第一阻力差值和空调器的静压差值对滤网的脏堵情况进行检测,实现了在空调器在运行过程中能够及时确定滤网的脏堵情况,相比于现有技术,提高了滤网脏堵情况判定的准确性和及时性。
可以理解的是,室内机以不同风量运行,机外静压差值也会不同,将第一阻力差值与室内机的运行风量设置对应关系,在不同的风量下,根据与设定风量值对应的第一机外静压值、设定机外静压值与第一阻力差值的数值关系对滤网的脏堵情况进行判断,能够提高对滤网是否存在脏堵判断的准确性。
如图10所示,在上述任一实施例中,根据第一阻力差值与静压差值的数值关系,确定滤网的脏堵情况的步骤,具体包括:
步骤1002,对静压差值和第一阻力差值进行比值计算,得到比值;
步骤1004,判断比值是否大于设定设定值,判断结果为是则执行步骤1006,判断结果为否则执行步骤1010;
步骤1006,滤网处于脏堵状态;
步骤1008,输出第一提示信息,和/或发送第二提示信息至服务器;
步骤1010,滤网未处于脏堵状态。
在该实施例中,第一阻力差值由滤网的初始阻力值与终止阻力值做差值计算得到的,第一阻力差值为滤网由初始洁净状态至脏堵状态的阻力变化值。设定机外静压值为对安装有初始洁净状态下滤网的室内机进行检测得到的机外静压值。第一机外静压值为空调器室内机运行过程中采集到的机外静压值,即第一机外静压值为滤网已经使用一段时间后,所检测到的机外静压值。将静压差值和第一阻力差值进行比值计算,以得到具体的比值,上述比值能够反映出滤网的脏堵程度。通过对比值预设设定值,当比值达到设定值,则认为滤网处于脏堵状态,实现了对滤网是否处于脏堵状态进行检测。
在一些实施例中,根滤网的脏堵程度设置与不同脏堵程度相对应的设定值。
在这些实施例中,脏堵程度包括:“良好”、“一般脏堵”和“严重脏堵”。分别对脏堵程度设置对应的设定值,“良好”对应小于第一设定值,“一般脏堵”对应大于第一设定值,“严重脏堵”对应大于第二设定值。其中,第一设定值小于第二设定值。当计算得到的比值小于第一设定值时,则判定脏堵程度为“良好”,当计算得到的比值大于第一设定值,且小于第二设定值时,则判定脏堵程度为“一般脏堵”,当计算得到的比值大于第二设定值是,则判定脏堵程度为“严重脏堵”。
在一些实施例中,空调器还包括遥控器,遥控器上设置有第一显示单元,室内机上设置有第二显示单元和扬声器。
室内机在检测到滤网的状态为脏堵状态,则通过遥控器上的第一显示单元和/或第二显示单元显示第一提示信息,第一提示信息包括文字信息和图标信息,从而实现对用户显示滤网已经脏堵的信息。还可以通过室内机中的扬声器将第一提示信息以音频的形式输出。
室内机还包括通信装置,室内机在检测到滤网的状态为脏堵状态,则通过通信装置将第二提示信息发送给服务器,服务器为厂商的售后平台,厂商能够根据第二提示信息提供相应的增值服务,无需用户自行对滤网进行更换,进一步提高了用户的使用体验。
在一些实施例中,室内机在每次开机时,通过扬声器以音频形式输出第一提示信息,从而避免用户忽略第一提示信息。
在一些实施例中,滤网的脏堵程度包括:“良好”、“一般脏堵”和“严重脏堵”。不同的脏堵程度对应不同的第一提示信息,使用户能够更加清楚地了解室内机的滤网的当前的脏堵程度。
在这些实施例中,“良好”、“一般脏堵”和“严重脏堵”分别对应不同的显示图标。
实施例二:
如图11所示,本发明的第二个实施例中提供了一种室内机的滤网检测装置1100包括:
获取模块1102,用于获取滤网在设定风量值下的第一阻力差值;
第一确定模块1104,用于确定室内机运行过程中的第一机外静压值;
第二确定模块1106,用于根据第一机外静压值和设定机外静压值,与第一阻力差值的数值关系,确定滤网的脏堵情况。
本实施例提供的室内机的滤网检测装置1100能够检测室内机的滤网是否存在脏堵情况。室内机运行时开始换热前的空气经过室内机的回风口进入室内机,室内机的滤网设置在回风口处,用于对经过回风口的空气进行过滤,起到净化空气的作用。
