CN115668745A - 旋转电机控制装置 - Google Patents

旋转电机控制装置 Download PDF

Info

Publication number
CN115668745A
CN115668745A CN202180039030.1A CN202180039030A CN115668745A CN 115668745 A CN115668745 A CN 115668745A CN 202180039030 A CN202180039030 A CN 202180039030A CN 115668745 A CN115668745 A CN 115668745A
Authority
CN
China
Prior art keywords
inverter
phase
open
fault
side arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180039030.1A
Other languages
English (en)
Inventor
苏布拉塔·萨哈
岩井宏起
小坂卓
松盛裕明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Aisin Co Ltd
Original Assignee
Nagoya Institute of Technology NUC
Aisin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020105404A external-priority patent/JP7417941B2/ja
Priority claimed from JP2020105403A external-priority patent/JP7424583B2/ja
Application filed by Nagoya Institute of Technology NUC, Aisin Co Ltd filed Critical Nagoya Institute of Technology NUC
Publication of CN115668745A publication Critical patent/CN115668745A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/028Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the motor continuing operation despite the fault condition, e.g. eliminating, compensating for or remedying the fault
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel

Abstract

在第一控制状态下,判别是第一故障模式(FP1)、第二故障模式(FP2)中的哪一个故障模式(FT),在第二控制状态下,判别是第一下级侧故障模式(LF1)、第二下级侧故障模式(LF2)中的哪一个下级侧故障模式(LF),基于第一控制状态下的判别结果和第二控制状态下的判别结果来判别第一逆变器(11)的上级侧臂、第一逆变器(12)的下级侧臂、第二逆变器(12)的上级侧臂和第二逆变器(12)的下级侧臂中的哪一个是故障侧臂。

Description

旋转电机控制装置
技术领域
本发明涉及经由两个逆变器对具有开路绕组的旋转电机进行驱动控制的旋转电机控制装置。
背景技术
已知一种控制装置,其通过对在三相交流型的旋转电机所具有的三相开路绕组的两端分别各具有一个的逆变器进行开关控制来驱动控制旋转电机。在日本特开2014-192950号公报中公开了即使在驱动这种三相开路绕组的逆变器的开关元件发生故障的情况下也能够继续驱动旋转电机的技术。由此,在两个逆变器中的任一方的开关元件发生故障的情况下,将包含该故障的开关元件在内的逆变器的上级侧开关元件的全部或下级侧开关元件的全部全都设为接通状态,将另一方的开关元件的全部设为断开状态,使该逆变器中性点化,通过未发生故障的另一方的逆变器来驱动旋转电机。
现有技术文献
专利文献
专利文献1:日本特开2014-192950号公报
发明内容
本发明要解决的课题
在此,发生了故障的开关元件的检测可以通过对各开关元件配置传感器等来进行。但是,在全部的开关元件上配置故障检测用的传感器需要成本。因此,也考虑利用用于控制的现有的参数来检测故障。即,如果一个开关元件发生故障,则交流的各相电流或电压等发生变化,因此,也可以基于各相电流或电压等来检测故障的有无。但是,由于在开路绕组上连接有两个逆变器,因此,无论在哪个逆变器发生故障的情况下,都会影响流过开路绕组的电流或相间电压,从而难以确定单纯地发生了故障的开关元件。
在上述文献中,没有提及用于确定发生了故障的开关元件的具体技术。另外,在开关元件的故障中,存在开关元件始终成为导通状态的短路故障和开关元件始终成为开路状态的开路故障,各自因故障而产生的现象也不同,其确定方法也不同。但是,上述文献中也没有提及用于区分并确定以上这些的具体技术。
鉴于上述情况,希望提供一种技术,构成在开路绕组的两端分别具有的两个逆变器的开关元件中的一个发生了故障的情况下,确定故障部位。
解决课题的技术方案
作为一个方式,鉴于上述情况,第一方式的一种旋转电机控制装置,经由第一逆变器和第二逆变器对具有相互独立的多相开路绕组的旋转电机进行驱动控制,其中,所述第一逆变器与所述多相开路绕组的一端侧连接,在直流与多相交流之间转换电力,所述第二逆变器与所述多相开路绕组的另一端侧连接,在直流与多相交流之间转换电力,在所述第一逆变器和所述第二逆变器中,交流一相的臂分别由上级侧开关元件和下级侧开关元件的串联电路构成,能够对所述第一逆变器和所述第二逆变器相互独立地进行控制,在所述第一逆变器和所述第二逆变器中的某一个逆变器中发生了一个开关元件始终成为开路状态的开路故障的情况下,对多相的交流电流分别进行累计并运算各相的电流累计值,基于各个所述电流累计值的正负来检测所述开路故障的发生,并判别发生了所述开路故障的部位,在通过以在电角度的1/2周期即第一期间中输出模式不同的多个脉冲,在剩余的1/2周期即第二期间中持续非有效状态的方式进行控制的混合脉冲宽度调制控制,对所述第一逆变器和所述第二逆变器这两个所述逆变器进行控制时,在检测到所述开路故障的发生的情况下,基于第一控制状态下的各个所述电流累计值的正负来判别是第一故障模式和第二故障模式中的哪一个故障模式,所述第一故障模式为所述第一逆变器的上级侧臂和所述第二逆变器的下级侧臂中的某一个是发生了所述开路故障的故障侧臂,所述第二故障模式为所述第一逆变器的所述下级侧臂和所述第二逆变器的所述上级侧臂中的某一个是所述故障侧臂,基于与所述第一控制状态不同的第二控制状态下的各个所述电流累计值来判别是第一下级侧故障模式和第二下级侧故障模式中的哪一个下级侧故障模式,所述第一下级侧故障模式为所述第二逆变器的所述下级侧臂是所述故障侧臂,所述第二下级侧故障模式为所述第一逆变器的所述下级侧臂是所述故障侧臂,基于所述第一控制状态下的判别结果和所述第二控制状态下的判别结果,判别所述第一逆变器的所述上级侧臂、所述第一逆变器的所述下级侧臂、所述第二逆变器的所述上级侧臂以及所述第二逆变器的所述下级侧臂中的哪一个是所述故障侧臂。
根据发明人的实验和模拟,确认了在两个逆变器中的某一个发生了开关元件的开路故障的情况下,三相电流波形成为非对称且失真的波形。例如,某相的交流电流的波形向正侧大幅偏转,另外,某相的交流电流的波形向负侧大幅偏转。而且,如果在规定时间内累计交流电流,则该偏转的倾向更显著地显现。偏转的方向根据开路故障的开关元件的位置而不同。因此,若基于电流累计值的正负,则能够判别发生了开路故障以及开路故障在哪个逆变器的上级侧臂和下级侧臂中发生。另外,根据发明人等实验和模拟,在第二控制状态下,在上级侧臂发生开路故障的情况下,开路故障的检测本身很困难,但是在下级侧臂发生开路故障的情况下,能够检测开路故障,且可以判别是哪一个逆变器的故障。在第一控制状态下,无论在上级侧臂和下级侧臂中的哪一个发生开路故障,都能够检测开路故障。但是,在第一控制状态下,可以判别故障模式是第一故障模式还是第二故障模式,但不能判别是哪一个逆变器。根据本结构,在下级侧臂发生开路故障的情况下,至少能够根据第二控制状态下的判别结果来判别故障侧臂。另外,无论是在上级侧臂发生开路故障的情况下,还是在下级侧臂发生开路故障的情况下,只要根据第一控制状态下的判别结果和第二控制状态下的判别结果,就能够判别故障侧臂。这样,根据本结构,能够在构成开路绕组的两端所分别具有的两个逆变器的开关元件中的一个发生了开路故障的情况下确定故障部位。
另外,作为一个方式,一种旋转电机控制装置,经由第一逆变器和第二逆变器对具有相互独立的多相开路绕组的旋转电机进行驱动控制,其中,所述第一逆变器与所述多相开路绕组的一端侧连接,在直流与多相交流之间转换电力,所述第二逆变器与所述多相开路绕组的另一端侧连接,在直流与多相交流之间转换电力,在所述第一逆变器和所述第二逆变器中,交流一相的臂分别由上级侧开关元件和下级侧开关元件的串联电路构成,能够对所述第一逆变器和所述第二逆变器相互独立地进行控制,在所述第一逆变器和所述第二逆变器中的某一个逆变器中发生了一个开关元件始终成为开路状态的开路故障的情况下,对多相的交流电流分别进行累计并运算各相的电流累计值,基于各个所述电流累计值的正负来检测所述开路故障的发生,并判别发生了所述开路故障的部位,在检测到所述开路故障的发生的情况下,基于各个所述电流累计值的正负来判别是第一故障模式和第二故障模式中的哪一个故障模式,所述第一故障模式为在所述第一逆变器的上级侧臂和所述第二逆变器的下级侧臂中的某一个发生了所述开路故障,所述第二故障模式为在所述第一逆变器的所述下级侧臂和所述第二逆变器的所述上级侧臂中的某一个发生了所述开路故障,之后,将所述第一逆变器和所述第二逆变器中的某一个所述逆变器假设为发生了所述开路故障的故障逆变器并作为假设故障逆变器,基于判别出的所述故障模式,将在该假设故障逆变器的所述上级侧臂和所述下级侧臂中的被假设为发生所述开路故障的故障侧臂的假设故障侧臂的所述开关元件的全部设为接通状态,将另一侧的非假设故障侧臂的所述开关元件的全部设为接通状态,来进行主动短路控制,并且对与所述假设故障逆变器不同的所述逆变器进行开关控制,之后,基于各个所述电流累计值的正负,在未检测到所述开路故障的情况下,判别为所述假设故障逆变器是所述故障逆变器,并且判别为所述假设故障侧臂是所述故障侧臂,在检测到所述开路故障的情况下,判别为与所述假设故障逆变器不同的所述逆变器是所述故障逆变器,并且基于所述故障模式来判别该故障逆变器中的所述故障侧臂。
根据该结构,在检测到发生开路故障的情况下,假设故障侧臂并作为假设故障侧臂,以即使该假设故障侧臂发生开路故障也能够进行的方式对逆变器进行开关控制。在该状态下,如果没有再次检测出是开路故障,则判断为假设正确,如果再次检测出是开路故障,则判断为假设错误。因此,根据本结构,能够确定故障侧臂。
另外,鉴于上述情况,作为一个方式,一种旋转电机控制装置,经由第一逆变器和第二逆变器对具有相互独立的多相开路绕组的旋转电机进行驱动控制,其中,所述第一逆变器与所述多相开路绕组的一端侧连接,在直流与多相交流之间转换电力,所述第二逆变器与所述多相开路绕组的另一端侧连接,在直流与多相交流之间转换电力,在所述第一逆变器和所述第二逆变器中,交流一相的臂分别由上级侧开关元件和下级侧开关元件的串联电路构成,能够对所述第一逆变器和所述第二逆变器相互独立地进行控制,在所述第一逆变器和所述第二逆变器中的某一个逆变器中发生了一个开关元件短路的短路故障的情况下,将发生了所述短路故障的所述逆变器设为故障逆变器,对多相的交流电流分别进行累计并运算各相的电流累计值,并基于各个所述电流累计值的正负来判别所述故障逆变器的上级侧臂和下级侧臂中的哪一个发生所述短路故障。
根据发明人的实验和模拟,确认了在两个逆变器中的某一个发生了开关元件的短路故障的情况下,三相电流波形成为非对称且失真的波形。例如,某相的交流电流的波形向正侧大幅偏转,另外,某相的交流电流的波形向负侧大幅偏转。而且,如果在规定时间内累计交流电流,则该偏转的倾向更显著地显现。偏转的方向根据发生了短路故障的开关元件的位置而不同。因此,如果基于电流累计值的正负,则能够判别在故障逆变器的上级侧臂和下级侧臂中的哪一个中发生短路故障。能够通过确定故障部位,以不受该故障部位的影响的方式,控制两个逆变器,从而能够继续旋转电机的驱动。这样,根据本结构,能够在构成开路绕组的两端所分别具有的两个逆变器的开关元件中的一个发生了短路故障的情况下确定故障部位。
通过参照附图说明的实施方式的以下的记载,使得旋转电机控制装置的其他特征和优点变得明确。
附图说明
图1是旋转电机驱动系统的示意性的框图。
图2是旋转电机控制装置的简单的部分框图。
图3是直行矢量空间中的旋转电机的示意性的电压矢量图
图4是示出旋转电机的控制区域的一例的图。
图5是示出混合连续脉冲宽度调制(半周期连续脉冲)的电压指令和开关控制信号的一例的波形图。
图6是示出混合不连续脉冲宽度调制(半周期不连续脉冲)的电压指令和开关控制信号的示例的波形图。
图7是示出混合连续脉冲宽度调制(半周期连续脉冲)的电压指令和开关控制信号的其他示例的波形图。
图8是示出混合不连续脉冲宽度调制(半周期不连续脉冲)的电压指令和开关控制信号的其他示例的波形图。
图9是示出连续脉冲宽度调制的电压指令和开关控制信号的一例的波形图。
图10是示出不连续脉冲宽度调制的电压指令和开关控制信号的一例的波形图。
图11是示出在动力运行时(低速)发生了开路故障的情况的三相交流波形的一例的波形图。
图12是示出在动力运行时(高速)发生了开路故障的情况的三相交流波形的一例的波形图。
图13是示出在再生时(低速)发生了开路故障的情况的三相交流波形的一例的波形图。
图14是示出在再生时(高速)发生了开路故障的情况的三相交流波形的一例的波形图。
图15是判别开路故障部位的原理的说明图。
图16是示出在超低转速的动力运行时第一逆变器发生了开路故障的情况的三相交流波形的一例的波形图。
图17是示出在超低转速的动力运行时第二逆变器发生了开路故障的情况的三相交流波形的一例的波形图。
图18是示出在超低转速的动力运行时发生了开路故障的情况和在比超低转速快的转速的动力运行时发生了开路故障的情况的三相交流的行为的不同的图。
图19是示出旋转电机的控制区域中的动作点的图。
图20是示出判别故障部位时的旋转电机的扭矩指令与转速之间的关系的图。
图21是示出在下级侧发生开路故障的状态下用于消除再生时的三相电流波形的失真的再生失效动作的一例(脉冲的调换)的图。
图22是示出在下级侧发生开路故障的状态下用于消除再生时的三相电流波形的失真的再生失效动作的其他示例(脉冲的调换和交流电流的方向的定义的反转)的图。
图23是示出利用图21和图22的开关控制信号消除失真的三相电流波形的图
图24是示出判别开路故障的发生部位的概略步骤的一例的流程图。
图25是示出能够判别故障部位的三相交流波形和累计电流的一例的图。
图26是示出能够判别故障部位的三相交流波形和累计电流的一例的图。
图27是示出难以判别故障部位的三相交流波形和累计电流的一例的图。
图28是示出交流电流的失真消除前的累计电流和失真消除后的累计电流的一例的图。
图29是示出交流电流的失真消除前的累计电流和失真消除后的累计电流的一例的图。
图30是示出超低转速的动力运行时发生了开路故障的情况的、难以判别故障部位的累计电流的一例的图。
图31是示出超低转速的动力运行时发生了开路故障的情况的、能够判别故障部位的累计电流的一例的图。
图32是示出判别开路故障的发生部位的步骤的一例的流程图。
图33是示出第一故障部位判别处理的步骤的一例的流程图。
图34是示出第二故障部位判别处理的步骤的一例的流程图。
图35是示出第三故障部位判别处理的步骤的一例的流程图。
图36是示出噪声降低优先模式下的动力运行时(低速)发生了开路故障的情况的三相交流波形的一例的波形图。
图37是示出噪声降低优先模式下的动力运行时(高速)发生了开路故障的情况的三相交流波形的一例的波形图。
图38是示出噪声降低优先模式下的再生时(低速)发生了开路故障的情况的三相交流波形的一例的波形图。
图39是示出噪声降低优先模式下的再生时(高速)发生了开路故障的情况的三相交流波形的一例的波形图。
图40是示出判别噪声降低优先模式下的开路故障的发生部位的步骤的一例的流程图。
图41是示出判别噪声降低优先模式下的开路故障的发生部位的步骤的其他示例的流程图。
图42是示出在噪声降低优先模式下,在动力运行时发生了开路故障的情况和在再生时发生了开路故障的情况的三相交流波形的行为的图。
图43是示出旋转电机的控制区域的一例的图。
图44是示出从检测出短路故障起到通过失效保护控制驱动旋转电机为止的动作点的一例的图。
图45是示出检测出短路故障并在执行关机控制过程中的电流的流动的一例的图。
图46是示出在1逆变器系统中检测出短路故障并在执行关机控制过程中的电流的流动的一例的图。
图47是示出短路故障发生后的扭矩指令和转速的转变、以及三相电流波形的一例的图。
图48是示出短路故障发生后的扭矩指令的转变的其他示例的图。
图49是示出确定短路故障发生的位置的步骤的一例的流程图。
图50是示出电流累计波形的一例的图。
图51是示出电流累计波形的一例的图。
图52是示出电流累计波形的一例的图。
图53是示出电流累计波形的一例的图。
图54是示出1逆变器系统的旋转电机的控制区域的一例的图。
图55是1逆变器系统中的短路故障发生后的扭矩指令和转速。
具体实施方式
以下,基于附图说明经由两个逆变器对具有相互独立的多相开路绕组的旋转电机进行驱动控制的旋转电机控制装置的实施方式。图1是包括旋转电机控制装置1(MG-CTRL)的旋转电机驱动系统的示意性的框图。旋转电机80例如是在电动汽车、混合动力汽车等车辆中成为车轮的驱动力源的构件。旋转电机80是具有相互独立的多相(在本实施方式中为三相)的定子线圈8(开路绕组)的开路绕组型的旋转电机。在定子线圈8的两端分别连接有一个被独立地控制而在直流和多相(这里为三相)交流之间转换电力的逆变器10。也就是说,在定子线圈8的一端侧连接有第一逆变器11(INV1),在定子线圈8的另一端侧连接有第二逆变器12(INV2)。以下,在不需要区分第一逆变器11和第二逆变器12的情况下,将它们简称为逆变器10来说明。
逆变器10构成为具有多个开关元件3。第一逆变器11构成为具有多个第一开关元件31,第二逆变器12构成为具有多个第二开关元件32。在不需要区分第一逆变器11和第二逆变器12的情况下,将它们简称为开关元件3来说明。开关元件3使用IGBT(Insulated GateBipolar Transistor:绝缘栅双极型晶体管)或功率MOSFET(Metal Oxide SemiconductorField Effect Transistor:金属-氧化层半导体场效晶体管)。在图1中,例示了使用IGBT作为开关元件3的方式。在本实施方式中,第一逆变器11和第二逆变器12是使用相同种类的开关元件3的相同电路结构的逆变器10。
两个逆变器10的各自交流一相的臂3A由上级侧开关元件3H和下级侧开关元件3L的串联电路构成。在各开关元件3中,以从负极FG向正极P的方向(从下级侧朝向上级侧的方向)为正方向,并联地具有续流二极管35。此外,在多相的臂3A中,将包含上级侧开关元件3H的一侧称为上级侧臂,将包含下级侧开关元件3L的一侧称为下级侧臂。
另外,在本实施方式中,两个逆变器10分别与独立的直流电源6连接。即,作为第一逆变器11的负极FG的第一浮动接地FG1与作为第二逆变器12的负极FG的第二浮动接地FG2相互独立。另外,在逆变器10和直流电源6之间分别具有使直流电压平滑化的直流链路电容器4(平滑电容器)。
具体而言,交流一相的臂3A由第一上级侧开关元件31H和第一下级侧开关元件31L的串联电路构成的第一逆变器11在直流侧连接有第一直流链路电容器41(第一平滑电容器),并且直流侧与第一直流电源61连接,交流侧与多相的定子线圈8的一端侧连接,在直流和多相交流之间转换电力。交流一相的臂由第二上级侧开关元件32H和第二下级侧开关元件32L的串联电路构成的第二逆变器12在直流侧连接有第二直流链路电容器42(第二平滑电容器),并且直流侧与第二直流电源62连接,交流侧与多相的定子线圈8的另一端侧连接,在直流和多相交流之间转换电力。
在本实施方式中,第一直流电源61和第二直流电源62是电压等的额定值相同的直流电源,第一直流链路电容器41和第二直流链路电容器也是容量等的额定值相同的电容器。直流电源6的额定电压为48伏~400伏左右。直流电源6例如由镍氢电池、锂离子电池等二次电池(电池)、双电层电容器等蓄电元件构成。旋转电机80既可以作为电动机也可以作为发电机发挥功能。旋转电机80经由逆变器10将来自直流电源6的电力转换为动力(动力运行)。或者,旋转电机80将从车轮等传递的旋转驱动力转换为电力,经由逆变器10对直流电源6进行充电(再生)。
如图1所示,逆变器10由旋转电机控制装置1被控制。旋转电机控制装置1能够以相互独立的控制方式分别控制第一逆变器11和第二逆变器12(控制方式的详细情况后述)。旋转电机控制装置1以微型计算机等逻辑电路为核心构件而构建。例如,旋转电机控制装置1基于由未图示的车辆控制装置等其他控制装置等提供的旋转电机80的目标扭矩(扭矩指令)来进行使用矢量控制法的电流反馈控制,并经由逆变器10控制旋转电机80。
在旋转电机80的各相的定子线圈8中流动的实际电流由电流传感器15检测,旋转电机80的转子的各时刻的磁极位置由旋转变压器等旋转传感器13检测。旋转电机控制装置1使用电流传感器15和旋转传感器13的检测结果来执行电流反馈控制。旋转电机控制装置1构成为具有用于电流反馈控制的各种功能部,各功能部通过微型计算机等硬件与软件(程序)的协作来实现。
图2的框图简单地示出旋转电机控制装置1的一部分的功能部。在矢量控制法中,将流过旋转电机80的实际电流(U相电流Iu、V相电流Iv、W相电流Iw)坐标转换为配置于旋转电机80的转子的永久磁铁所产生的磁场(磁通)的方向即d轴和与d轴正交的方向(相对于磁场的方向以电角度兀/2行进的方向)的q轴的矢量分量(d轴电流Id,q轴电流Iq),来进行反馈控制。旋转电机控制装置1基于旋转传感器13的检测结果(θ:磁极位置、电角度),通过三相两相坐标转换部55进行坐标转换。
电流反馈控制部5(FB)在dq轴正交矢量坐标系中,根据基于旋转电机80的扭矩指令的电流指令(d轴电流指令Id*、q轴电流指令Iq*)与实际电流(d轴电流Id,q轴电流Iq)之间的偏差,对旋转电机80进行反馈控制,来运算电压指令(d轴电压指令Vd*、q轴电压指令Vq*)。旋转电机80经由第一逆变器11和第二逆变器12这两个逆变器10而被驱动。因此,d轴电压指令Vd*和q轴电压指令Vq*分别在分配部53(DIV)中被分配为第一逆变器11用的第一d轴电压指令Vd1*和第一q轴电压指令Vq1*、第二逆变器12用的第二d轴电压指令Vd2*和第二q轴电压指令Vq2*。
如上所述,旋转电机控制装置1能够以相互独立的控制方式分别控制第一逆变器11和第二逆变器12,并且具有两个电压控制部7,所述电压控制部7具有三相电压指令运算部73和调制部74(MOD)的。即,旋转电机控制装置1具有:第一电压控制部71,生成第一逆变器11的U相、V相、W相各自的开关控制信号(Su1、Sv1、Sw1);以及第二电压控制部72,生成第二逆变器12的U相、V相、W相各自的开关控制信号(Su2、Sv2、Sw2)。详细情况参照图6~图7等后述,第一逆变器11的电压指令(Vu1**、Vv1**、Vw1**)与第二逆变器12的电压指令(Vu2**、Vv2**、Vw2**)的相位相差“π”。因此,向第二电压控制部72输入从旋转传感器13的检测结果(θ)中减去“π”而得到的值。
此外,如后所述,调制方式具有与旋转电机80的旋转同步的同步调制和与旋转电机80的旋转独立的异步调制。一般来说,基于同步调制的开关控制信号的生成模块(在软件的情况下为生成流程)与基于异步调制的开关控制信号的生成模块不同。上述的电压控制部7基于电压指令和与旋转电机80的旋转不同步的载波来生成开关控制信号,但在本实施方式中,为了简化说明,假设在电压控制部7中也生成基于同步调制的开关控制信号(例如在后述的矩形波控制的情况下的开关控制信号)来进行说明。
此外,如上所述,逆变器10的各个臂3A由上级侧开关元件3H和下级侧开关元件3L的串联电路构成。在图2中,虽然没有区别,但各相的开关控制信号作为上级用开关控制信号和下级用开关控制信号这两种输出。例如,对第一逆变器11的U相进行开关控制的第一U相开关控制信号Su1作为在末尾附加了“+”的第一U相上级侧开关控制信号Su1+和在末尾附加了“-”的第一U相下级侧开关控制信号Su1-这两个信号而被输出。此外,当构成各个臂3A的上级侧开关元件3H和下级侧开关元件3L同时成为接通状态时,该臂3A成为短路状态。为了防止这种情况,设置有相对于各个臂3A的上级侧开关控制信号和下级侧开关控制信号都成为非有效状态的死区时间。在电压控制部7中也附加有该死区时间。
如图1所示,构成逆变器10的各开关元件3的控制端子(IGBT或FET的情况下为栅极端子)经由驱动电路2(DRV)与旋转电机控制装置1连接,分别被单独地进行开关控制。用于驱动逆变器10等的旋转电机80的高压系统电路(与直流电源6连接的系统)与以微型计算机等为核心的旋转电机控制装置1等的低压系统电路(3.3伏~5伏左右的动作电压的系统)的动作电压(电路的电源电压)有很大不同。驱动电路2分别提高驱动信号(开关控制信号)对于各开关元件3的驱动能力(例如电压振幅、输出电流等,使后级的电路动作的能力)来进行中继。第一驱动电路21向第一逆变器11中继开关控制信号,第二驱动电路22向第二逆变器12中继开关控制信号。
此外,逆变器10具有检测逆变器10的异常,例如开关元件的温度、有无产生过电流等的电路,该信息经由驱动电路2提供给旋转电机控制装置1。这些信息也可以不确定确定的开关元件3,例如只要是能够检测出第一逆变器11中的异常、第二逆变器12中的异常的程度即可。
旋转电机控制装置1能够执行在例如电角度的一个周期中输出模式不同的多个脉冲的脉冲宽度调制(PWM:Pulse Width Modulation)控制以及在电角度的一个周期中输出一个脉冲的矩形波控制(1脉冲控制(1-Pulse))这两种控制,作为构成第一逆变器11和第二逆变器12的开关元件3的开关模式的方式(电压波形控制的方式)。即,旋转电机控制装置1能够执行脉冲宽度调制控制和矩形波控制,作为第一逆变器11和第二逆变器12的控制方式。此外,如上所述,旋转电机控制装置1能够以相互独立的控制方式分别控制第一逆变器11和第二逆变器12。
另外,脉冲宽度调制具有正弦波脉冲宽度调制(SPWM:Sinusoidal PWM)、空间矢量脉冲宽度调制(SVPWM:Space Vector PWM)等连续脉冲宽度调制(CPWM:Continuous PWM)、不连续脉冲宽度调制(DPWM:Discontinuous PWM)等方式。因此,在旋转电机控制装置1能够执行的脉冲宽度调制控制中,作为控制方式包括连续脉冲宽度调制控制和不连续脉冲宽度调制。
连续脉冲宽度调制是对多相的全部的臂3A连续地进行脉冲宽度调制的调制方式,不连续脉冲宽度调制是包含对多相的一部分的臂3A将开关元件固定为接通状态或断开状态的期间地进行脉冲宽度调制的调制方式。具体而言,在不连续脉冲宽度调制中,例如使三相的交流电中的一相所对应的逆变器的开关控制信号的信号电平依次固定,使其他两相所对应的开关控制信号的信号电平变动。在连续脉冲宽度调制中,全部的相被调制,而不上述那样地使与某一相对应的开关控制信号固定。这些调制方式根据旋转电机80所要求的转速、扭矩等动作条件、以及为了满足该动作条件所需的调制率(三相交流的线电压的有效值相对于直流电压的比例)来决定。
在脉冲宽度调制中,基于作为电压指令的交流波形的振幅与三角波(包含锯齿波)状的载波(CA)的波形的振幅的大小关系来生成脉冲(参照图7等)。也存在不通过与载波的比较而通过数字运算直接生成PWM波形的情况,但在该情况下,作为指令值的交流波形的振幅与假想的载波波形的振幅也具有相关关系。
在基于数字运算的脉冲宽度调制中,载波例如根据微型计算机的运算周期或电子电路的动作周期等旋转电机控制装置1的控制周期来确定。也就是说,即使在多相交流电被用于交流的旋转电机80的驱动的情况下,载波也具有不拘束于旋转电机80的转速、旋转角度(电角度)的周期(不同步的周期)。因此,无论是载波还是基于载波生成的各脉冲都与旋转电机80的旋转不同步。因此,正弦波脉冲宽度调制、空间矢量脉冲宽度调制等调制方式有时被称为异步调制(asynchronous modulation)。与此相对,与旋转电机80的旋转同步地生成脉冲的调制方式被称为同步调制(synchronous modulation)。例如,在矩形波控制(矩形波调制)中,由于在旋转电机80的电角度的一个周期内输出一个脉冲,因此,矩形波调制是同步调制。
如上所述,作为表示从直流电压向交流电压的转换率的指标,有表示多相交流电压的线电压的有效值相对于直流电压的比例的调制率。一般来说,正弦波脉冲宽度调制的最大调制率约为0.61(≈0.612),空间矢量脉冲宽度调制控制的最大调制率约为0.71(≈0.707)。具有超过约0.71的调制率的调制方式,作为调制率比通常高的调制方式,被称为“过调制脉冲宽度调制”。“过调制脉冲宽度调制”的最大调制率约为0.78。该0.78是从直流向交流的电力转换中的物理上(数学上)的极限值。在过调制脉冲宽度调制中,当调制率达到0.78时,成为在电角度的一个周期中输出一个脉冲的矩形波调制(1脉冲调制)。在矩形波调制中,调制率将被固定在物理上的极限值即约0.78。此外,这里例示的调制率的值是不考虑死区时间的物理上(数学上)的值。
调制率小于0.78的过调制脉冲宽度调制也能够使用同步调制方式、异步调制方式中的任一个的原理来实现。过调制脉冲宽度调制的代表性的调制方式是不连续脉冲宽度调制。不连续脉冲宽度调制也能够使用同步调制方式、异步调制方式中的任一个的原理来实现。例如,在使用同步调制方式的情况下,在矩形波调制中,在电角度的一个周期中输出一个脉冲,但在不连续脉冲宽度调制中,在电角度的一个周期中输出多个脉冲。当在电角度的一个周期中存在多个脉冲时,由于脉冲的有效期间相应地减少,所以调制率降低。因此,不限于固定在约0.78的调制率,可以通过同步调制方式实现小于0.78的任意的调制率。例如,在电角度的一个周期中,也可以进行输出9脉冲的9脉冲调制(9-Pulses)、输出5脉冲的5脉冲调制(5-Pulses)等多脉冲调制(Multi-Pulses)。
另外,旋转电机控制装置1能够执行关机控制(SDN)、主动短路控制(ASC),作为逆变器10、旋转电机80被检测出异常的情况下的失效保护控制。关机控制是将向构成逆变器10的全部的开关元件3的开关控制信号变为非激活状态而使逆变器10变为断开状态的控制。主动短路控制是将多相的全部的臂3A的上级侧开关元件3H或者多相的全部的臂3A的下级侧开关元件3L中的任一侧设为接通状态,将另一侧设为断开状态的控制。此外,将使多相的全部的臂3A的上级侧开关元件3H设为接通状态,将多相的全部的臂3A的下级侧开关元件3L设为断开状态的情况称作上级侧主动短路控制(ASC-H)。另外,将使多相的全部的臂3A的下级侧开关元件3L设为接通状态,多相的全部的臂3A的上级侧开关元件3H设为断开状态的情况称为下级侧主动短路控制(ASC-L)。
如本实施方式所示,在定子线圈8的两端分别连接有逆变器10的情况下,若通过主动短路控制使其中一个逆变器10短路,则多相的定子线圈8在该其中一个逆变器10中被短路。也就是说,该其中一个逆变器10成为中性点,定子线圈8被Y型接线。因此,旋转电机控制装置1能够实现经由两个逆变器10控制开路绕组型的旋转电机80的方式和经由一个逆变器10(未被主动短路控制的一侧的逆变器10)控制Y型接线的旋转电机80的方式。
图3例示了旋转电机80的dq轴矢量坐标系中的一个动作点的矢量图。在图中,“V1”表示示出基于第一逆变器11的电压的第一电压矢量,“V2”表示示出基于第二逆变器12的电压的第二电压矢量。经由两个逆变器10在作为开路绕组的定子线圈8中呈现的电压相当于第一电压矢量V1与第二电压矢量V2之差“V1-V2”。图中的“Va”表示在定子线圈8中呈现的合成电压矢量。另外,“Ia”表示流过旋转电机80的定子线圈8的电流。如图3所示,当以使第一电压矢量V1和第二电压矢量V2的矢量的方向相差180度的方式控制第一逆变器11和第二逆变器12时,合成电压矢量Va成为在第一电压矢量V1的方向上加上第二电压矢量V2的大小而得到的矢量。