滤网具有初始阻力值和终止阻力值,其中初始阻力值为滤网出厂后的阻力值,即滤网在初始洁净状态下的阻力值,终止阻力值为滤网在需要清洗或更换情况下的阻力值,通过终止阻力值与初始阻力值进行差值计算能够得到阻力差值。空调器以不同风量运行的情况下,则滤网的阻力差值也不相同。在控制室内机以设定风量运行的情况下,获取与设定风量对应的第一阻力差值。确定室内机当前运行状态下的第一机外静压值,通过将第一机外静压值与设定机外静压值进行差值计算,以得到静压差值。设定机外静压值为在空调器安装完成后采集得到的,即滤网在全新状态下空调器运行所采集到的机外静压值为设定机外静压值。第一机外静压值为室内机当前硬件条件下,以设定风量值运行过程中的机外静压值。设定机外静压值为预存的与设定风量值对应的机外静压值,且设定机外静压值,其中,设定机外静压值为在空调器安装完成后采集得到的,即滤网在全新状态下空调器运行所采集到的机外静压值为设定机外静压值。根据第一机外静压值、设定机外静压值与第一阻力差值的数值关系,能够对滤网的脏堵情况进行判定。
可以理解的是,随着滤网的脏堵则空调器运行时采集到的机外静压值会产生变化,故根据第一机外静压值、设定机外静压值与第一阻力差值的数值关系能够对滤网的脏堵情况进行判定。
通过滤网的第一阻力差值和空调器的静压差值对滤网的脏堵情况进行检测,实现了在空调器在运行过程中能够及时确定滤网的脏堵情况,相比于现有技术,提高了滤网脏堵情况判定的准确性和及时性。
值得说明的是,阻力差值由滤网的初始阻力值与终止阻力值做差值计算得到的,阻力差值为滤网由初始洁净状态至脏堵状态的阻力变化值。第一阻力差值与当前室内机的运行风量相关,根据室内机的运行风量确定滤网的第一阻力差值。设定机外静压值为对安装有初始洁净状态下滤网的室内机进行检测得到的机外静压值。第一机外静压值为空调器室内机运行过程中采集到的机外静压值,即第一机外静压值为滤网已经使用一段时间后,所检测到的机外静压值。故根据第一机外静压值、设定机外静压值与第一阻力差值的数值关系,能够对滤网是否存在脏堵进行判断,以及对脏堵程度进行判断。
可以理解的是,室内机以不同风量运行,机外静压差值也会不会,将第一阻力差值与室内机的运行风量设置对应关系,在不同的风量下,将计算得到的第一机外静压差值与设定风量对应的第一阻力差值进行比较,能够提高对滤网是否存在脏堵判断的准确性。
在上述任一实施例中,第一确定模块1104,具体用于采集室内机中的风机的运行电流值,根据运行电流值和室内机运行的设定风量值,得到第一机外静压值。
在该实施例中,室内机还包括风机,室内机在恒风量运行过程中,风机通入电流,使风机以对应的转速运行,从而使空调器输出恒风量。
具体地,空调器的本地存储区内存储有转速和设定电流的对应曲线,控制风机的按照对应曲线中的转速和电流运行,从而实现对空调器的室内机恒风量输出的控制。
在空调器出厂前,对空调器的室内机在多个机外静压值下进行测试,测试过程中,调节风机的转速,从而使室内机输出的风量达到设定风量值,将室内机的风机当前运行模式下的电流值和机外静压值按照对应关系进行记录,使空调器的本地存储区内存储有风量-电流值-机外静压值的对应关系。在控制空调器的室内机以设定风量值运行的情况下,获取风机的运行电流值。通过运行电流值和设定风量值,根据预存在空调器的本地存储区中的对应关系能够查找确定对应的第一机外静压值。
在出厂前将各个机外静压值下的风量和电流值的对应关系进行存储。在控制空调器运行的过程中,能够通过采集风机的运行电流值能够快速确定第一机外静压值,还提高了得到的第一机外静压值的准确性。
在一些实施例中,风量值、风机的电流值和机外静压值的对应关系以表格的形式存储在空调器的本地存储区内。
在这些实施例中,在空调器运行的过程中,通过查表的方式根据运行电流值和设定风量值,查找到对应的机外静压值。
在另外一些实施例中,风量值、风机的电流值和机外静压值的对应关系以函数的形式存储在空调器的本地存储区内。
在这些实施例中,在空调器运行的过程中,通过函数对运行电流值和设定风量值进行计算,以得到机外静压值。
在上述任一实施例中,第一确定模块1104,具体用于通过设定风量值对电流值与机外静压值的第一对应关系进行查找,根据运行电流值,通过第一对应关系查找到第二机外静压值,获取静压修正值,将第二机外静压值与静压修正值做差值计算,以得到第一机外静压值。