以下,对于构成开路绕组(定子线圈8)的两端所分别具有的两个逆变器10的开关元件3中的一个发生了故障时确定故障部位的技术,以该故障分为开路故障的情况和短路故障的情况进行说明。首先,对构成开路绕组(定子线圈8)两端所分别具有的两个逆变器10的开关元件3中的一个发生了开路故障时确定故障部位的技术进行说明。
在本实施方式中,设定与旋转电机80的动作条件对应的多个控制区域R(参照图4),旋转电机控制装置1以与各个控制区域R对应的控制方式控制逆变器10。图4表示旋转电机80的转速与扭矩之间的关系的一例。例如,如图4所示,作为旋转电机80的控制区域R,设定有第一速度区域VR1、相同扭矩下的旋转电机80的转速比第一速度区域VR1高的第二速度区域VR2、以及相同扭矩下的旋转电机80的转速比第二速度区域VR2高的第三速度区域VR3。
如上所述,旋转电机控制装置1能够通过开关模式不同的多个控制方式分别控制第一逆变器11和第二逆变器12。控制方式包括在电角度的一个周期中输出模式不同的多个脉冲的脉冲宽度调制控制(PWM)和在电角度(全周期)的1/2周期(半周期)即第一期间H1(参照图5等)中输出模式不同的多个脉冲,并且在剩余的1/2周期(半周期)即第二期间H2(参照图5等)中以持续非有效状态(参照图5~图8后述)的方式进行控制的混合脉冲宽度调制控制(MX-PWM)。旋转电机控制装置1在第一速度区域VR1和第二速度区域VR2中,通过混合脉冲宽度调制控制对第一逆变器11和第二逆变器12两个逆变器进行控制。
混合脉冲宽度调制控制(MX-PWM)包括混合连续脉冲宽度调制控制(MX-CPWM)和混合不连续脉冲宽度调制控制(MX-DPWM)。详细情况后述,在混合连续脉冲宽度调制控制中,进行以在第二期间H2持续非有效状态的方式进行控制,并且在第一期间H1对于多相的全部的臂3A连续地进行脉冲宽度调制(参照图5、图7而在后描述)。同样地详细情况后述,在混合不连续脉冲宽度调制控制中,在第二期间H2以持续非有效状态的方式进行控制,并且在第一期间H1对于多相的一部分的臂3A,包含将开关元件3固定为接通状态或断开状态的期间地进行脉冲宽度调制(参照图6、图8而在后描述)。
在混合脉冲宽度调制控制中,在第二期间H2开关控制信号也变为非有效状态,因此,逆变器10的损耗降低,另外,因开关动作引起的高次谐波电流也减少,旋从而转电机80的损耗(铁损)也降低。也就是说,通过执行混合脉冲宽度调制控制,能够降低系统损耗。
例如,如下述表1所示,旋转电机控制装置1在第一速度区域VR1中利用后述的混合连续脉冲宽度调制控制(MX-CPWM)控制第一逆变器11和第二逆变器12这两个逆变器10。另外,旋转电机控制装置1在第二速度区域VR2中利用后述的混合不连续脉冲宽度调制控制(MX-DPWM)控制第一逆变器11和第二逆变器12这两个逆变器10。另外,旋转电机控制装置1在第三速度区域VR3中利用矩形波控制第一逆变器11和第二逆变器12这两个逆变器10。表中的Mi_sys、Mi_inv1、Mi_inv2将在后面描述。
[表1]
R Mi_sys INV1 Mi_inv1 INV2 Mi_inv2
VR1 M<a MX-CPWM M<a MX-CPWM M<a
VR2 a≤M<0.78 MX-DPWM a≤M<0.78 MX-DPWM a≤M<0.78
VR3 M=0.78 1-Pulse M=0.78 1-Pulse M=0.78
优选地,各个控制区域R的边界(第一速度区域VR1、第二速度区域VR2和第三速度区域VR3的边界)根据与旋转电机80的扭矩对应的旋转电机80的转速和多相交流电压的线电压的有效值(既可以是指令值,也可以是根据输出电压的换算值)相对于直流电压的比例中的至少一者来设定。
如图4所例示,旋转电机80的动作条件通常由转速和扭矩之间的关系来定义。控制区域R最好基于作为一个参数的转速来设定。在此,虽然也可以不管扭矩如何将规定控制区域R的边界的转速设定为恒定,但更优选设定为规定控制区域R的边界的转速根据扭矩而成为不同的值。由此,能够根据旋转电机80的动作条件以高效率对旋转电机80进行驱动控制。
另外,例如,在对旋转电机80要求高输出(高转速或高扭矩)的情况下,在电压型的逆变器中,通过提高直流电压或提高直流电压转换为交流电压的比例来实现该要求。在直流电压恒定的情况下,可以通过提高直流电压转换为交流电压的比例来实现该要求。该比例可以表示为三相交流电力的有效值相对于直流电力的比例(在电压型的逆变器的情况下,与三相交流电压的有效值相对于直流电压的比例等价)。如上所述,在控制逆变器10的控制方式中,存在该比例从低到高的各种方式。
如表1所示,在基于根据对旋转电机80的要求而确定的三相交流电力的有效值相对于直流电力的比例(调制率)来设定控制区域R时,能够根据旋转电机80的动作条件以高效率对旋转电机80进行驱动控制。此外,在表中,“Vi_inv1”表示第一逆变器11的调制率,“Mi_inv2”表示第二逆变器12的调制率,“Mi_sys”表示系统整体的调制率。
在上述表1中,例示了与各个控制区域R对应的调制率。在本实施方式中,第一直流电源61的端子间电压“E1”和第二直流电源62的端子间电压“E2”相同(均为电压“E”)。如果将第一逆变器11的交流侧的有效值设为“Va_inv1”,将第二逆变器12的交流侧的有效值设为“Va_inv2”,则第一逆变器11的调制率“Mi_inv1”和第二逆变器12的调制率“Mi_inv2”如下式(1)、(2)所示。另外,系统整体的调制率“Mi_sys”如下式(3)所示。
Mi_inv1=Va_inv1/E1=Va_inv1/E...(1)
Mi_inv2=Va_inv2/E2=Va_inv2/E...(2)
Mi_sys=(Va_inv1+Va_inv2)/(E1+E2)
=(Va_inv1+Va_inv2)/2E...(3)
对于电压的瞬时值,需要考虑瞬时的矢量,但若单纯地考虑调制率,则根据式(1)~(3),系统整体的调制率“Mi_sys”为“(Mi_inv1+Mi_inv2)/2”。另外,在表1中示出了与各个控制区域R对应的调制率作为额定值。因此,在实际控制时,考虑控制方式在控制区域R中变化时的波动等,也可以包含与各个控制区域R对应的调制率重复的范围。
另外,表1所示的调制率“a”和后述的表2所示的调制率“b”基于各个调制方式中的调制率的理论上的上限值,进一步地考虑死区时间而设定。例如,“a”为0.5~0.6左右,“b”为0.25~0.3左右。
这里,参照图5~图8,对于本实施方式中的特征性的混合脉冲宽度调制控制(MX-PWM),示出U相的电压指令(Vu1**,Vu2**)以及U相上级侧开关控制信号(Su1+,Su2+)的波形例进行说明。另外,关于第二U相下级侧开关控制信号Su2-以及V相、W相,省略图示。图5及图7表示混合连续脉冲宽度调制控制(MX-CPWM)的波形例,图6及图8表示混合不连续脉冲宽度调制控制(MX-DPWM)的波形例。
在图5和图6中,示出了第一逆变器11的载波CA即第一载波CA1、第二逆变器12的载波CA即第二载波CA2、第一逆变器11和第二逆变器12共用的U相电压指令即共用U相电压指令Vu**、第一U相上级侧开关控制信号Su1+以及第二U相上级侧开关控制信号Su2+的一个例子。关于第一U相下级侧开关控制信号Su1-、第二U相下级侧开关控制信号Su2-以及V相、W相,省略图示(其他控制方式也同样)。
例如,第一载波CA1在“0.5<CA1<1”之间变化,第二载波CA2在“0<CA2<0.5”之间变化,电压指令(V**)可以在“0≤V**≤1”之间变化。通过载波CA(第一载波CA1和第二载波VA2)与电压指令(V**)的比较,在电压指令为载波CA以上的情况下,开关控制信号为“1”,在电压指令小于载波CA的情况下,开关控制信号为“0”。关于载波CA和电压指令(V**)的比较逻辑,在以下的说明中也同样。
如图5和图6所示,第一载波CA1和第二载波CA2的振幅是电压指令(V**)所允许的振幅的一半。在一般的脉冲宽度调制中,载波CA的振幅与电压指令所允许的振幅相等,混合脉冲宽度调制中的载波CA可以称为半载波。通过使用这样的半载波,在电角度(全周期)的1/2周期即第一期间H1(半周期)中,由于这样的半载波与电压指令(V**)交叉,因此,输出模式不同的多个脉冲作为开关控制信号。在剩余的1/2周期即第二期间H2(半周期)中,由于半载波与电压指令(V**)不交叉,因此,开关控制信号以持续非有效状态的方式被输出。
另外,在混合不连续脉冲宽度调制控制中,如图6所示,在第二期间H2中,也将部分地成为有效状态的脉冲作为开关控制信号而输出。这是由于作为基础的不连续脉冲宽度调制的调制率比连续脉冲宽度调制大。在第二期间H2变为有效状态的脉冲在电压指令(V**)的振幅中心附近,在电压指令(V**)的拐点附近被输出。如图6所示,即使在混合不连续脉冲宽度调制控制中,也可以说在第二期间H2持续非有效状态地输出。另外,在将第二期间H2仅设为开关控制信号为非有效状态的期间(小于1/2周期的期间),并在一个周期中设定为第二期间H2以外的期间(1/2周期以上的期间)时,也可以通过如下方式定义混合脉冲宽度调制。混合脉冲宽度调制控制也可以以在电角度的1/2周期以上即第一期间H1输出模式不同的多个脉冲,在电角度的1周期的剩余期间即第二期间H2中持续非有效状态的方式进行控制。
图7和图8示出了混合连续脉冲宽度调制控制和混合不连续脉冲宽度调制控制的不同于图5和图6的方式。所生成的开关控制信号相同。在图7和图8中,示出了第一逆变器11载波CA即第一载波CA1、第二逆变器12的载波CA即第二载波CA2、第一逆变器11的U相电压指令即第一U相电压指令Vu1**、第二逆变器12的U相电压指令即第二U相电压指令Vu2**、第一U相上级侧开关控制信号Su1+和第二U相上级侧开关控制信号Su2+的一例。例如,第一载波CA1和第二载波CA2在“0.5<CA1<1”之间变化,电压指令(V**)可以在“0≤V**≤1”之间变化。第一载波CA1和第二载波CA2的相位相差180度(π)。另外,第一U相电压指令Vu1**和第二U相电压指令Vu2**的相位也相差180度(π)。
如图7和图8所示,第一载波CA1和第二载波CA2的振幅是电压指令(V**)所允许的振幅的一半。因此,图7和图8所示的方式中的载波CA也是半载波。通过使用这样的半载波,在电角度的1/2周期(或1/2周期以上)即第一期间H1中,由于这样的半载波与电压指令(V**)交叉,所以输出模式不同的多个脉冲作为开关控制信号。在周期的剩余的期间即第二期间H2中,由于半载波与电压指令(V**)不交叉,因此,开关控制信号以持续非有效状态的方式被输出。
图5和图6所例示的方式是通过两个半载波和作为一个共用的基准的电压指令(V**)进行调制的方式,可以称为双半载波单基准方式。另一方面,图7及图8所例示的方式是通过两个半载波和两个电压指令(V**)进行调制的方式,可以称为双半载波双基准方式。
如参照图5~图8所述,混合脉冲宽度调制控制基于指令值(电压指令,在上述例子中为U相电压指令(Vu**(Vu**=Vu1**=Vu2**)、Vu1*、Vu2**))的变化域的1/2的波高的载波CA即半载波(第一载波CA1、第二载波CA2)和指令值来生成多个脉冲。并且,在本实施方式中,作为混合脉冲宽度调制控制的方式,例示了双半载波单基准方式和双半载波双基准方式这两种方式。
在双半载波单基准方式中,如参照图5及图6说明那样,基于作为半载波设定在与指令值(共用U相电压指令Vu**)的振幅中心相比更靠高电压侧或低电压侧中的一方(在此为高电压侧)的第一半载波(第一载波CA1)和第一逆变器11和第二逆变器12共用的指令值(共用U相电压指令Vu**)来生成第一逆变器11用的脉冲。另外,在该方式中,基于与第一半载波(第一载波CA1)相位相同且设定在与指令值(共用U相电压指令Vu**)的振幅中心相比更靠高电压侧或低电压侧中的另一方(在此为低电压侧)的第二半载波(第二载波CA2)和指令值(共用U相电压指令Vu**)来生成第二逆变器12用的脉冲。
在双半载波双基准方式中,如参照图7及图8说明那样,基于作为半载波设定在与指令值(第一U相电压指令Vu1**、第二U相电压指令Vu2**)振幅中心相比更靠高电压侧或低电压侧中的一方(在此为高电压侧)的第一半载波(第一载波CA1)和第一逆变器11用的第一指令值(第一U相电压指令Vu1**)来生成第一逆变器11用的脉冲。另外,在该方式中,基于相位与第一半载波(第一载波CA1)相差180度且设定在与第一半载波(第一载波CA1)相同侧(高电压侧)的第二半载波(第二载波CA2)以及相位与第一指令值(第一U相电压指令Vu1**)的相差180度的第二逆变器12用的第二指令值(第二U相电压指令Vu2**)来生成第二逆变器12用的脉冲。
此外,如参照表2后述那样,在第一速度区域VR1和第二速度区域VR2中,有时不是通过混合脉冲宽度调制,而是通过脉冲宽度调制来控制逆变器10。图9示出了在第一速度区域VR1中第一逆变器11和第二逆变器12都通过连续脉冲宽度调制控制进行控制的情况下的第一U相电压指令Vu1**、第二U相电压指令Vu2**、载波CA、第一U相上级侧开关控制信号Su1+、第二U相上级侧开关控制信号Su2+的一例。另外,图10示出了在第二速度区域VR2中第一逆变器11和第二逆变器12都通过不连续脉冲宽度调制控制进行控制的情况下的第一U相电压指令Vu1**、第二U相电压指令Vu2**、载波CA、第一U相上级侧开关控制信号Su1+、第二U相上级侧开关控制信号Su2+的一例。
在第一逆变器11和第二逆变器12都被进行开关控制的情况下,第一U相电压指令Vu1**和第二U相电压指令Vu2**是大致相差180度的相位。例如,U相电压的最大振幅为“(4/3)E”,线电压的最大振幅为“2E”(也参照图3的矢量图)。另外,第一直流电源61和第二直流电源62独立,并且第一直流电源61的第一直流电压E1和第二直流电源62的第二直流电压E2也可以是不同的值。例如,准确地说,U相电压的最大振幅为“(2/3)E1)+(2/3)E2”,但为了便于理解,在本说明书中设为“E1=E2=E”。从两个逆变器10向旋转电机80供给同等的电力。此时,对两个逆变器10提供相位相差180度(π)的相同的电压指令(V**)。
但是,在对逆变器10进行开关控制的情况下,存在与交流电流的基波重叠的脉动分量产生可听频带的噪声的情况。在两个逆变器10分别由不同形式的脉冲控制的情况下,产生与各个脉冲对应的脉动,从而可听频带的噪声可能增加。特别是在旋转电机80的转速为低速的情况下,脉动分量的频率(或其边带频率)包含在可听频带中的可能性变高。旋转电机80的控制方式即逆变器10的控制方式优选根据动作条件适当地设定,以能够兼顾高系统效率下的动作和可听噪声的降低。
本实施方式的旋转电机控制装置1具有作为旋转电机80的控制模式的损耗降低优先模式(效率优先模式)和噪声降低优先模式,并且能够对损耗降低优先模式和噪声降低优先模式进行切换。在损耗降低优先模式中,参照表1如上所述,旋转电机控制装置1使用混合脉冲宽度调制控制对逆变器10进行开关控制。在噪声降低优先模式中,如下表2所示,旋转电机控制装置1使用脉冲宽度调制控制对逆变器10进行开关控制。
[表2]
Figure BDA0003968972790000211
Figure BDA0003968972790000221
在对逆变器10进行开关控制的情况下,存在与交流电流的基波重叠的脉动分量产生可听频带的噪声的情况。特别是在旋转电机80的转速为低速的情况下,脉动分量的频率(或其边带频率)包含在可听频带中的可能性变高。在混合脉冲宽度调制中,如图5~图8所示,在电角度的半周期中,由于两个逆变器10分别以不同的脉冲的形式进行控制,因此产生与各个脉冲对应的脉动,从而可听频带的噪声有可能增加。在旋转电机80的转速相对较低的第一速度区域VR1和第二速度区域VR2中,伴随车辆的行驶的声音(轮胎与路面的接地声音等行驶声音)也较小,因此,在从被驱动的一个逆变器10输出的噪声为可听频带的噪声的情况下,噪声有可能容易让利用者听到。
例如,在车辆起步时或向停止减速时,考虑到可听频带的噪声容易被利用者听到,优选选择噪声降低优先模式,在车辆稳定行驶的稳定运行时,优选选择损耗降低优先模式。另外,这些模式也可以通过利用者的操作(设定开关(也包括来自触摸面板等的输入)来选择。