在该实施例中,室内机能够以不同的风量值运行,在确定第一机外静压值的过程中,需要根据设定风量值通过查表的方式,找到对应的机外静压值与电流值的第一对应关系,再根据风机的运行电流值和第一对应关系查找对应的第二机外静压值。不仅滤网的阻力会计算到第二机外静压值中,室内机中的其他结构部件也会对出风产生阻力,同样也会计入到第二机外静压值中,因此在得到第二机外静压值之后,根据静压修正值对第二机外静压值进行修正计算,从而得到与设定风量值对应的第一机外静压值。
本发明在确定与设定风量值对应的第一机外静压值的过程中,通过静压修正值对查找得到的第二机外静压值进行修正计算,从而使得到的第一静压值仅受到滤网的阻力值影响,进而保证得到的机外静压差值能够反应出滤网的实际脏堵情况。
在上述任一实施例中,第一确定模块1104,具体用于获取导风条的倾斜角度,确定倾斜角度与修正值的第二对应关系,通过第二对应关系,根据倾斜角度查获对应的静压修正值。
在该实施例中,导风条也会对室内机出风产生阻力,从而影响对室内机的机外静压值的判断。导风条所处的角度不同,则对室内机出风造成的阻力也不相同。在室内机出厂前,通过将导风条产生的阻力值与导风条的倾斜角度按照对应的关系进行存储。导风条对室内机出风产生的阻力为静压修正值,根据室内机的导风条的倾斜角度,通过第二对应关系能够查找到对应的到封条对室内机出风产生的阻力,即静压修正值。本发明为去除导风条对机外静压值的影响,将导风条对室内机出风产生的阻力值作为静压修正值,并通过对第二机外静压值与静压修正值进行计算,从而使得到的第一静压值仅受到滤网的阻力值影响,使机外静压差值能够准确反应出滤网的实际脏堵情况。
在一些实施例中,通过采集驱动电机的转动角度,从而确定导风条倾斜角度。
在另外一些实施例中,在导风条上或驱动电机的输出轴上设置传感器,传感器与室内机的处理器相连,传感器能够直接采集导风条的倾斜角度。
在上述任一实施中,室内机的滤网检测装置1100包括:
计时模块1108,用于在风机运行过程中,采集当前风量值,根据设定风量值查找对应的风量阈值范围,确定当前风量值在风量阈值范围内持续设定时长。
在该实施例中,在采集运行电流值之前需要确定风机输出的风量达到设定值,并且输出的风量保持在稳定状态下。通过对设定风量值进行加减运算从而得到风量阈值范围,风机输出的风量值进入风量阈值范围内,则可以判定风机此时以设定风量值运行。对当前风量值在风量阈值范围内的持续时长进行计时,持续时长达到设定时长,则判定风机处于稳定输出风量值的状态下。本发明在采集运行电流值之前,先判断风机是否达到恒定输出设定风量值,实现了采集设定风量值相对应的运行电流值。通过计时当前风量值在风量阈值范围内的持续时长达到设定时长,再执行采集运行电流值,能够进一步保证采集到的运行电流值为风机处于恒风量运行状态下的电流值,提高了后续根据运行电流值得到的机外静压值的准确性。
在上述任一实施例中,获取模块1102,具体用于确定风量值与滤网阻力差值的第三对应关系,根据第三对应关系,通过设定分两只查找对应的第一阻力差值。
在该实施例中,滤网对室内机出风产生的阻力为滤网自身的硬件特性,即滤网的初始阻力值为固定值。在滤网出厂前,对滤网的耐久度进行检测,从而确定滤网的终止阻力值,即当滤网达到终止阻力值时,建议用户对滤网进行更换。
由于室内机输出的风量不同,则滤网阻力值对室内机出风的影响也不相同。在空调器出厂前,对室内机以各个风量值模拟运行,采集室内机以各个风量值运行下滤网的终止阻力值,从而计算得到各个风量值对应的滤网的第一阻力差值。并将第一阻力差值与各个风量值按照第三对应关系进行存储。在空调器安装完成之后,确定是室内机运行过程中恒定输出的设定风量值,并根据第三对应关系对与设定风量值相对应的第一阻力差值进行查找。
在上述任一实施例中,获取模块1102,具体用于获取滤网的第二阻力差值和室内机的额定风量值,根据额定风量值、设定风量值和第二阻力差值,对第一阻力差值进行计算。
在该实施例中,滤网对室内机出风产生的阻力为滤网自身的硬件特性,即滤网的初始阻力值为固定值。在滤网出厂前,对滤网的耐久度进行检测,从而确定滤网的终止阻力值,即当滤网达到终止阻力值时,建议用户对滤网进行更换。将初始阻力值与终止阻力值进行差值计算,以得到第二阻力差值。
由于室内机输出的风量不同,则滤网阻力值对室内机出风的影响也不相同。室内机在出厂前,在本地存储区预存能够根据第二阻力差值计算得到第一阻力差值的计算公式,公式具体如下:
D1=A×D2×(AFn/AF0)^2;