在噪声降低优先模式中,在旋转电机80的转速相对较低的第一速度区域VR1和第二速度区域VR2中,第一逆变器11和第二逆变器12不是通过混合脉冲宽度调制控制,而是通过脉冲宽度调制控制进行控制。在定子线圈8中流过电流的两个逆变器10,由于电流的相位大致相差180度,所以包含脉动分量的电流的相位相差大致180度。因此,能够使脉动分量的至少一部分相互抵消,能够降低可听频带的噪声。
但是,构成逆变器10的开关元件3存在发生开关元件3始终成为接通状态的短路故障、开关元件3始终成为断开状态的开路故障。例如,在具有通常的Y字接线型的定子线圈的旋转电机由一个逆变器驱动的情况下,如果发生短路故障或开路故障,则执行将逆变器的全部的开关元件设为断开状态的关机控制、将多相的全部的臂的上级侧开关元件设为接通状态或将多相的全部的臂的下级侧开关元件设为接通状态的主动短路控制,使车辆停止。
但是,如本实施方式那样,在经由第一逆变器11和第二逆变器12对具有作为定子线圈8的相互独立的多相开路绕组的旋转电机80进行驱动控制的情况下,可以经由第一逆变器11和第二逆变器12中的一个逆变器10对旋转电机80进行驱动控制。如上所述,若通过主动短路控制使其中一个逆变器10短路,则多相的定子线圈8在该其中一个的逆变器10中被短路,该其中一个的逆变器10成为中性点,定子线圈8被Y型接线。因此,旋转电机控制装置1能够实现经由一个逆变器10(未被主动短路控制的一侧的逆变器10)控制Y型接线的旋转电机80的方式。
在旋转电机由一个逆变器驱动的情况下,如果发生短路故障或开路故障,则需要使以旋转电机为驱动力源的车辆停止。但是,如本实施方式那样,在旋转电机80由两个逆变器10驱动的情况下,即使发生短路故障或开路故障,也能够在一定的限制范围内使车辆的行驶继续,而不会使以旋转电机80为驱动力源的车辆停止。例如,可以行驶到自家或维修工厂等当前的目的地。
例如,在其中一个逆变器10中发生了短路故障的情况下,在上级侧臂和下级侧臂中,将包含发生了短路故障的开关元件3的一侧的臂的全部的开关元件3设为接通状态并且将其中另一侧的臂的全部的开关元件3设为断开状态来执行主动短路控制即可。通过将包含发生了短路故障的开关元件3的一侧的臂的全部的开关元件3设为接通状态,能够将发生了短路故障的开关元件3用作未发生故障的开关元件3。
另外,在其中一个逆变器10中发生了开路故障的情况下,在上级侧臂和下级侧臂中,将不包含发生了开路故障的开关元件3的一侧的臂的全部的开关元件3设为接通状态并且将包含发生了开路故障的开关元件3的一侧的臂的全部的开关元件3设为断开状态来执行主动短路控制即可。通过将包含发生了开路故障的开关元件3的一侧的臂的全部的开关元件3设为断开状态,能够将发生了开路故障的开关元件3用作未发生故障的开关元件3。
因此,至少需要确定发生了故障的开关元件3属于第一逆变器11和第二逆变器12中的哪一个,属于上级侧臂和下级侧臂中的哪一个。更优选地,能够确定发生了故障的开关元件3是多相中的哪一相即可。
以下,说明在构成第一逆变器11和第二逆变器12的开关元件3中的某一个发生了开路故障的情况下(发生了一相开路故障的情况下),通过失效保护控制对旋转电机80进行驱动,以确定发生了开路故障的开关元件3并在确定后能够继续车辆的行驶的方式。
图11~图14(以及后述的图36~图39)是示出发生了开路故障的情况下的三相交流波形(U相电流Iu、V相电流Iv、W相电流Iw)的一例的波形图。图11和图12(以及图36和图37)示出在动力运行时发生了开路故障的三相交流波形,图13和图14(以及图38和图39)示出在再生时发生了开路故障的情况下的三相交流波形。图11~图14(以及后述的图36~图39)共同地示出U相的开关元件3发生了开路故障的情况下的波形。另外,图11~图14(及后述图36~图39)共同地矩阵状地示出第一逆变器11的上级侧(HIGHSIDE)的开关元件3发生了开路故障的情况的波形、第一逆变器11的下级侧(LOWSIDE)的开关元件3发生了开路故障的情况的波形、第二逆变器12的上级侧(HIGHSIDE)的开关元件3发生了开路故障的情况的波形、第二逆变器12的下级侧(LOWSIDE)的开关元件3发生了开路故障的情况的波形。另外,相对于图11的图12(以及相对于图36的图37)示出在相同扭矩下旋转电机80的转速较高的情况,相对于图13的图14(以及相对于图38的图39)示出在相同扭矩下旋转电机80的转速较高的情况。
如图11和图12所示,若在动力运行时发生开路故障,则无论是第一逆变器11和第二逆变器12的上级侧,还是下级侧,三相交流波形都成为非对称且失真的波形。另外,三相交流波形在第一逆变器11的上级侧发生了开路故障的情况和在第二逆变器12的下级侧发生了开路故障的情况下为相同的波形,在第一逆变器11的下级侧发生了开路故障的情况和在第二逆变器12的上级侧发生了开路故障的情况下为相同的波形。
另一方面,如图13和图14所示,在再生时,在第一逆变器11和第二逆变器12的下级侧发生了开路故障的情况下,三相交流波形成为非对称且失真的波形,但在第一逆变器11和第二逆变器12的上端侧发生了开路故障的情况下,三相交流波形是大致对称且几乎未发生失真的波形。
即,如图15所示,在动力运行时(参照图16~图18后述的超低速时的动力运行除外),无论在何处发生开路故障,三相交流波形都表示异常,其异常的方式可以大致分为图15所示的第一故障模式FP1和第二故障模式FP2这两种故障模式FP。在再生时,仅在第一逆变器11和第二逆变器12的下级侧发生了开路故障的情况下,三相交流波形示出异常。其异常的方式可以大致分为图15所示的第一下级侧故障模式LF1和第二下级侧故障模式LF2这两种下级侧故障模式LF。
第一故障模式FP1是第一逆变器11的上级侧臂和第二逆变器12的下级侧臂中的任一个为发生了开路故障的故障侧臂时的故障模式FP。第二故障模式FP2是第一逆变器11的下级侧臂和第二逆变器12的上级侧臂中的任一个为故障侧臂时的故障模式FP。第一下级侧故障模式LF1是第二逆变器的下级侧臂为故障侧臂时的下级侧故障模式LF。第二下级侧故障模式LF2是第一逆变器的下级侧臂为故障侧臂时的下级侧故障模式LF。
如图15所示,故障模式FP和下级侧故障模式LF的形状为一部分重复而不同。因此,如果对照动力运行时的三相交流波形的状态和再生时的三相交流波形的状态,则能够在检测到开路故障的情况下判别在哪个逆变器10的上级侧和下级侧发生了开路故障(故障侧臂是哪里)。
具体而言,在动力运行时检测出第一故障模式FP1且在再生时三相交流波形未检测出异常的情况下,能够判别为在第一逆变器11的上级侧(inv1-HIGHSIDE)发生了开路故障。在动力运行时检测出第一故障模式FP1且在再生时检测出第一下级侧故障模式LF1的情况下,能够判别为在第二逆变器12的下级侧(inv2-LOWSIDE)发生了开路故障。另外,在动力运行时检测到第二故障模式FP2且在再生时三相交流波形未检测到异常的情况下,能够判别为在第二逆变器12的上级侧(inv2-HIGHSIDE)发生了开路故障。在动力运行时检测到第二故障模式FP2且在再生时检测到第二下级侧故障模式LF2的情况下,能够判别为在第一逆变器11的下级侧(inv1-LOWSIDE)发生了开路故障。
图16和图17示出与图11及图13相比旋转电机80的转速低、在超低转速下发生了开路故障的情况的三相交流波形。图16和图17都示出在动力运行时发生了开路故障的情况的三相交流波形。图16示出第一逆变器11的上级侧或下级侧的U相的开关元件3发生了开路故障的情况的波形,图17示出第二逆变器12的上级侧或下级侧的U相的开关元件3发生了开路故障的情况的波形。图16和图17共同地矩阵状地示出3种不同转速(RS1、RS2、RS3)下的波形、上级侧(HIGHSIDE)的开关元件3发生了开路故障的情况的波形、下级侧(LOWSIDE)的开关元件3发生了开路故障的情况的波形。另外,转速为“RSI<RS2<RS3”,三个中转速最高的“RS3”与图11及图13相比也是旋转电机80的转速低的超低转速。
与再生时同样,如图16及图17所示,在第一逆变器11和第二逆变器12的下级侧发生了开路故障的情况下,三相交流波形成为非对称且失真的波形,但在第一逆变器11和第二逆变器12的上端侧发生了开路故障的情况下,三相交流波形是大致对称且几乎未发生失真的波形。即,如图18所示,当使转速降低到超低转速时,发生了开路故障的情况的三相交流波形的状态发生变化。由于超低转速下的三相交流波形的动作与再生的情况相同,因此如参照图15所述,如果对照超低转速的动力运行时和比其高速的动力运行时的三相交流波形的状态,则在检测到开路故障的情况下能够判别在哪一个逆变器10的上级侧和下级侧发生了开路故障。
图19示出旋转电机80的控制区域中的动作点。此外,图19中的控制区域“Rs”表示通过一个逆变器10控制旋转电机80时的单逆变器控制区域Rs,表示控制区域整体的“Rd”表示通过两个逆变器10控制旋转电机80时的双逆变器控制区域Rd。
例如,在单逆变器控制区域Rs以外的第一动作点P1在动力运行中检测到开路故障的情况下,通过使动作点移动到再生侧的第二动作点P2,如参照图15所述,能够判别发生了开路故障的部位。图20示出旋转电机80的扭矩指令与转速之间的关系,在第一动作点P1在动力运行中检测出开路故障的时刻t1,扭矩指令从动力运行扭矩变更为再生扭矩。通过再生控制,在时刻t1到时刻t2之间旋转电机80的转速降低,在时刻t2,旋转电机80的转速降低到单逆变器控制区域Rs的转速。
当确定了发生了开路故障的部位时,在单逆变器控制区域Rs中,通过对发生了故障的一侧的一个逆变器10进行主动短路控制,能够经由未发生故障的另一个逆变器10对旋转电机80进行驱动控制。第三动作点P3与原来的第一动作点P1相比转速低,但能够输出同等的扭矩,从而能够在一定的限制范围内继续车辆的行驶。
在此,虽然省略详细的说明,但在动力运行中检测到开路故障的情况下,也可以不如上述那样使动作点向再生侧移动,例如通过关机控制等使转速降低到超低转速,来确定发生了开路故障的部位。详细情况将参照图34在后面叙述。
但是,如上所述,在单逆变器控制区域Rs以外的第一动作点P1中在动力运行中检测到开路故障的情况下,使动作点移动到再生侧的第二动作点P2,在通过再生运行使旋转电机80的转速降低的情况下,当故障部位为下级侧时,三相交流波形为失真的状态。当波形失真时,出现高次谐波成分,存在使直流电源6或直流链路电容器4等被消耗、或者因电磁噪声而影响其他设备、或者产生可听噪声的情况。因此,优选抑制再生时的电流波形中的失真。
如上所述,在上级侧发生了开路故障的情况下,在再生时三相交流几乎不发生失真。因此,在本实施方式中,通过变更开关模式来消除三相交流的失真。图21和图22示出用于在发生开路故障的状态下消除再生时的三相电流波形的失真的开关控制信号。图21示出第一情况(case1)的开关控制信号,图22示出第二情况(case2)的开关控制信号。
在第一情况下,首先,对第一逆变器11的上级侧的开关控制信号与下级侧的开关控制信号进行调换,并且对第二逆变器12的上级侧的开关控制信号与下级侧的开关控制信号进行调换。进而,对第一逆变器11的开关控制信号与第二逆变器12的开关控制信号进行调换。即,在第一情况下,对第一逆变器11的上级侧臂的开关模式与第二逆变器12的下级侧臂的开关模式进行调换,并且对第一逆变器11的下级侧臂的开关模式与第二逆变器的上级侧臂的开关模式进行调换。
在第二情况下,与第一情况一样,首先,对第一逆变器11的上级侧的开关控制信号与下级侧的开关控制信号进行调换。然后,对流过定子线圈8的电流的方向进行调换。例如,在图2所示的三相两相坐标转换部55中使三相电流的正负反转即可。即,在第二情况下,对第一逆变器11的上级侧臂的开关模式与下级侧臂的开关模式进行调换,并且对第二逆变器12的上级侧臂的开关模式与下级侧臂的开关模式进行调换,进而使多相的交流电流(Iu、Iv、Iw)彼此的正负进行反转。
图23示出在上级侧发生了开路故障的状态下的再生时的三相电流波形(左)和在下级侧发生了开路故障的状态下的再生时通过第一情况(case1)的开关控制信号以和第二情况(case2)的开关控制信号消除了失真后的三相电流波形(右的上下)。如图23所示,即使在下级侧发生了开路故障,与在下级侧发生了开路故障的情况相同,三相交流波也为几乎未发生失真的波形。这样,将调整再生时的波形的控制称为再生失效动作。
图24示出判别开路故障的发生部位的概略步骤的一例。旋转电机控制装置1在检测到发生开路故障(OPEN-FAIL)时(#5),判定旋转电机80的转速是否为能够再生(ReGEN)的转速(#6)。如上所述,在本实施方式中,在确定了开路故障部位之后,通过未发生故障的一方的一个逆变器10继续旋转电机80的驱动控制。在进行再生的情况下,为了降低旋转电机80的转速,在旋转电机80的转速低的情况下,旋转电机80有可能减速至停止。
因此,旋转电机控制装置1在步骤#6中判定旋转电机80的转速是否为能够再生的转速,在能够再生的情况下,执行伴随再生的第一故障部位判别处理(#10)。另一方面,在不能再生的情况下,旋转电机控制装置1在执行使旋转电机80的转速减速至上述超低转速的减速处理(#8)之后,执行不伴随再生的第二故障部位判别处理(#20)。另外,在步骤#6的时刻,在旋转电机80的转速已经是超低转速的情况下,不需要进一步减速。在步骤#8的减速处理中,如参照图34后述那样,包括转速的判定处理(#81)。因此,步骤#8的减速处理不一定伴随减速。
当在第一故障部位判别处理(#10)或第二故障部位判别处理(#20)中判别出开路故障部位时,旋转电机控制装置1如上所述在单逆变器控制区域Rs经由未发生故障的一方的逆变器10来对旋转电机80进行驱动控制(#60:1-inv驱动)。此外,如参照图32及图35后述那样,也可以通过第三故障部位判别处理(#30)判别开路故障部位。
以下,参照图25~图31,对基于三相电流波形来判别发生了开路故障的部位进行判别的原理进行说明,参照图32~图35的流程图对判别发生了开路故障的部位的顺序进行说明。
如图11~图14、图16、图17所示,当发生开路故障时,三相交流波形发生失真,另外成为非对称的波形。例如,当在第一逆变器11的上级侧(或第二逆变器12的下级侧)发生开路故障时,如图11所示,成为U相电流Iu向负侧偏转,V相电流Iv和W相电流Iw偏转向正侧偏转的波形。在此,若在规定时间(例如200[ms])内累计三相电流(U相电流Iu、V相电流Iv、W相电流Iw),则如参照图25等后述,能够得到U相累计电流∑Iu、V相累计电流∑Iv、W相累计电流∑Iw。
U相累计电流∑Iu、V相累计电流∑Iv、W相累计电流∑Iw显著地示出三相交流波形的失真,并且通过使用它们,能够判别开路故障的部位。此外,在进行电流的累计时,如果从各个交流电流的峰值开始累计,则能够抑制累计值偏移而产生误差。
图25和图26示出能够判别开路故障部位的三相交流波形和累计电流的一例,图27示出故障部位的判别困难的三相交流波形和累计电流的一例。另外,图28和图29如上所述,示出再生时的交流电流的失真消除前的累计电流和失真消除后的累计电流。另外,图30和图31示出在超低转速的动力运行时发生了开路故障的情况的累计电流的一例。图30示出故障部位的判别困难的累计电流的一例,图31示出能够判别故障部位的累计电流的一例。
另外,图25、图27、图30示出第一逆变器11的U相的上级侧开关元件3H发生了开路故障的情况的例子,图26、图28、图31示出第一逆变器11的U相的下级侧开关元件3L发生了开路故障的情况的例子。另外,图28示出第一逆变器11的U相的下级侧开关元件3L发生了开路故障的情况的例子,图29示出第二逆变器12的U相的下级侧开关元件3L发生了开路故障的情况的例子。图25、图26、图30、图31是动力运行时的波形,图27~图29是再生时的波形。此外,图25、图26、图30、图31中的点划线表示发生了开路故障的时刻,图28和图29中的点划线表示为了消除失真而切换开关控制信号的时刻。
如图25所示,当第一逆变器11的U相的上级侧开关元件3H在开路故障的状态下通过混合脉冲宽度调制控制而进行动力运行时,三相电流波形成为非对称且失真的波形。成为U相电流Iu向负侧偏转,V相电流Iv和W相电流Iw向正侧偏转的波形。在此,旋转电机控制装置1在规定时间(例如200[ms])内累计三相电流(U相电流Iu、V相电流Iv、W相电流Iw)。对向负侧偏转的U相电流Iu进行累计而得到的U相累计电流∑Iu如图25所示,向负侧增加(值减小,波形下降)。另外,对向正侧偏转的V相电流Iv和W相电流Iw进行累计而得到的V相累计电流∑Iv和W相累计电流∑Iw向正侧增加(波形上升)。