其中,D1为第一阻力差值,D2为第二阻力差值,A为系数,AF0为额定风量值,AFn为设定风量值。
本发明将获取到的设定风量值,以及存储在本地存储区内的额定风量值、第二阻力差值代入上述公式中,能够计算得到第一阻力差值,其中,系数A的取值范围为(0.8至1.2)。通过上述公式计算得到的第一阻力差值为与设定风量值相对应的滤网的阻力差值。从而提高了后续根据第一阻力差值进行计算的步骤的准确性,进而提高了对滤网脏堵情况判定的精准性,减少误判的可能。
在上述任一实施例中,获取模块1102,还用于获取滤网的第一设定阻力值和第二设定阻力值,通过第一设定阻力值和第二设定阻力值做差值计算,以得到第二阻力差值。
在该实施例中,滤网的第一阻力值为滤网的初始阻力值,滤网对流过滤网的空气产生的阻力为滤网自身的硬件特性。第二设定阻力值为滤网的终止阻力值,滤网的终止阻力值通过对滤网的耐久度进行检测得到。将初始阻力值与终止阻力值进行差值计算,能够得到第二阻力差值。第二阻力差值为滤网的自身硬件属性。
可以理解的是,由于第二阻力差值为滤网的硬件属性值,故第二阻力差值直接标注在滤网上,或记载于滤网的包装说明上。在用户更换新的滤网后,将第二阻力差值通过控制器输入至空调器的室内机中。室内机能够根据预存在本地存储区中的公式对第一阻力差值进行计算。
在上述任一实施例中,第二确定模块1106,具体用于根据第一机外静压值和设定机外静压值,得到静压差值;根据第一阻力差值与静压差值的数值关系,确定滤网的脏堵情况。
在该实施例中,将第一机外静压值与设定机外静压值做差值计算,以得到静压差值。由于第一机外静压值和设定机外静压值均与室内机的设定风量下相对应,其中,第一机外静压值为当前滤网状态下,在室内机以设定风量值运行时采集到的机外静压值,设定机外静压值为在室内机出厂前,即滤网初始状态下,在室内机以设定风量值运行时采集到的机外静压值。故通过第一机外静压值与设定机外静压值计算得到的静压差值也与设定风量值相对应。计算得到的静压差值能够准确反应出滤网的实际脏堵情况,故根据处于初始状态下的滤网的第一阻力差值与静压差值能够对滤网的脏堵情况准确判断。
可以理解的是,室内机以不同风量运行,机外静压差值也会不同,将第一阻力差值与室内机的运行风量设置对应关系,在不同的风量下,根据与设定风量值对应的第一机外静压值、设定机外静压值与第一阻力差值的数值关系对滤网的脏堵情况进行判断,能够提高对滤网是否存在脏堵判断的准确性。
在上述任一实施例中,第二确定模块1106,具体用于对静压差值和第一阻力差值进行比值计算,得到比值,比值是否大于设定设定值,判定滤网处于脏堵状态。
在该实施例中,第一阻力差值由滤网的初始阻力值与终止阻力值做差值计算得到的,第一阻力差值为滤网由初始洁净状态至脏堵状态的阻力变化值。设定机外静压值为对安装有初始洁净状态下滤网的室内机进行检测得到的机外静压值。第一机外静压值为空调器室内机运行过程中采集到的机外静压值,即第一机外静压值为滤网已经使用一段时间后,所检测到的机外静压值。将静压差值和第一阻力差值进行比值计算,以得到具体的比值,上述比值能够反映出滤网的脏堵程度。通过对比值预设设定值,当比值达到设定值,则认为滤网处于脏堵状态,实现了对滤网是否处于脏堵状态进行检测。
在上述任一实施例中,室内机的滤网检测装置1100还包括:
提示模块1110,用于在滤网处于脏堵状态的情况下,输出第一提示信息,和/或向服务器发送第二提示信息。
在该实施例中,空调器还包括遥控器,遥控器上设置有第一显示单元,室内机上设置有第二显示单元和扬声器。
室内机在检测到滤网的状态为脏堵状态,则通过遥控器上的第一显示单元和/或第二显示单元显示第一提示信息,第一提示信息包括文字信息和图标信息,从而实现对用户显示滤网已经脏堵的信息。还可以通过室内机中的扬声器将第一提示信息以音频的形式输出。
室内机还包括通信装置,室内机在检测到滤网的状态为脏堵状态,则通过通信装置将第二提示信息发送给服务器,服务器为厂商的售后平台,厂商能够根据第二提示信息提供相应的增值服务,无需用户自行对滤网进行更换,进一步提高了用户的使用体验。
在一些实施例中,室内机在每次开机时,通过扬声器以音频形式输出第一提示信息,从而避免用户忽略第一提示信息。
在一些实施例中,滤网的脏堵程度包括:“良好”、“一般脏堵”和“严重脏堵”。不同的脏堵程度对应不同的第一提示信息,使用户能够更加清楚地了解室内机的滤网的当前的脏堵程度。
实施例三:
如图12所示,本发明的第一个实施例中提供了一种室内机1200,包括:机壳、设置在风道内的滤网、存储器1202和处理器1204。
机壳形成有风道,滤网设置在风道内。存储器1202中存储有程序或指令。处理器1204执行存储在存储器1202中的程序或指令以实现如上述实施例一中的室内机的滤网检测方法的步骤。因而具有上述实施例一中的内机的滤网检测方法的全部有益效果,在此不在做过多赘述。
本发明提供的,室内机1200包括机壳和滤网,机壳内形成有风道。室内机还包括回风口,室内机1200运行时换热前的空气经过回风口进入风道内,滤网设置在风道内,滤网对流经风道的空气进行过滤,起到净化空气的作用。
在上述任一实施例中,室内机1200还包括:导风条和驱动电机。
导风条设置于风道的出风口。驱动电机的输出端与导风条相连,驱动电机用于驱动导风条调整倾斜角度。
在该实施例中,室内机1200还包括导风条和驱动电机。导风条设置在风道的出风口位置,位于滤网的外侧,即室内机1200工作过程中,排出的控制通滤网过滤后,经过导风条能够改变室内机1200的出风方向。驱动电机与空调器的控制器相连,用户能够通过控制器控制驱动电机运动,从而使导风条运转至指定角度,从而对空调器的出风方向进行调整。
在上述任一实施例中,室内机1200还包括:显示装置和/或通信装置。
显示装置与处理器1204相连,用于输出第一提示信息。
通信装置与处理器1204相连,用于向服务器发送第二提示信息。
在该设计中,室内机1200还包括显示装置和/或通信装置。显示装置和/或通信状态与室内机1200的处理器1204相连。当检测到室内机1200的滤网处于堵转状态下,显示装置能够将第一提示信息进行显示输出,显示装置输出第一提示信息能够向用户提示滤网当前处于脏堵状态,需要对滤网进行更换或清洗。通信装置能够将第二提示信息发送至服务器,厂商能够读取服务器中的第二提示信息,并根据第二提示信息提供相应的增值服务器,无需用户自行对滤网进行更换,提高用户的使用体验。
在一些实施例中,空调器还包括遥控器,遥控器上设置有第一显示单元,室内机1200上设置有第二显示单元和扬声器。
室内机1200在检测到滤网的状态为脏堵状态,则通过遥控器上的第一显示单元和/或第二显示单元显示第一提示信息,第一提示信息包括文字信息和图标信息,从而实现对用户显示滤网已经脏堵的信息。还可以通过室内机1200中的扬声器将第一提示信息以音频的形式输出。
在一些实施例中,室内机1200在每次开机时,通过扬声器以音频形式输出第一提示信息,从而避免用户忽略第一提示信息。
在一些实施例中,滤网的脏堵程度包括:“良好”、“一般脏堵”和“严重脏堵”。不同的脏堵程度对应不同的第一提示信息,使用户能够更加清楚地了解室内机1200的滤网的当前的脏堵程度。
实施例四:
如图13所示,本发明的第一个实施例中提供了一种空调器1300,包括:室内机1200和室外机1302。
室外机1302与室内机1200相连,室外机1302内还设置有压缩机,压缩机能够将冷媒管路中的冷媒进行压缩,压缩后的冷媒经过冷媒管路流经室内机1200和室外机1302,从而实现空调器1300的制冷和制热的作用。
室内机1200选为如实施例三中的室内机1200,因而具有上述实施例三中室内机1200的全部有益效果,在此不再做过多赘述。
实施例五:
本发明的第五个实施例中提供了一种可读存储介质,其上存储有程序,程序被处理器执行时实现如上述任一实施例中的室内机的滤网检测方法,因而具有上述任一实施例中的室内机的滤网检测方法的全部有益技术效果。
其中,可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