旋转电机控制装置1在正侧和负侧设定预先规定的累计阈值,在将该累计阈值超过正侧或负侧的情况下,判定为发生了短路故障,并且能够确定短路故障的发生模式。这里,将正侧的累计阈值设为“Ith+”,将负侧的阈值设为“Ith-”。在图25所例示的方式中,在以下那样的条件成立时,判定开路故障的发生。将该条件设为第一模式。
(∑Iu<Ith-)&&(∑Iv>Ith+)&&(∑Iw>Ith+)
另外,该条件除了在第一逆变器11的U相的上级侧开关元件3H发生了开路故障的情况以外,在第二逆变器12的U相的下级侧开关元件3L发生了开路故障的情况下也成立。
如图26所示,在第一逆变器11的U相的下级侧开关元件3L在发生了开路故障的状态下通过混合脉冲宽度调制控制进行动力运行的情况下,三相电流波也形成为非对称且失真的波形。成为U相电流Iu向正侧偏转,V相电流Iv和W相电流Iw向负侧偏转的波形。对向正侧偏转的U相电流Iu进行累计而得到的U相累计电流∑Iu如图26所示向正侧增加(波形上升)。另外,对向负侧偏转的V相电流Iv和W相电流Iw进行累计而得到的V相累计电流∑Iv和W相累计电流ΣIw向负侧增加(值减小,波形下降)。在图26所例示的方式中,在以下那样的条件成立时,判定发生开路故障。
将该条件设为第二模式。
(∑Iu>Ith+)&&(∑Iv<Ith-)&&(∑Iw<Ith-)
此外,该条件除了在第一逆变器11的U相的下级侧开关元件3L发生了开路故障的情况以外,在第二逆变器12的U相的上级侧开关元件3H发生了开路故障的情况下也成立。
构成第一逆变器11和第二逆变器12的十二个开关元件3发生开路故障时成立的条件如下述表3所示,有从第一模式到第六模式这六种。在以下说明中,各个开关元件3使用三相的识别符号(U、V、W)、第一逆变器11和第二逆变器12的识别号(1、2)、上级侧开关元件3H和下级侧开关元件3L的识别符号(H,L),例如如果是第一逆变器11的U相的上级侧开关元件3H则标记为“U1H”,如果是第二逆变器12的W相的下级侧开关元件3L则标记为“W2L”。
[表3]
Figure BDA0003968972790000301
Figure BDA0003968972790000311
图27示出在第一逆变器11的U相的上级侧开关元件3H发生开路故障的状态下通过混合脉冲宽度调制控制进行再生时的累计电流。如图14等所示,三相交流波形的失真很小。U相电流Iu稍微向负侧偏转,V相电流Iv稍微向正侧偏转,但W相电流Iw几乎不偏转。因此,如图27所示,U相累计电流∑Iu呈向负侧增加(值减小,波形下降)的倾向,V相累计电流∑Iv呈向正侧增加(波形上升)的倾向,但W相累计电流∑Iw在正侧和负侧几乎没有增减。因此,即使经过时间,W相累计电流∑Iw也不满足表3所示的模式1~6中的任何条件,不满足开路故障的检测条件。因此,在上级侧开关元件3H发生了开路故障的情况下,在再生时未检测出异常(参照图15等)。
图28示出在第一逆变器11的U相的下级侧开关元件3L发生了开路故障的状态下通过混合脉冲宽度调制控制进行再生时的累计电流。如图13和图14所示,成为U相电流Iu向正侧偏转,V相电流Iv和W相电流Iw向负侧偏转的波形。对向正侧偏转的U相电流Iu进行累计而得到的U相累计电流∑Iu如图28所示向正侧增加(波形上升)。另外,对向负侧偏转的V相电流Iv和W相电流Iw进行累计而得到的V相累计电流∑Iv和W相累计电流EIw向负侧增加(值减小,波形下降)。与动力运行时的第二模式相同,下述成立,判定发生开路故障。
(∑Iu>Ith+)&&(∑Iv<Ith-)&&(∑Iw<Ith-)
之后,如参照图21和图22所述,当为了消除失真而调换开关控制信号来执行再生失效动作时,与再生时第一逆变器11的U相的上级侧开关元件3H发生开路故障的状态等价(示出为与图27相同的倾向)。因此,也消除了累计电流向正侧和负侧的增加。
图29示出第二逆变器12的U相的下级侧开关元件3L在发生了开路故障的状态下通过混合脉冲宽度调制控制进行再生时的累计电流。如图13和图14所示,成为U相电流Iu向负侧偏转,V相电流Iv和W相电流Iw向正侧偏转的波形。对向负侧偏转的U相电流Iu进行累计而得到的U相累计电流∑Iu如图29所示向负侧增加(值减小,波形下降)。另外,对向正侧偏转的V相电流Iv和W相电流Iw进行累计而得到的V相累计电流∑Iv和W相累计电流∑Iw向正侧增加(波形上升)。因此,与动力运行时的第一模式相同,下述成立,判定发生开路故障。
(∑Iu<Ith-)&&(∑Iv>Ith+)&&(∑Iw>Ith+)
之后,如参照图21及图22所述,若为了消除失真而调换开关控制信号来执行再生失效动作,则与再生时第二逆变器12的U相的上级侧开关元件3H发生开路故障的状态等价。因此,也消除了累计电流向正侧和负侧的增加。
在再生时,第一逆变器11和第二逆变器12的下级侧的六个开关元件3发生开路故障时成立的条件如下述表4所示,有从第一模式到第六模式这六种。各个模式的编号和逻辑式与表3相同。
[表4]
模式 判定条件 故障部位
1 (∑Iu<Ith-)&&(∑Iv>Ith+)&&(∑Iw>Ith+) U2L
2 (∑Iu>Ith+)&&(∑Iv<Ith-)&&(∑Iw<Ith-) U1L
3 (∑Iu>Ith+)&&(∑Iv<Ith-)&&(∑Iw>Ith+) V2L
4 (∑Iu<Ith-)&&(∑Iv>Ith+)&&(∑Iw<Ith-) V1L
5 (∑Iu>Ith+)&&(∑Iv>Ith+)&&(∑Iw<Ith-) W2L
6 (∑Iu<Ith-)&&(∑Iv<Ith-)&&(∑Iw>Ith+) W1L
若组合表3和表4,则如下述表5所示,能够确定在十二个开关元件中的哪一个中发生了开路故障。
[表5]
Figure BDA0003968972790000321
Figure BDA0003968972790000331
图30示出在第一逆变器11的U相的上级侧开关元件3H发生开路故障的状态下,通过混合脉冲宽度调制控制以超低转速进行动力运行时的累计电流。如图16和图17所示,三相交流波形几乎不发生失真。因此,如图30所示,U相累计电流∑Iu、V相累计电流∑Iv、W相累计电流∑Iw在正侧和负侧几乎没有增减。因此,即使经过时间,W相累计电流∑Iw也不满足表3或表4所示的模式1~6中的任何条件,不满足开路故障的检测条件。
图31示出在第一逆变器11的U相的下级侧开关元件3L发生开路故障的状态下,通过混合脉冲宽度调制控制以超低转速进行动力运行时的层叠电流。如图16和图17所示,三相电流波形成为非对称且失真的波形。成为U相电流Iu向正侧偏转,V相电流Iv和W相电流Iw向负侧偏转的波形。对向正侧偏转的U相电流Iu进行累计而得到的U相累计电流∑Iu如图31所示向正侧增加(波形上升)。另外,对向负侧偏转的V相电流Iv和W相电流Iw进行累计而得到的V相累计电流∑Iv和W相累计电流∑Iw向负侧增加(值减小,波形下降)。在图31所例示的方式中,在以下那样的条件成立时,判定发生开路故障。该条件与表3和表4的第二模式相同。
(∑Iu>Ith+)&&(∑Iv<Ith-)&&(∑Iw<Ith-)
在超低转速的动力运行中,第一逆变器11和第二逆变器12的下级侧的六个开关元件3发生开路故障时成立的条件如下述表6所示,有从第一模式到第六模式这六种。各个模式的编号和逻辑式与表3和表4相同,表6与表4相同。
[表6]
模式 判定条件 故障部位
1 (∑Iu<Ith-)&&(∑Iv>Ith+)&&(∑Iw>Ith+) U2L
2 (∑Iu>Ith+)&&(∑Iv<Ith-)&&(∑Iw<Ith-) U1L
3 (∑Iu>Ith+)&&(∑Iv<Ith-)&&(∑Iw>Ith+) V2L
4 (∑Iu<Ith-)&&(∑Iv>Ith+)&&(∑Iw<Ith-) V1L
5 (∑Iu>Ith+)&&(∑Iv>Ith+)&&(∑Iw<Ith-) W2L
6 (∑Iu<Ith-)&&(∑Iv<Ith-)&&(∑Iw>Ith+) W1L
若组合表3和表6,则如下述表7所示,能够确定在十二个开关元件中的哪一个中发生了开路故障。这与表5相同。
[表7]
Figure BDA0003968972790000341
以下,参照图32~图35的流程图,对判别故障侧臂的步骤进行说明。图32示出了判别故障侧臂的整个步骤的一例。图33示出了第一故障部位判别处理(#10)的步骤的一例,图34示出了第二故障部位判别处理(#20)的步骤的一例,图35示出了第三故障部位判别处理(#30)的步骤的一例。
如上所述,为了检测开路故障以及判别故障侧臂,需要求出交流电流的累计值即累计电流。因此,开始交流电流(相电流)的累计(#1)。如上所述,例如,累计200[ms]的交流电流(Iu、Iv、Iw)并计算累计电流(∑Iu、∑Iv、∑Iw)。
在接下来的步骤#2中,判定是否为过电流状态(OC)。根据发明人的实验和模拟,例如如图19所示的高输出区域Roc那样,确认了在旋转电机80的输出扭矩大、转速也高的动作区域中发生了开路故障的情况下,三相交流电流的瞬时值为非常大的值。在这样的情况下,通过逆变器10或旋转电机80所具有的未图示的过电流检测传感器或过电流检测传感器,检测为过电流状态,将检测结果传递给旋转电机控制装置1。对于过电流的对应,由于优先顺位高,所以旋转电机控制装置1限制其他控制而优先执行消除过电流状态的控制。在此,旋转电机控制装置1执行关机控制(SDN)或主动短路控制(ASC)(#3a),降低旋转电机80的转速(#3:减速处理)。旋转电机控制装置1在转速达到目标速度(例如,动作点在高输出区域Roc之外的转速)时,恢复到通常的控制(扭矩控制)(#3b、#3c)。
接着,判定旋转电机80的动作状态是动力运行(PWR)还是再生(ReGEN)(#4)。在再生的情况下,经过$1,如参照图35后述那样,执行第三故障部位判别处理(#30)。在旋转电机80正在进行动力运行的情况下,判定是否检测出开路故障(OPEN-FAIL)(#5)。在此,判定是否满足表3所示的六个模式的判定条件中的某一个,在满足某一个的情况下,检测为发生了开路故障。此外,执行步骤#5时的旋转电机80的控制状态相当于第一控制状态。另外,在此,说明在图19所示的第一动作点P1处的第一控制状态下检测到开路故障。参照图40及图41后述$3、$5。
当判定为发生了开路故障时,接着判定旋转电机80是否能够再生(ReGEN)(#6)。如上所述,在具有两个逆变器10的本实施方式中,在发生了开路故障的情况下,也继续控制旋转电机80,使车辆继续行驶。当使旋转电机80再生时,由于旋转电机80减速,所以在车辆的行驶速度低、旋转电机80的转速也低的情况下,有可能因再生而旋转电机80停止,车辆也停止。即,难以使车辆继续行驶。在步骤#6中,例如判定旋转电机80的转速是否为预先规定的第一规定转速以上。
在旋转电机80的转速在第一规定转速以上的情况下,旋转电机控制装置1设定再生扭矩(ReGEN-TR)(#7),并执行第一故障部位判别处理(#10)。通过再生扭矩的设定,旋转电机80的动作点从图19所示的第一动作点P1向第二动作点P2移动。旋转电机控制装置1在通过执行第一故障部位判别处理(#10)确定故障臂后,执行由一个逆变器10驱动旋转电机80的单逆变器驱动控制(1-inv驱动)(#61(#60))。
在步骤#6中,在旋转电机80的转速小于第一规定转速的情况下,执行第二故障部位判别处理(#20)。如参照图16~图18、图30、图31、表6、表7所述,第二故障部位判别处理(#20)是伴随超低转速下的动力运行的处理。即,第二故障部位判别处理(#20)以比第一规定转速低的第二规定转速以下的转速执行。因此,在第二故障部位判别处理(#20)之前,执行将旋转电机80的转速设定为第二规定转速(超速侧规定速度)的处理(#8)。旋转电机控制装置1在通过执行第二故障部位判别处理(#20)确定了故障臂之后,执行通过一个逆变器10驱动旋转电机80的单逆变器驱动控制(1-inv驱动)(#62(#60))。
下面,参照图33说明第一故障部位判别处理(#10)。在第一故障部位判别处理(#10)中,首先判定在再生状态(第二控制状态)中是否检测出开路故障(#11)。在此,判定是否满足表4所示的六个模式的判定条件中的某一个,在满足某一个的情况下,检测为发生了开路故障。
在步骤#11中判定为发生了开路故障的情况下,如参照图21~图23所述,为了消除再生中的交流电流(Iu、Iv、Iw)的波形的失真或偏转,执行再生失效动作(#12)。通过通常的再生或伴随再生失效动作的再生,旋转电机80的转速降低,动作点移动到单逆变器控制区域Rs中。在步骤#12之后的步骤#13a(#13)中,判定旋转电机80的动作点是否在单逆变器控制区域Rs内。如果动作点不在单逆变器控制区域Rs内,则继续基于再生的减速(#14a(#14))直到判定为动作点在单逆变器控制区域Rs内为止。
在动作点进入单逆变器控制区域Rs的情况下,判定在步骤#5中检测到开路故障时的故障模式FP是否为第一故障模式FP1(#15a(#15))。在故障模式为第一故障模式FP1的情况下,故障侧臂是第一逆变器11的上级侧臂(inv1:H)或第二逆变器12的下级侧臂(inv2-L)。在步骤#11中,由于在再生中也检测出开路故障,所以故障侧臂是第二逆变器12的下级侧臂(inv2-L)。因此,在步骤#16a(#16)中,将故障部位(FAIL)设定为第二逆变器12的下级侧臂(inv2-LOW)。
旋转电机控制装置1经过以旋转电机80的输出扭矩为零的方式控制的零牛顿控制(0Nm),使动作点移动到第三动作点P3,通过上级侧主动短路控制(ASC-H)来控制在下级侧臂发生开路故障的第二逆变器12,并且通过脉冲宽度调制来控制第一逆变器11(#17a(#17))。然后,使其从再生恢复到动力运行(#18a(#18)),执行通过一个逆变器10驱动旋转电机80的单逆变器驱动控制(1-inv驱动)(#61(#60))。
从步骤#15a(#15)转变为步骤#16b(#16)、#17b(#17)、#18b(#18)、#61(#60)的路径也相同,因此省略详细说明。另外,从步骤#11转变为步骤#13b(#13)、#14b(#14)、#15b(#15)、#16c(#16)、#17c(#17)、#18c(#18)、#61(#60)的路径、以及从步骤#15b(#15)转变为步骤#16d(#16)、#17d(#17)、#18d(#18)、#61(#60)的路径也同样,因此省略详细的说明。
此外,如参照图21、图22、图28、图29等所述,当执行再生失效动作时,交流电流(Iu、Iv、Iw)的失真和偏转也被抑制,累计电流(∑Iu、∑Iv、∑Iw)的偏转也变小。因此,参照表4所述的再生时的判定条件也不成立。因此,在步骤#15、#16中的判定中使用的累计电流(∑Iu、∑Iv、∑Iw)优选为在步骤#12中执行再生失效动作之前获取的值(例如在步骤#11中的判定时获取的值)。或者,优选在再生失效动作之前执行步骤#15、#16中的判定。
下面,参照图34说明第二故障部位判别处理(#20)。如参照图32所述,在第二故障部位判别处理(#20)之前,执行将旋转电机80的转速设定为第二规定转速(超速侧规定速度)的超速侧规定速度设定处理(#8)。在超速侧规定速度设定处理中,首先判定旋转电机80的转速是否为第二规定转速(超速侧规定速度)以下(#81)。在转速高于超速侧规定速度的情况下,旋转电机控制装置1通过关机控制(SDN)、主动短路控制(ASC)、零牛顿控制(0Nm),使旋转电机80的转速减速(#82)。在旋转电机80的转速为第二规定转速(超速侧规定速度)以下的情况下,将旋转电机80的控制模式设定为扭矩模式(#83)。即,在没有进行用于步骤#82的减速的控制的情况下,继续扭矩模式,在进行用于减速的控制的情况下,返回到扭矩模式。
旋转电机控制装置1在旋转电机80以小于第二规定转速(超速侧规定速度)的转速进行动力运行的状态(超低转速的动力运行(第二控制状态)下,判定是否检测到开路故障(#21)。在此,判定是否满足表6所示的六个模式的判定条件中的某一个,在满足某一个的情况下,检测为发生了开路故障。
在步骤#21中判定为发生了开路故障的情况下,判定在步骤#5中检测出开路故障时的故障模式FP是否为第一故障模式FP1(#25a(#25))。在故障模式为第一故障模式FP1的情况下,故障侧臂是第一逆变器11的上级侧臂(inv1:H)或第二逆变器12的下级侧臂(inv2:L)。在步骤#21中,由于在超低转速的动力运行中也检测到开路故障,因此,故障侧臂是第二逆变器12的下级侧臂(inv2:L)。因此,在步骤#26a(#26)中,将故障部位(FAIL)设定为第二逆变器12的下级侧臂(inv2-LOW)。
旋转电机控制装置1通过上级侧主动短路控制(ASC-H)控制在下级侧臂发生了开路故障的第二逆变器12,并且通过脉冲宽度调制控制第一逆变器11(#27a(#27)。然后,从超低转速的动力运行恢复到通常的动力运行(#28a(#28)),执行通过一个逆变器10驱动旋转电机80的单逆变器驱动控制(1-inv驱动)(#62(#60))。
从步骤#25a(#15)转变为步骤#26b(#16)、#27b(#17)、#28b(#18)、#62(#60)的路径也相同,因此省略详细说明。另外,从步骤#21转变为步骤#25b(#25)、#26c(#26)、#27c(#27)、#28c(#28)、#62(#60)的路径、以及从步骤#25b(#25)转变为步骤#26d(#26)、#27d(#27)、#28d(#28)、#62(#60)的路径也是相同的,所以省略详细的说明。
下面,参照图35说明第三故障部位判别处理(#30)。如图32所示,第三故障部位判别处理(#30)在步骤#5的第一控制状态下的开路故障判别处理之前分支执行。第三故障部位判别处理(#30)由于在旋转电机80的再生中执行,所以相当于第二控制状态下的故障判别处理。但是,第三故障部位判别处理(#30)独立于第一控制状态下的故障判别处理而执行。如上所述,在逆变器10通过混合脉冲宽度调制控制进行切换的情况下,即使在上级侧臂发生开路故障,再生时的交流波形发生的失真也小,从而难以检测开路故障的发生。因此,在第三故障部位判别处理(#30)中,仅在下级侧臂发生了开路故障的情况下,检测开路故障的发生,并且判别发生故障的逆变器10。另外,当旋转电机80的运转状态转换为动力运行时,能够进行第一控制状态下的开路故障检测。因此,第三故障部位判别处理是为了迅速地检测旋转电机80在再生中至少在下级侧臂中发生了短路故障并且确定故障部位而执行的。
在第三故障部位判别处理(#30)中,首先判定在再生状态(第二控制状态)中是否检测出开路故障(#31)。在第三故障部位判别处理中,也判定是否满足表4所示的六个模式的判定条件中的某一个,在满足某一个的情况下,检测为发生了开路故障。在此,检测出是下级侧故障模式LF。如上所述,在上级侧臂发生了开路故障的情况下,在第三故障部位判别处理(#30)中,既不能进行故障的检测,也不能进行故障部位的判别。
在步骤#31中判定为发生了开路故障的情况下,如参照图21~图23所述,为了消除再生中的交流电流(Iu、Iv、Iw)的波形的失真或偏转,执行再生失效动作(#32)。通过再生失效动作的执行,旋转电机80的转速降低,动作点移动到单逆变器控制区域Rs内。在步骤#32之后的步骤#33中,判定旋转电机80的动作点是否在单逆变器控制区域Rs内。如果动作点不在单逆变器控制区域Rs内,则继续基于再生的减速(#34),直到判定为动作点在单逆变器控制区域Rs内为止。
在动作点进入单逆变器控制区域Rs的情况下,判定在第一逆变器11的下级侧臂和第二逆变器12的下级侧臂中的哪一个发生了开路故障。在此,判定开路故障的检测相是否为第二逆变器12(#35)。如上参照表4所述,旋转电机控制装置1根据六个模式的判定条件中的哪一个成立,能够确定发生开路故障的开关元件3。也就是说,己知开路故障发生在第一逆变器11中还是发生在第二逆变器12中。
当在第二逆变器12中发生开路故障时,在步骤#36a(#36)中,故障部位(FAIL)被设定为第二逆变器12的下级侧臂(inv2-LOW)。另外,当在第一逆变器11中发生开路故障时,在步骤#36b(#36)中,故障部位(FAIL)被设定为第一逆变器11的下级侧臂(inv2-LOW)。
在第二逆变器12发生开路故障的情况下,旋转电机控制装置1通过上级侧有源短路来控制(ASC-H)控制在下级侧臂发生了开路故障的第二逆变器12,并且通过脉冲宽度调制来控制第一逆变器11(#37a(#37))。然后,执行通过一个逆变器10驱动旋转电机80的单逆变器驱动控制(1-inv驱动)(#63(#60))。另外,在第一逆变器11发生开路故障的情况下,旋转电机控制装置1通过上级侧主动短路控制(ASC-H)来控制在下级侧臂发生了开路故障的第一逆变器11,并且通过脉冲宽度调制来控制第二逆变器12(#37b(#37))。然后,执行通过一个逆变器10驱动旋转电机80的单逆变器驱动控制(1-inv驱动)(#63(#60))。
此外,单逆变器驱动控制(#60)中的控制方式不仅限于连续脉冲宽度调制控制(CPWM)、不连续脉冲宽度调制控制(DPWM),也可以是矩形波控制(1-Pulse)。这些是示例,调制形式可以是任何形式。在此,混合脉冲宽度调制控制在第二期间H2中开关控制信号成为非有效状态,从而能够降低系统损耗。通过在第一逆变器11和第二逆变器12中将相互不同的期间设为第二期间H2,作为整体,能够实现连续地由多个脉冲进行切换的状态。但是,在单逆变器驱动控制中,由于仅切换任一个逆变器10,所以在混合脉冲宽度调制控制中,交流波形可能发生失真。因此,单逆变器驱动控制优选通过脉冲宽度调制控制或矩形波控制来执行,该脉冲宽度调制控制在电角度的一个周期输出模式不同的多个脉冲。但是,作为控制方式,也不妨碍选择混合脉冲宽度调制控制(MX-PWM)。
另外,如参照图21、图22、图28、图29等所述,当执行再生失效动作时,交流电流(Iu、Iv、Iw)的失真和偏转也被抑制,累计电流(∑Iu、∑Iv、∑Iw)的偏转也变小。因此,参照表4所述的再生时的判定条件也不成立。因此,与第一故障部位判别处理(#10)同样,在步骤#35中的判定中使用的累计电流(∑Iu、∑Iv、∑Iw)优选为在步骤#32中执行再生失效动作之前获取的值(例如在步骤#31的判定时获取的值)。或者,优选在再生失效动作之前执行步骤#35中的判定。
如上所述,旋转电机控制装置1在发生了一个开关元件3始终成为开路状态的开路故障(一相开路故障)的情况下,对多相的交流电流(Iu、Iv、Iw)中的每一个进行累计而计算各相的电流累计值(∑Iu、∑Iv、∑Iw),基于各个电流累计值(∑Iu、∑Iv、∑Iw)的正负来检测开路故障的发生,并且判别发生了开路故障的部位。在第一逆变器11和第二逆变器12通过混合脉冲宽度调制控制进行开关控制的情况下,旋转电机控制装置1基于第一控制状态(动力运行)下的各个电流累计值(∑Iu、∑Iv、∑Iw)的正负,判别第一故障模式FP1、第二故障模式FP2中的哪一个是故障模式FP。而且,旋转电机控制装置1在与第一控制状态(动力运行)不同第二控制状态(再生/超低转速下的动力运行)下的各个电流累计值(∑Iu、∑Iv、∑Iw),判别第一下级侧故障模式LF1、第二下级侧故障模式LF2中的哪一个是下级侧故障模式LF。而且,旋转电机控制装置1基于第一控制状态下的判别结果和第二控制状态下的判别结果,来判别第一逆变器11的上级侧臂、第一逆变器11的下级侧臂、第二逆变器12的上级侧臂、第二逆变器12的下级侧臂中的哪一个是故障侧臂。
此外,在上述中,参照图32等,例示了在第一控制状态下的判别之后进行第二控制状态下的判别的方式。但是,第一控制状态和第二控制状态的顺序也可以相反。另外,在基于第一控制状态下的判别结果和第二控制状态下的判别结果的判别中也包括没有例如第一控制状态下的判别结果的情况。在没有第一控制状态下判别结果且在第二控制状态下判别为下级侧故障模式LF的情况下,通过第一下级侧故障模式LF1确定第二逆变器12的下级侧臂是故障侧臂,通过第二下级侧故障模式LF2确定第一逆变器11的下级侧臂是故障侧臂。关于存在第一控制状态下的判别结果和第二控制状态下的判别结果两者的情况,参照图15如上所述。
此外,在上级侧臂发生开路故障且不存在第一控制状态的情况下,不确定发生开路故障的故障侧臂。但是,在该情况下,即使旋转电机80再生且在再生时上级侧臂发生开路故障,交流电流(Iu、Iv、Iw)也不会发生失真。因此,由于几乎没有影响,所以即使不检测出开路故障也没有问题。之后,当旋转电机80动力运行时,检测开路故障。此时,作为第一控制状态下的判别结果,判别为第一故障模式FP1或第二故障模式FP2。在动力运行前的再生时,由于已获取第二控制状态下的判别结果(无下级侧故障模式LF),所以旋转电机控制装置1能够基于第一控制状态下的判别结果和第二控制状态下的判别结果来确定故障侧臂。当然,也可以在动力运行中检测到开路故障后,进一步进行再生或超低转速的动力运行,重新获取第二控制状态下的判别结果,之后,基于第一控制状态下的判别结果和第二控制状态下的判别结果来确定故障侧臂。
另外,如上所述,旋转电机控制装置1具有作为旋转电机80的控制模式的损耗降低优先模式和噪声降低优先模式。如上参考表2所述,在噪声降低优先模式中,第一逆变器11和第二逆变器12都由通常的脉冲宽度调制控制驱动,而不是由混合脉冲宽度调制控制驱动。当第一逆变器11和第二逆变器12都以噪声降低优先模式驱动时发生了开路故障的情况的三相交流的举动与参照图11~图14等所述的举动不同。
图36~图39与图11~图14同样,是表示在噪声降低优先模式(即,两个逆变器10通过脉冲宽度调制控制进行控制的情况)下发生了开路故障的情况的三相交流波形(U相电流Iu、V相电流Iv、W相电流Iw)的一例的波形图。图36和图37与图11和图12同样地表示在动力运行时发生了开路故障的情况的三相交流波形,图38和图39与图13和图14同样地表示在再生时发生了开路故障的情况的三相交流波形。与图11~图14相同,图36~图39共同示出U相的开关元件3发生开路故障时的波形。另外,与图11~图14同样,与图36~图39共同以矩阵状示出第一逆变器11的上级侧(HIGHSIDE)的开关元件3发生了开路故障的情况的波形、第一逆变器11的下级侧(LOWSIDE)的开关元件3发生了开路故障的情况的波形、第二逆变器12的上级侧(HIGHSIDE)的开关元件3发生了开路故障的情况的波形、第二逆变器12的下级侧(LOWSIDE)的开关元件3发生了开路故障时的波形。另外,与相对于图11的图12相同,相对于图36,图37示出在相同扭矩下旋转电机80的转速较高的情况,与相对于图13的图14相同,相对于图38,图39示出在相同扭矩下旋转电机80的转速较高的情况。
与图11及图12同样,如图36及图37所示,若在动力运行时发生开路故障,则无论是第一逆变器11和第二逆变器12的上级侧,还是下级侧,三相交流波形都成为非对称且失真的波形。另外,三相交流波形在第一逆变器11的上级侧发生了开路故障的情况和第二逆变器12的下级侧发生了开路故障的情况下为相同的波形,在第一逆变器11的下级侧发生了开路故障的情况和第二逆变器12的上级侧发生了开路故障的情况下为相同的波形。
另外,如图38和图39所示,在再生时发生了开路故障的情况下,无论是在第一逆变器11和第二逆变器12的上级侧,还是在下级侧,三相交流波形也都成为非对称且失真的波形。另外,三相交流波形在第一逆变器11的上级侧发生了开路故障的情况和第二逆变器12的下级侧发生了开路故障的情况下为相同的波形,在第一逆变器11的下级侧发生了开路故障的情况和第二逆变器12的上级侧发生了开路故障的情况下为相同的波形。
在损耗降低优先模式(即,两个逆变器10由混合脉冲宽度调制控制控制的情况)下,如图13及图14所示,在再生时,在第一逆变器11和第二逆变器12的下级侧发生了开路故障的情况下,三相交流波形为非对称且失真的波形,但在第一逆变器11和第二逆变器12的上端侧发生了开路故障的情况下,三相交流波形为大致对称且几乎未发生失真的波形。
即,在损耗降低优先模式中,如图15所示,在动力运行时(超低转速时除外),无论在哪里发生开路故障,三相交流波形都示出异常,其异常的方式大致分为图15所示的第一故障模式FP1和第二故障模式FP2。另一方面,在再生时,仅在第一逆变器11和第二逆变器12的下级侧发生了开路故障的情况下,三相交流波形示出异常。因此,如果对照动力运行时和再生时的三相交流波形的状态,则能够在检测到开路故障的情况下判别在哪一个逆变器10的上级侧和下级侧发生开路故障(也参照表3~表5以及参照它们的上述说明)。
但是,在噪声降低优先模式中,如图42所示,在动力运行时和再生时,三相交流波形的状态示出相同的倾向。也就是说,在动力运行时和再生时中的任一种情况下,在发生开路故障的情况下,能够将第一故障模式FP1或第二故障模式FP2判别为故障模式FP。因此,无法判别在哪一个逆变器10的上级侧和下级侧发生了开路故障。因此,旋转电机控制装置1假设第一逆变器11和第二逆变器12中的某一个为故障逆变器,在该假设的基础上,经由假设在单逆变器控制区域Rs中未发生故障的一个逆变器10对旋转电机80进行驱动控制(1-inv驱动)。
之后,如果未检测出异常(开路故障),则假设为正确,因此将假设为故障的逆变器10确定为故障逆变器。另一方面,在进一步检测出异常(开路故障)的情况下,假设错误,因此将并未假设为故障的逆变器10确定为故障逆变器。并且,在确定了正确的故障逆变器的状态下,经由在单逆变器控制区域Rs中未发生故障的逆变器10(正常逆变器)对旋转电机80进行驱动控制(1-inv驱动)。
以下,参照图40的流程图进行说明。如上参考图36、图37和图42所述,即使在逆变器10通过通常的脉冲宽度调制控制而不是混合脉冲宽度调制控制进行切换的情况下,也能够通过检测第一控制状态下的开路故障来判别故障模式FP(步骤#5)。因此,在此,对步骤#5之后的处理进行说明。
首先,在步骤#41中,判定旋转电机80的动作点是否在单逆变器控制区域Rs内。如果动作点不在单逆变器控制区域Rs内,则执行基于例如关机控制(SDN)、主动短路控制(ASC)、零牛顿控制(0Nm)的减速(#42),直到判定为动作点在单逆变器控制区域Rs内为止。在动作点为单逆变器控制区域Rs的情况下,将旋转电机80的控制模式设定为扭矩模式(#43)。即,在未进行用于步骤#42的减速的控制的情况下,继续扭矩模式,在进行用于减速的控制的情况下,返回到扭矩模式。
在步骤#5中检测到开路故障时的故障模式FP是第一故障模式FP1或第二故障模式FP2。因此,不清楚在第一逆变器11和第二逆变器12中的哪个逆变器10中发生开路故障。因此,假设旋转电机控制装置1在某一个逆变器10中发生开路故障。即,旋转电机控制装置1将第一逆变器11和第二逆变器12中的某一个逆变器10假设为发生了开路故障的故障逆变器而设定为假设故障逆变器,将另一个逆变器10假设为未发生故障的正常逆变器而设定为假设正常逆变器(#51)。这里,将第一逆变器11设定为假设正常逆变器(NORMAL),将第二逆变器12设定为假设故障逆变器(OPEN-FAIL)。当然,这个假设可以是相反的。
例如,如果在步骤#5中检测到开路故障时的故障模式FP是第一故障模式FP1,则故障侧臂是第一逆变器11的上级侧臂或第二逆变器12的下级侧臂。在步骤#51中,由于将第二逆变器12设定为假设故障逆变器,所以假设故障侧臂是第二逆变器12的下级侧臂。即,第二逆变器12的下级侧臂被设定为假设故障侧臂。
在步骤#52中,基于在步骤#51中设定的假设故障逆变器和在步骤#5中判别的故障模式FP,来判定发生开路故障(OPEN-FAIL)的故障侧臂(假设故障侧臂)是上级侧臂还是下级侧臂。在此,由于故障侧臂是下级侧臂,所以旋转电机控制装置1通过上级侧主动短路控制(ASC-H)来控制第二逆变器12,通过脉冲宽度调制控制控制第一逆变器11(#53a(#53))。
当开始基于新的控制方式的逆变器10的开关时,开始重新累积相电流(#54a(#54)。即,三相电流(Iu、Iv、Iw)的累计值被复位一次,再次运算累计电流(∑Iu、∑Iv、∑Iw)。接着,在步骤#55a(#55)中,基于这些累计电流(∑Iu、∑Iv、∑Iw),判断是否检测出开路故障。这里,在检测到开路故障的情况下,步骤#51和步骤#52中的假设存在错误。也就是说,可判断出故障侧臂不是第二逆变器12的下级侧臂,而是第一故障模式FP1的另一侧即第一逆变器11的上级侧臂。
旋转电机控制装置1将故障部位(FAIL)设定为第一逆变器11的上级侧臂(inv1-HIGH)(#56a(#56))。然后,旋转电机控制装置1通过下级侧主动短路控制(ASC-L)来控制在上级侧臂发生开路故障的第一逆变器11,并且通过脉冲宽度调制来控制第二逆变器12(#57a(#57)。然后,执行通过一个逆变器10驱动旋转电机80的单逆变器驱动控制(1-inv驱动)(#65(#60))。