需要明确的是,在本发明的权利要求书、说明书和水明书附图中,术语“多个”则指两个或两个以上,除非有额外的明确限定,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了更方便地描述本发明和使得描述过程更加简便,而不是为了指示或暗示所指的装置或元件必须具有所描述的特定方位、以特定方位构造和操作,因此这些描述不能理解为对本发明的限制;术语“连接”、“安装”、“固定”等均应做广义理解,举例来说,“连接”可以是多个对象之间的固定连接,也可以是多个对象之间的可拆卸连接,或一体地连接;可以是多个对象之间的直接相连,也可以是多个对象之间的通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据上述数据地具体情况理解上述术语在本发明中的具体含义。
在本发明的权利要求书、说明书和水明书附图中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本发明的至少一个实施例或示例中。在本发明的权利要求书、说明书和水明书附图中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (16)

1.一种室内机的滤网检测方法,其特征在于,所述室内机包括滤网,所述滤网检测方法包括:
获取所述滤网在设定风量值下的第一阻力差值;
确定所述室内机运行过程中的第一机外静压值;
根据所述第一机外静压值和设定机外静压值,与所述第一阻力差值的数值关系,确定所述滤网的脏堵情况。
2.根据权利要求1所述的室内机的滤网检测方法,其特征在于,所述室内机还包括风机,所述确定所述室内机运行过程中的第一机外静压值的步骤,具体包括:
采集所述风机的运行电流值;
根据所述设定风量值和所述运行电流值,确定所述第一机外静压值。
3.根据权利要求2所述的室内机的滤网检测方法,其特征在于,所述根据所述设定风量值和所述运行电流值,确定所述第一机外静压值的步骤,具体包括:
根据所述设定风量值查找电流值与机外静压值的第一对应关系;
根据所述运行电流值和所述第一对应关系,确定第二机外静压值;
获取静压修正值,根据所述第二机外静压值与所述静压修正值计算得到所述第一机外静压值。
4.根据权利要求3所述的室内机的滤网检测方法,其特征在于,所述室内机包括导风条,所述导风条设置于所述室内机的出风口,所述获取静压修正值的步骤,具体包括:
采集所述导风条的倾斜角度;
获取倾斜角度与修正值的第二对应关系,根据所述倾斜角度和所述第二对应关系,查找所述静压修正值。
5.根据权利要求4所述的室内机的滤网检测方法,其特征在于,所述采集所述风机的运行电流值的步骤之前,还包括:
采集所述风机输出的当前风量值;
根据所述设定风量值确定风量阈值范围,确定所述当前风量值处于所述风量阈值范围内达到设定时长。
6.根据权利要求2至5中任一项所述的室内机的滤网检测方法,其特征在于,所述根据所述设定风量值,确定对应的第一阻力差值下的第一阻力差值的步骤,具体包括:
获取风量值与滤网阻力差值的第三对应关系;
根据所述设定风量值和所述第三对应关系,查找所述第一阻力差值。
7.根据权利要求2至5中任一项所述的室内机的滤网检测方法,其特征在于,所述根据所述设定风量值确定所述第一阻力差值的步骤,具体包括:
获取所述滤网的第二阻力差值;
获取所述室内机的额定风量值;
根据所述额定风量值、所述设定风量值和所述第二阻力差值,计算所述第一阻力差值。
8.根据权利要求7所述的室内机的滤网检测方法,其特征在于,所述获取第二阻力差值的步骤,具体包括:
获取所述滤网的第一设定阻力值和第二设定阻力值;
根据所述第一设定阻力值和所述第二设定阻力值,计算得到第二阻力差值。
9.根据权利要求1至5中任一项所述的室内机的滤网检测方法,其特征在于,所述根据所述第一机外静压值和设定机外静压值,与所述第一阻力差值的数值关系,确定所述滤网的脏堵情况的步骤,具体包括:
根据所述第一机外静压值和设定机外静压值,得到静压差值;
根据所述第一阻力差值与所述静压差值的数值关系,确定所述滤网的脏堵情况。
10.根据权利要求9所述的室内机的滤网检测方法,其特征在于,所述根据所述第一阻力差值与所述静压差值的数值关系,确定所述滤网的脏堵情况的步骤,具体包括:
计算所述静压差值与所述第一阻力差值的比值;
所述比值大于设定值,确定所述滤网处于脏堵状态。
11.根据权利要求10所述的室内机的滤网检测方法,其特征在于,还包括:
基于所述滤网处于所述脏堵状态,输出第一提示信息,和/或向服务器发送第二提示信息。
12.一种室内机的滤网检测装置,其特征在于,所述室内机包括滤网,所述滤网检测装置包括:
获取模块,用于获取所述滤网在设定风量值下的第一阻力差值;
第一确定模块,用于确定所述室内机运行过程中的第一机外静压值;
第二确定模块,用于根据所述第一机外静压值和设定机外静压值,与所述第一阻力差值的数值关系,确定所述滤网的脏堵情况。
13.一种室内机,其特征在于,包括:
机壳,所述机壳形成有风道;
设置在所述风道内的滤网;
存储器,所述存储器中存储有程序或指令;
处理器,所述处理器执行存储在所述存储器中的程序或指令以实现如上述权利要求1至11中任一项所述的室内机的滤网检测方法的步骤。
14.根据权利要求13所述的室内机,其特征在于,还包括:
导风条,设置于所述风道的出风口;
驱动电机,所述驱动电机的输出端与所述导风条相连,用于驱动所述导风条调整倾斜角度。
15.一种空调器,其特征在于,包括:
如上述权利要求13或14所述的室内机;
室外机,与所述室内机连接。
16.一种可读存储介质,其特征在于,所述可读存储介质上存储有程序或指令,所述程序或指令被处理器执行时实现如上述权利要求1至11中任一项所述的室内机的滤网检测方法的步骤。
CN202110855017.5A 2021-07-28 2021-07-28 室内机的滤网检测方法、室内机、空调器和可读存储介质 Pending CN115682298A (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202110855017.5A CN115682298A (zh) 2021-07-28 2021-07-28 室内机的滤网检测方法、室内机、空调器和可读存储介质
PCT/CN2022/082789 WO2023005243A1 (zh) 2021-07-28 2022-03-24 室内机的滤网检测方法、室内机、空调器和可读存储介质
EP22847863.2A EP4328509A4 (en) 2021-07-28 2022-03-24 METHOD FOR DETECTING INDOOR UNIT FILTER SCREEN, INDOOR UNIT, AIR CONDITIONER AND READABLE STORAGE MEDIUM
US18/515,158 US20240093894A1 (en) 2021-07-28 2023-11-20 Methods and systems for detecting blockage in a filter mesh of indoor unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110855017.5A CN115682298A (zh) 2021-07-28 2021-07-28 室内机的滤网检测方法、室内机、空调器和可读存储介质

Publications (1)

Publication Number Publication Date
CN115682298A true CN115682298A (zh) 2023-02-03

Family

ID=85058996

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110855017.5A Pending CN115682298A (zh) 2021-07-28 2021-07-28 室内机的滤网检测方法、室内机、空调器和可读存储介质

Country Status (4)

Country Link
US (1) US20240093894A1 (zh)
EP (1) EP4328509A4 (zh)
CN (1) CN115682298A (zh)
WO (1) WO2023005243A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117760050B (zh) * 2023-12-15 2024-05-14 科城爱高智慧能源科技(广州)有限公司 新风系统过滤网堵塞检测装置及检测方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228992A (ja) * 2008-03-24 2009-10-08 Fuji Industrial Co Ltd フィルタ目詰まり監視装置