如果在步骤#55a(#55)中未检测到开路故障,则步骤#51和步骤#52中的假设是正确的。也就是说,如假设的那样,判断为故障侧臂是第二逆变器12的下级侧臂。故障部位(FAIL)被设定为是第二逆变器12的下级侧臂(inv2-LOW)(#56b(#56))。然后,旋转电机控制装置1通过上级侧主动短路控制(ASC-H)来控制在下级侧臂发生开路故障的第二逆变器12,并且通过脉冲宽度调制来控制第一逆变器11(#57b(#57)。然后,执行通过一个逆变器10驱动旋转电机80的单逆变器驱动控制(1-inv驱动)(#65(#60))。
从步骤#52转变为步骤#53b(#53)、#54b(#54)、#55b(#55)、#56c(#56)、#57c(#57)、#65(#60)的路径也相同,因此省略详细说明。另外,关于从步骤#55b(#55)转变为步骤#56d(#56)、#57d(#27)、#65(#60)的路径也同样,因此省略详细的说明。另外,在噪声降低优先模式中,通过通常的脉冲宽度调制控制来切换逆变器10。因此,在执行单逆变器驱动控制(1-inv驱动)时,也可以不将控制方式从混合脉冲宽度调制控制变更为一般的脉冲宽度调制控制。
这样,即使在逆变器10的控制方式不是混合脉冲宽度调制控制的情况下,旋转电机控制装置1也能够基于各个电流累计值(∑Iu、∑Iv、∑Iw)的正负来判别开路故障的故障模式FP是第一故障模式FP1还是第二故障模式FP2,然后,将第一逆变器11和第二逆变器12中的某一个逆变器10假设为故障逆变器,作为假设故障逆变器。然后,旋转电机控制装置1基于判别出的故障模式FP,在该假设故障逆变器的上级侧臂和下级侧臂中,将假设为故障侧臂的假设故障侧臂的开关元件3的全部设为接通状态,并且将另一侧的非假设故障侧臂的开关元件3的全部设为接通状态来进行主动短路控制,并且对与假设故障逆变器不同的逆变器10(假设正常逆变器)进行开关控制。之后,旋转电机控制装置1基于各个电流累计值(∑Iu、∑Iv、∑Iw)的正负,在未检测到开路故障的情况下,判别为假设故障逆变器是故障逆变器,并且判别为假设故障侧臂是故障侧臂。在检测到开路故障的情况下,旋转电机控制装置1判别与假设故障逆变器不同的逆变器10为故障逆变器,并且基于故障模式FP来判别该故障逆变器中的故障侧臂。
此外,参照图40的流程图所述的假设故障逆变器的方法当然也适用于控制方式为混合脉冲宽度调制控制的情况。
另外,在上述中,例示了假设第一逆变器11和第二逆变器12中的某一个为故障逆变器,来判别故障逆变器并且确定故障部位的方式。但是,如图41的流程图所示,也可以在将控制方式从脉冲宽度调制控制变更为混合脉冲宽度调制控制之后,经由$5,通过参照图32~图34所述的第一故障部位判别处理(#10)或第二故障部位判别处理(#20),来判别故障逆变器,并且确定故障部位。
即,在旋转电机控制装置1不是通过混合脉冲宽度调制控制,而是通过在第二期间H2也输出模式不同的多个脉冲并在电角度的一个周期中输出模式不同的多个脉冲的脉冲宽度调制控制、或者在电角度的一个周期中输出一个脉冲的矩形波控制对第一逆变器11和第二逆变器12这两个逆变器10进行控制的情况下,在第一控制状态下检测到开路故障的发生时,在第一控制状态下,判别故障模式FP,之后,将第一逆变器11和第二逆变器12这两个逆变器10的控制方式变更为混合脉冲宽度调制控制,在第二控制状态下,判别是否为下级侧故障模式LF,之后,基于第一控制状态的判别结果和第二控制状态的判别结果来判别故障侧臂。
如上所述,在噪声降低优先模式中,在动力运行时和再生时中的任一种情况下,当发生开路故障时都能够将第一故障模式FP1或第二故障模式FP2判别为故障模式FP。因此,在噪声降低优先模式中,第一控制状态包含动力运行和再生。也就是说,将控制方式变更为混合脉冲宽度调制控制之前的第一控制状态包含动力运行和再生。与损耗降低优先模式同样,将控制方式变更为混合脉冲宽度调制控制后的第二控制状态是再生或超低转速的动力运行。
如上所述,根据本实施方式,能够在构成开路绕组的定子线圈8的两端所分别具有的两个逆变器10的开关元件3中的一个发生了开路故障的情况下确定故障部位。
接着,对在构成开路绕组(定子线圈8)两端所分别具有的两个逆变器10的开关元件3中的一个发生短路故障的情况下确定故障部位的技术进行说明。
在本实施方式中,设定有与旋转电机80的动作条件对应的多个控制区域R(参照图43等),旋转电机控制装置1以与各个控制区域R对应的控制方式控制逆变器10。图43示出旋转电机80的转速与扭矩之间的关系的一例。例如,如图43所示,作为旋转电机80控制区域R,设定有第一速度区域VR1、相同扭矩T下的旋转电机80的转速比第一速度区域VR1高的第二速度区域VR2、相同扭矩T下的旋转电机80的转速比第二速度区域VR2高的第三速度区域VR3。
例如,如下述表8所示,旋转电机控制装置1在第一速度区域VR1中,通过连续脉冲宽度调制控制(CPWM)来控制第一逆变器11和第二逆变器12这两个逆变器10。另外,旋转电机控制装置1在第二速度区域VR2中,通过不连续脉冲宽度调制控制(DPWM)来控制第一逆变器11和第二逆变器12这两个逆变器10。另外,旋转电机控制装置1在第三速度区域VR3中,通过矩形波控制来控制第一逆变器11和第二逆变器12这两个逆变器10。表中的Mi_sys、Mi_inv1、Mi_inv2将在后面叙述。
【表8】
R Mi_sys INV1 Mi_inv1 INV2 Mi_inv2
VR1 M<X CPWM M<X CPWM M<X
VR2 X≤M<0.78 DPWM X≤M<0.78 DPWM X≤M<0.78
VR3 M=0.78 1-Pulse M=0.78 1-Pulse M=0.78
各个控制区域R的边界(第一速度区域VR1、第二速度区域VR2和第三速度区域VR3的边界)优选根据与旋转电机80的扭矩对应的旋转电机80的转速和多相交流电压的线电压的有效值(既可以是指令值,也可以是根据输出电压的换算值)相对于直流电压的比例中的至少一者来设定。
如图43所例示,旋转电机80的动作条件常常由转速和扭矩之间的关系来定义。控制区域R可以基于一个参数即转速来设定。在此,也能够与扭矩无关地将对控制区域R的边界进行规定的转速设定为恒定,但更优选设定为规定控制区域R的边界的转速根据扭矩而成为不同的值。由此,能够根据旋转电机80的动作条件以高效率对旋转电机80进行驱动控制。
另外,例如,在对旋转电机80要求高输出(高转速或高扭矩)的情况下,在电压型的逆变器中,通过提高直流电压或提高直流电压转换为交流电压的比例来实现该要求。在直流电压恒定的情况下,可以通过提高直流电压转换为交流电压的比例来实现该要求。该比例可以表示为三相交流电力的有效值相对于直流电力的比例(在电压型的逆变器的情况下,与三相交流电压的有效值相对于直流电压的比例等价)。如上所述,在控制逆变器10的控制方式中,该比例从低到高存在各种方式。
如表8所示,如果基于根据对旋转电机80的要求而决定的三相交流电的有效值相对于直流电的比例(调制率)来设定控制区域R,则能够根据旋转电机80的动作条件以高效率对旋转电机80进行驱动控制。此外,在表中,“Vi_inv1”表示第一逆变器11的调制率,“Mi_inv2”表示第二逆变器12的调制率,“Mi_sys”表示系统整体的调制率。
在上述表8中,例示了与各个控制区域R对应的调制率。在本实施方式中,第一直流电源61的端子间电压“E1”和第二直流电源62的端子间电压“E2”相同(均为电压“E”)。如果将第一逆变器11的交流侧的有效值设为“Va_inv1”,将第二逆变器12的交流侧的有效值设为“Va_inv2”,则第一逆变器11的调制率“Mi_inv1”和第二逆变器12的调制率“Mi_inv2”如下述再述的式(1)、(2)所示。另外,系统整体的调制率“Mi_sys”如下所示的式(3)。
Mi_inv1=Va_inv1/E1=Va_inv1/E...(1)
Mi_inv2=Va_inv2/E2=Va_inv2/E...(2)
Mi_sys=(Va_inv1+Va_inv2)/(E1+E2)=(Va_inv1+Va_inv2)/2E...(3)
对于电压的瞬时值,需要考虑瞬时的矢量,但单纯地考虑调制率,根据式(1)~(3),系统整体的调制率“Mi_sys”为“(Mi_inv1+Mi_inv2)/2”。此外,在表8中,作为额定值示出与各个控制区域R对应的调制率。因此,在实际的控制时,考虑控制方式在控制区域R中变化时的波动等,也可以包含与各个控制区域R对应的调制率重复的范围。
此外,调制率“X”基于利用连续脉冲宽度调制(空间矢量脉冲宽度调制)的调制率的理论上的上限值(大致0.707),进而考虑死区时间而设定。调制率“X”基于实验或模拟等来适当设定(例如0.3以下)。
但是,构成逆变器10的开关元件3有时会发生开关元件3始终为接通状态的短路故障、开关元件3始终为断开状态的开路故障。例如,如图46所示,在具有Y字接线型的定子线圈8B的旋转电机80B由一个逆变器10B驱动的情况下,如果发生短路故障或开路故障,则执行使逆变器10B的全部的开关元件3B设为断开状态的关机控制、或者、使多相的全部的臂3A的上级侧开关元件3H设为接通状态或使多相的全部的臂3A的下级侧开关元件3L设为接通状态的主动短路控制,车辆停止。
但是,如本实施方式那样,在经由第一逆变器11和第二逆变器12对具有作为定子线圈8的相互独立的多相开路绕组的旋转电机80进行驱动控制的情况下,可以经由第一逆变器11和第二逆变器12中的一个逆变器10来驱动控制旋转电机80。如上所述,若通过主动短路控制使其中一个逆变器10短路,则多相的定子线圈8在该一个逆变器10中短路,该一个逆变器10成为中性点,定子线圈8被Y型接线。因此,旋转电机控制装置1能够实现经由一个逆变器10(未被主动短路控制一侧的逆变器10)来控制Y型接线的旋转电机80的方式。
在旋转电机80由一个逆变器10B驱动的情况下,如果发生短路故障或开路故障,则需要使以旋转电机80B为驱动力源的车辆停止。但是,如本实施方式那样,在旋转电机80由两个逆变器10驱动的情况下,即使发生短路故障或开路故障,也能够在一定的限制范围内继续车辆的行驶,而不会使以旋转电机80为驱动力源的车辆停止。例如,可以行驶到自家或维修工厂等当前的目的地。
例如,在其中一个逆变器10中发生了短路故障的情况下,将上级侧臂和下级侧臂中的包含发生了短路故障的开关元件3的一侧的臂的全部的开关元件3设为接通状态并且将另一侧的臂的全部的开关元件3设为断开状态来执行主动短路控制即可。通过将包含发生了短路故障的开关元件3的一侧的臂的全部的开关元件3设为接通状态,能够将发生了短路故障的开关元件3用作未发生故障的开关元件3。
另外,在其中一个逆变器10中发生了开路故障的情况下,将上级侧臂和下级侧臂中的不包含发生了开路故障的开关元件3的一侧的臂的全部的开关元件3设为接通状态并且将包含发生了开路故障的开关元件3的一侧的臂的全部的开关元件3设为断开状态来执行主动短路控制即可。通过将包含发生了开路故障的开关元件3的一侧的臂的全部的开关元件3设为断开状态,能够将发生了开路故障的开关元件3用作未发生故障的开关元件3。
因此,至少需要确定发生了故障的开关元件3属于第一逆变器11和第二逆变器12中的哪一个,并且属于上级侧臂和下级侧臂中的哪一个。更优选地,只要能够确定发生了故障的开关元件3是多相中的哪一相即可。
以下,说明在构成第一逆变器11和第二逆变器12的开关元件3中的某一个发生了开路故障的情况下(发生了一相开路故障的情况下),确定发生了开路故障的开关元件3,并以在确定后能够继续车辆的行驶的方式,通过失效保护控制对旋转电机80进行驱动的方式。
图44在旋转电机80的控制区域中示出了从检测出短路故障起到通过失效保护控制来驱动旋转电机80为止的动作点的一例。另外,图44中的控制区域“Rs”表示由一个逆变器10控制旋转电机80时的单逆变器控制区域Rs,表示控制区域的整体的“Rd”表示由两个逆变器10控制旋转电机80时的双逆变器控制区域Rd。“K”表示本实施方式中的单逆变器控制区域Rs与双逆变器控制区域Rd的示意性的边界。在此,规定“K”的转速也可以与扭矩无关地设定为恒定,但如图44所示,更优选设定为规定“K”的转速根据扭矩而成为不同的值。当然,这些控制区域并不是表示旋转电机80被驱动的界限区域。因此,边界“K”也不表示单逆变器的控制的界限,而是为了将单逆变器控制区域Rs设定为能够通过单逆变器驱动旋转电机80的区域而适当设定的边界。
图45例示了例如在第一逆变器11的U相臂3u的上级侧开关元件3H(31H)处于短路故障的状态下,执行使第一逆变器11和第二逆变器12的全部的开关元件3成为断开状态的关机控制时的电流的流动。图46例示了在驱动具有经由一个逆变器10B而Y字接线的定子线圈8B的旋转电机80B的系统(1逆变器系统)中,在U相臂3u的上级侧开关元件3H发生短路故障的状态下,执行使逆变器10B的全部的开关元件3成为断开状态的关机控制时的电流的流动。
例如,考虑在图44所示的第一动作点Q1发生了短路故障的情况。此外,在发生短路故障的情况下,由于在发生短路故障的逆变器10中流过过电流,所以通过过电流检测电路,在该逆变器10中可能发生短路故障的情况经由驱动电路2传递给旋转电机控制装置1。此时,可以不确定可能发生了短路故障的开关元件3。只要确定在第一逆变器11和第二逆变器12中的哪一个发生了短路故障即可。
如图44所示,第一动作点Q1是转速相对较高的动作点。因此,即使在检测到短路故障而对第一逆变器11和第二逆变器12进行了关机控制的情况下,旋转电机80也通过惯性力继续旋转,通过其旋转产生大的反电动势(BEMF)。当该反电动势超过逆变器10的直流侧的电压(直流链路电压Vdc)时,电流从旋转电机80流向直流电源6侧。
如上所述,图45示出第一逆变器11的U相臂3u的上级侧开关元件3H(31H)发生短路故障而被关机控制的状态。第二逆变器12的各臂3A仅能够在基于续流二极管35的路径上流过电流。因此,仅在反电动势超过第二逆变器12的直流链路电压Vdc(第二直流电源62的端子间电压)的情况下,电流能够流入第二直流电源62而形成电流环路,能够使电流流入第一逆变器11和第二逆变器12。详细情况后述,在能够形成电流环路的情况下,能够基于相电流(在此为三相电流Iu、Iv、Iw)来确定发生了短路故障的开关元件3。
另一方面,例如,如图44所示,在第一动作点Q1为转速更低的“Q1’”的情况下,有时反电动势不超过直流链路电压Vdc。在反电动势不超过第二逆变器12的直流链路电压Vdc(第二直流电源62的端子间电压)的情况下,不能在第二逆变器12侧形成电流环路,不能在第一逆变器11和第二逆变器12中流过电流。
此外,如图46所示,在1逆变器系统中,U相臂3u的上级侧开关元件3H(31H)发生短路故障,由此能够形成电流环路。因此,只要稍微产生反电动势,就能够使电流流过逆变器10B。
如上所述,在第一动作点Q1为“Q1’”的情况下,由于反电动势不超过直流链路电压Vdc,不形成电流环路,因此,不能基于相电流(在此为三相电流Iu、Iv、Iw)来确定短路故障的开关元件3。因此,将在后面详细说明,使动作点移动到单逆变器控制区域Rs。例如,移动到图44所示的第四动作点Q4。而且,旋转电机控制装置1不是通过关机控制,而是通过提供扭矩指令的扭矩控制模式对旋转电机80进行驱动控制来形成电流环路,基于相电流(在此为三相电流Iu、Iv、Iw)来确定发生了短路故障的开关元件3。
图47例示了在此情况下的扭矩指令、转速的转变以及三相电流波形。旋转电机80基于第一扭矩指令T1,在以第一转速RS1旋转的时刻t1检测短路故障的发生(第一动作点Q1(Q1’):参照图44)。从时刻t3开始旋转电机80的减速,在时刻t5转速降低到第二转速RS2。此时,优选通过例如关机控制来降低旋转电机80的转速。此外,如图47所示,在此也可以将扭矩指令降低到“零”。在这种情况下,动作点从第一动作点Q1(Q1’)经过第二动作点Q2(Q2’)移动到第三动作点Q3。当转速降低到第二转速RS2时,旋转电机控制装置1利用比第一扭矩指令T1小的第二扭矩指令T2对旋转电机80进行扭矩控制(时刻t7~时刻t9)。由此,动作点从第三动作点Q3向第四动作点Q4移动。
如图47所示,在时刻t7~时刻t9执行的扭矩控制中的三相电流(Iu、Iv、Iw)的波形为非对称且失真的波形。旋转电机控制装置1基于时刻t7~时刻t9的三相电流(Iu、Iv、Iw)来确定正在发生短路故障的开关元件3。详细情况后述,在反电动势超过直流链路电压Vdc的情况下,三相电流(Iu、Iv、Iw)的波形也同样成为非对称且失真的波形。因此,即使在反电动势超过直流链路电压Vdc的情况下,旋转电机控制装置1也基于三相电流(Iu、Iv、Iw)来确定发生短路故障的开关元件3。
若确定了发生短路故障的开关元件3,则旋转电机控制装置1在单逆变器控制区域Rs中驱动控制旋转电机80,使车辆行驶。例如,使动作点从第四动作点Q4移动到第五动作点Q5。第五动作点Q5上的扭矩指令是与第一动作点Q1上的扭矩指令相同的第一扭矩指令T1。因此,虽然旋转电机80的转速降低,但能够输出与短路故障前相同的扭矩来驱动旋转电机80,使车辆继续行驶。
此外,在图47中,例示了使扭矩指令从第二扭矩指令T2向第一扭矩指令T1变化的方式,但如图48所例示,可以在使扭矩指令从第二扭矩指令T2暂时变为“零”后,使扭矩指令从零向第一扭矩指令T1变化。
图49的流程图表示确定发生了短路故障的部位的步骤的一例。当通过电流检测电路等检测到在第一逆变器11或第二逆变器12发生了短路故障时,旋转电机控制装置1判定为发生了一相短路故障(S1)。如上所述,旋转电机控制装置1识别在第一逆变器11和第二逆变器12中的哪个逆变器10中发生了短路故障,首先,对发生短路故障的逆变器10即故障逆变器(inv(fail))进行关机控制(S2)。接着,旋转电机控制装置1对未发生短路故障的逆变器10即正常逆变器(inv(normal))也进行关机控制(S3)。
接着,旋转电机控制装置1判定反电动势(BEMF)是否超过直流链路电压Vdc(S4)。由于反电动势与旋转电机80的转速之间具有线性,所以旋转电机控制装置1也可以基于旋转电机80的转速了来进行该判定。也就是说,旋转电机控制装置1也可以判定旋转电机80的转速是否为预先规定的规定转速以上。在转速为规定转速以上的情况下,旋转电机控制装置1能够判定为反电动势(BEMF)超过直流链路电压Vdc。此外,该判定也可以以调制率为基准来执行。例如,在调制率为规定调制率以上的情况下,旋转电机控制装置1能够判定为逆起电压(BEMF)超过直流链路电压Vdc。
在反电动势(BEMF)超过直流链路电压Vdc的情况下,如参照图45所述,旋转电机控制装置1基于三相电流(Iu、Iv、Iw)来判别发生短路故障的开关元件3是上级侧臂还是下级侧臂。即,旋转电机控制装置1执行故障级判别处理(S5)。另外,旋转电机控制装置1在故障判别处理(S5)之后,通过关机控制使旋转电机80的转速降低而执行减速处理(S50)。另外,在此,在步骤S2以及步骤S3中,由于第一逆变器11和第二逆变器12这两个逆变器10被关机,因此,同意在步骤S50继续关机控制。
在反电动势(BEMF)未超过直流链路电压Vdc的情况下,或者在执行步骤S5的故障级判别处理后,旋转电机控制装置1判定当前的动作点是否为单逆变器控制区域Rs。也就是说,判定是否能够通过一个逆变器10驱动旋转电机80(S6)。在不能进行一个逆变器驱动的情况下,继续进行步骤S50的减速处理,使旋转电机80的转速减速。由此,即使动作点在单逆变器控制区域Rs外,在重复步骤S6、步骤S50的期间,旋转电机80的转速也降低,满足步骤S6的判定条件。
在旋转电机80的动作点为单逆变器控制区域Rs中的情况下,旋转电机控制装置1判定故障级是否已经确定(S7)。如果经过步骤S5已经确定了故障级,则进入后述的步骤S10。另一方面,在未经过步骤S5的情况下、或即使经过步骤S5也未确定故障级的情况下,进入步骤S8。
步骤S8例如在上述的第三动作点Q3被执行,设定第二扭矩指令T2作为扭矩指令。接着,旋转电机控制装置1在例如第四动作点Q4,基于三相电流(Iu、Iv、Iw)来判别发生短路故障的开关元件3是上级侧臂还是下级侧臂。也就是说,旋转电机控制装置1执行故障级判别处理(S9)。
在步骤S7或步骤S9之后的步骤S10中,判定故障级是否为上级。在步骤S5或步骤S9中,基于三相电流(Iu、Iv、Iw)来判别发生短路故障的开关元件3是上级侧臂还是下级侧臂,直到步骤S10为止。因此,基于这些判别结果,旋转电机控制装置1判定故障级是上级还是下级。
在故障级为上级的情况下,旋转电机控制装置1对故障逆变器(inv(fail))执行上级侧主动短路控制(ASC-H),对正常逆变器(inv(normal))执行脉冲宽度调制控制(PWM)(S11H(S11))。另外,在故障级为下级的情况下,旋转电机控制装置1对故障逆变器(inv(fail))执行下级侧主动短路控制(ASC-L),对正常逆变器(inv(normal))执行脉冲宽度调制控制(PWM)(S11L(S11))。这些步骤S11在图44中的第五动作点Q5执行。
另外,旋转电机控制装置1向未图示的上位的控制装置等输出发生短路故障的故障级的信息(S12)。具体而言,输出故障逆变器的信息(第一逆变器11或第二逆变器12)和是其上级侧臂还是下级侧臂的信息。进而,也可以输出是多相中的哪一相的信息。
另外,在参照图49所述的方式中,示出了在步骤S1中检测出短路故障的情况下,旋转电机控制装置1对这两个逆变器10进行关机控制后,在步骤S5中执行故障判别处理的例子。但是,也可以不进行关机控制而执行故障级判别处理(S5)。
另外,在参照图49所述的方式中,示出了使旋转电机80的转速降低直到作点到达单逆变器控制区域Rs中的例子。但是,并不妨碍在动作点位于单逆变器控制区域Rs之外的状态下执行故障级判别处理(S9),然后使旋转电机80的转速降低直至动作点到达单逆变器控制区域Rs中。
另外,在参照图49所述方式中,示出了在反电动势(BEMF)未超过直流链路电压Vdc的情况下,旋转电机控制装置1使旋转电机80的转速降低,直到动作点到达单逆变器控制区域Rs中,然后执行故障级判别处理(S9)的方式。但是,即使反电动势(BEMF)超过直流链路电压Vdc,也不妨碍旋转电机控制装置1使旋转电机80转速降低直到动作点到达单逆变器控制区域Rs中,然后在步骤S8中设定扭矩指令来执行故障级判别处理(S9)。
下面,参照图50~图53,说明确定发生了短路故障的开关元件3的原理。图50及图51是说明图49中的步骤S9的故障级判别处理中的判别原理的图。图50示出第一逆变器11的U相的上级侧开关元件3H发生了短路故障的情况,图51示出第一逆变器11的U相的下级侧开关元件3L发生短路故障的情况。图52及图53是说明图49中的步骤S5的故障级判别处理中的判别原理的图。图52示出第一逆变器11的U相的上级侧开关元件3H发生短路故障的情况,图53示出第一逆变器11的U相的下级侧开关元件3L发生了短路故障的情况。
旋转电机控制装置1将发生了短路故障的逆变器作为故障逆变器,对多相的交流电流分别进行累计,并计算各相的电流累计值,基于各个电流累计值的正负来判别故障逆变器的上级侧臂和下级侧臂中的哪一个发生短路故障。在此,故障逆变器是第一逆变器11。另外,多相的交流电流是三相电流(U相电流Iu、V相电流Iv、W相电流Iw)。另外,各相的电流累计值为U相累计电流∑Iu、V相累计电流∑Iv、W相累计电流∑Iw。
如图47所例示的那样,当在第一逆变器11的U相的上级侧开关元件3H发生了短路故障的状态下执行扭矩控制(脉冲宽度调制控制)时,三相电流波形成为非对称且失真的波形。如图47和图50所示,成为U相电流Iu向正侧大幅偏转,V相电流Iv和W相电流Iw向负侧大幅偏转的波形。在此,旋转电机控制装置1在规定时间(例如200[ms])内累计三相电流(U相电流Iu、V相电流Iv、W相电流Iw)。对向正侧大幅偏转的U相电流Iu偏转进行累计而得到的U相累计电流∑Iu如图50所示向正侧增加(波形上升)。另外,对向负侧大幅偏转的V相电流Iv和W相电流Iw进行累计而得到的V相累计电流∑Iv和W相累计电流∑Iw向负侧增加(值减小,波形下降)。
旋转电机控制装置1在正侧和负侧设定预先规定的累计阈值,在将该累计阈值超过正侧或负侧的情况下,判定为发生了短路故障,并且能够确定短路故障的发生模式。这里,将正侧的累计阈值设为“Ith+”,将负侧的阈值设为“Ith-”。在图50所示的方式中,在以下那样的条件成立时,判定短路故障的发生。将该条件设为第一模式。
(∑Iu>Ith+)&&(∑Iv<Ith-)&&(∑Iw<Ith-)
此外,该条件除了在第一逆变器11的U相的上级侧开关元件3H发生了短路故障的情况以外,在第二逆变器12的U相的下级侧开关元件3L发生了短路故障的情况下也成立。
另外,在第一逆变器11的U相的下级侧开关元件3L发生了短路故障的状态下执行扭矩控制(脉冲宽度调制控制)的情况下,如图51的下级所示,三相电流波形也成为非对称且失真的波形。如图51所示,U相电流Iu成为向负侧大幅偏转,V相电流Iv和W相电流Iw向正侧大幅偏转的波形。对向负侧大幅偏转的U相电流Iu进行累计而得到的U相累计电流∑Iu如图51所示向负侧逐渐增加(值减小,波形下降)。另外,对向正侧大幅偏转的V相电流Iv和W相电流Iw进行累计而得到的V相累计电流∑Iv和W相累计电流∑Iw向正侧增加(波形上升)。在图51所例示的方式中,在以下那样的条件成立时,判定短路故障的发生。将该条件设为第二模式。
(∑Iu<Ith-)&&(∑Iv>Ith+)&&(∑Iw>Ith+)
此外,该条件除了在第一逆变器11的U相的下级侧开关元件3L发生短路故障的情况以外,在第二逆变器12的U相的上级侧开关元件3H发生短路故障的情况下也成立。
构成第一逆变器11和第二逆变器12的十二个开关元件3发生短路故障时成立的条件如下述表9所示,有从第一模式到第六模式这六种。在以下说明中,各个开关元件3使用三相识别符号(U、V、W)、第一逆变器11和第二逆变器12的识别号(1、2)、上级侧开关元件3H和下级侧开关元件3L的识别符号(H、L),例如如果是第一逆变器11的U相的上级侧开关元件3H则标记为“U1H”,如果是第二逆变器12的W相的下级侧开关元件3L则标记为“W2L”。
【表9】
模式 判定条件 故障部位
1 (∑Iu>Ith+)&&(∑Iv<Ith-)&&(∑Iw<Ith-) U1H、U2L
2 (∑Iu<Ith-)&&(∑Iv>Ith+)&&(∑Iw>Ith+) U1L、U2H
3 (∑Iu<Ith-)&&(∑Iv>Ith+)&&(∑Iw<Ith-) V1H、V2L
4 (∑Iu>Ith+)&&(∑Iv<Ith-)&&(∑1w>Ith+) V1L、V2H
5 (∑Iu<Ith-)&&(∑Iv<Ith-)&&(∑Iw>Ith+) W1H、W2L
6 (∑Iu>Ith+)&&(∑Iv>Ith+)&&(∑Iw<Ith-) W1L、W2H
如上所述,在图49的步骤S1中,判明了在第一逆变器11和第二逆变器12中的哪个逆变器10中发生短路故障。因此,在图49的步骤S9中,如果判定成立的条件是第一模式至第六模式中的哪一个,则能够判别在哪个逆变器10的上级侧臂或下级侧臂中发生了短路故障。例如,在第一逆变器11发生短路故障且满足第四模式的条件的情况下,判别为在第一逆变器11的下级侧臂正在发生短路故障。在本实施方式中,还判别下级侧臂中的哪个开关元件3发生短路故障。在该例中,判别为第一逆变器11的V相的下级侧开关元件3L(V1L)发生短路故障。
如上所述,在旋转电机80的转速小于规定转速(或小于规定调制率)的情况下执行步骤S9。旋转电机控制装置1基于预先规定的规定扭矩(例如图44和图47所示的第二扭矩指令T2)以下的扭矩指令,对第一逆变器11和第二逆变器12进行扭矩控制。然后,旋转电机控制装置1在执行扭矩控制过程中,基于各个电流累计值(U相累计电流∑Iu、V相累计电流∑Iv、W相累计电流∑Iw)的正负来判别在故障逆变器的上级侧臂和下级侧臂中的哪一个发生短路故障。
这样,在第一逆变器11为故障逆变器情况下,多个电流累计值(U相累计电流∑Iu、V相累计电流∑Iv、W相累计电流∑Iw)中的一相的电流累计值为正,其他相的电流累计值为负的情况下,判别为在故障逆变器的上级侧臂中发生短路故障(表9:模式1、3、5),在多个电流累计值中的一相的电流累计值为负,其他相的电流累计值为正的情况下,判断为在故障逆变器的下级侧机械臂发生短路故障(表9:模式2、4、6)。另外,在第二逆变器为故障逆变器情况下,在多个电流累计值中的一相的电流累计值为正,其他相的电流累计值为负的情况下,判别为在故障逆变器的下级侧臂发生短路故障(表9:模式1、3、5),在多个电流累计值中的一相的电流累计值为负,其他相的电流累计值为正的情况下,判别为在故障逆变器的上级侧臂发生短路故障(表9:模式2、4、6)。
旋转电机80的转速为规定转速以上(或规定调制率以上)的情况也同样。在旋转电机80的转速为规定转速以上的情况下,旋转电机控制装置1执行使第一逆变器11和第二逆变器12这两个逆变器10的全部的开关元件3为断开状态的关机控制。并且,旋转电机控制装置1在执行关机控制的过程中,基于各个电流累计值的正负来判别在故障逆变器的上级侧臂和下级侧臂中的哪一个发生短路故障。
第一逆变器11的U相的上级侧开关元件3H(U1H)发生短路故障,执行关机控制,即使在旋转电机80的转速为规定转速以上的情况下,三相电流波形也成为非对称且失真的波形。如图52所示,成为U相电流Iu向正侧大幅偏转,V相电流Iv和W相电流Iw向负侧大幅偏转的波形。对向正侧大幅偏转的U相电流Iu进行累计而得到的U相累计电流∑Iu如图52所示向正侧增加(波形上升)。另外,对向负侧大幅偏转的V相电流Iv和W相电流Iw进行累计而得到的V相累计电流∑Iv和W相累计电流∑Iw向负侧增加(值减小,波形下降)。该倾向与图50所示的方式相同。在图52所示的方式中,在以下那样的条件成立时,判定短路故障的发生。该条件与上述表9所示的第一模式相同。
(∑Iu>Ith+)&&(∑Iv<Ith-)&&(∑1w<Ith-)
与上述同样,该条件除了在第一逆变器11的U相的上级侧开关元件3H(U1H)发生短路故障的情况以外,在第二逆变器12的U相的下级侧开关元件3L(U2L)发生短路故障的情况下也成立。
另外,即使在第一逆变器11的U相的下级侧开关元件3L(U1L)发生了短路故障的状态下执行了关机控制的情况下,如图53的下级所示,三相电流波形也成为非对称且失真的波形。如图53所示,成为U相电流Iu向负侧大幅偏转,V相电流Iv和W相电流Iw向正侧大幅偏转的波形。对向负侧大幅偏转的U相电流Iu进行累计而得到的U相累计电流∑Iu如图53所示向负侧增加(值减小,波形下降)。另外,对向正侧大幅偏转的V相电流Iv和W相电流Iw进行累计而得到的V相累计电流∑Iv和W相累计电流∑Iw向正侧增加(波形上升)。该倾向与图51所示的方式相同。在图53所示的方式中,在以下的条件成立时,也判定短路故障的发生。该条件与上述表9所示的第二模式相同。
(∑Iu<Ith-)&&(∑Iv>Ith+)&&(∑Iw>Ith+)
与上述同样,该条件除了在第一逆变器11的U相的下级侧开关元件3L(U1L)发生短路故障的情况以外,在第二逆变器12的U相的上级侧开关元件3H(U2H)发生了短路故障的情况下也成立。
这样,在旋转电机80的转速为规定转速以上的情况下也同样,在步骤S5中,能够根据上述表9的条件来确定发生了短路故障的开关元件3。
如上所述,根据本实施方式,在构成开路绕组的两端所分别具有的两个逆变器10的开关元件3中的一个发生了短路故障的情况下,能够确定发生了故障的开关元件3。而且,能够以不使用故障的开关元件3的方式继续旋转电机80的控制。
在此,在第一逆变器11和第二逆变器12中,将与故障逆变器不同的逆变器10作为正常逆变器,将故障逆变器的上级侧臂和下级侧臂中的发生短路故障的一侧作为故障侧臂,将另一侧作为非故障侧臂。旋转电机控制装置1进行将故障逆变器的故障侧臂的开关元件3的全部设为接通状态、将非故障侧臂的开关元件3的全部设为断开状态的主动短路控制,并且进行经由正常逆变器驱动旋转电机80的单逆变器驱动控制。
例如,如上所述,在第一逆变器11的U相的上级侧开关元件3H(31H)发生了短路故障的情况下,第一逆变器11是故障逆变器,第二逆变器12是正常逆变器。而且,第一逆变器11的上级侧臂是故障侧臂,第一逆变器11的下级侧臂是非故障侧臂。旋转电机控制装置1进行使第一逆变器11的上级侧臂的开关元件3的全部设为接通状态,使第一逆变器11的下级侧臂的开关元件3的全部设为断开状态的上级侧主动短路控制(ASC-H),并且进行经由第二逆变器12驱动旋转电机80的单逆变器驱动控制。
图54示出作为比较例的1逆变器系统的旋转电机80B的控制区域的一例。另外,图55示出1逆变器系统中的发生短路故障后的扭矩指令和旋转电机80B的转速。