JP5291371B2 (ja) * 2008-03-31 2013-09-18 三菱重工業株式会社 室内機ユニットおよび空気調和機
CN106322678B (zh) * 2016-08-31 2019-08-02 广东美的制冷设备有限公司 一种空调换热器脏堵检测方法、系统和空调
CN106440186B (zh) * 2016-08-31 2019-01-22 广东美的制冷设备有限公司 基于单个压力传感器的换热器脏堵检测方法、系统和空调
CN206959260U (zh) * 2017-06-12 2018-02-02 腾讯科技(深圳)有限公司 冷却室
CN107192099A (zh) * 2017-06-14 2017-09-22 广东美的暖通设备有限公司 空调及其积尘判断方法和积尘判断装置以及积尘判断系统
CN110486890A (zh) * 2018-05-14 2019-11-22 青岛海尔空调器有限总公司 空调器及其控制方法
CN110260465A (zh) * 2019-07-22 2019-09-20 珠海格力电器股份有限公司 气流过滤部件脏堵检测装置、方法及空气调节设备
CN110529970B (zh) * 2019-09-16 2021-07-16 宁波奥克斯电气股份有限公司 一种静压调节的方法和交流变频风管机
CN112484236A (zh) * 2020-11-19 2021-03-12 珠海格力电器股份有限公司 一种过滤网检测方法、装置和空调机

Also Published As

Publication number Publication date
US20240093894A1 (en) 2024-03-21
EP4328509A4 (en) 2024-10-16
EP4328509A1 (en) 2024-02-28
WO2023005243A1 (zh) 2023-02-02

Similar Documents

Publication Publication Date Title
CN111256289B (zh) 一种过滤网脏堵检测方法
CN108361916B (zh) 智能实时风道滤网堵塞程度判定系统及方法
CN109990441B (zh) 空调器自清洁控制方法
CN109916049B (zh) 空调器自清洁控制方法
CN107677364B (zh) 空调喘振测试方法及系统
CN109405180A (zh) 一种防凝露控制方法及装置
TWI646420B (zh) 空調設備的濾網壽命告警系統及告警方法
CN110260465A (zh) 气流过滤部件脏堵检测装置、方法及空气调节设备
CN104913446A (zh) 空调器脏堵检测方法及装置
CN112665110A (zh) 一种空调器控制方法、设备及计算机可读存储介质
JP3972723B2 (ja) 空気調和装置
CN115682298A (zh) 室内机的滤网检测方法、室内机、空调器和可读存储介质
WO2021057470A1 (zh) 空调器的滤尘网的堵塞程度的判定方法及空调器
CN110486889A (zh) 空调器及其控制方法
CN113819576A (zh) 过滤网脏堵情况的检测方法、装置、设备和空调系统
CN109724209A (zh) 空调器控制方法
CN110486890A (zh) 空调器及其控制方法
CN113074437B (zh) 新风结构的控制方法
CN109724210A (zh) 空调器控制方法
CN109724211A (zh) 空调器控制方法
JPH05223312A (ja) 空気調和機のフィルタの目詰まり検出装置
CN110631226A (zh) 用于空调器的控制方法及空调器
CN115371207A (zh) 新风空调滤网脏堵检测方法、控制方法及新风空调器
CN110631173B (zh) 用于空调器的控制方法及空调器
CN109405178A (zh) 空调器及其控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination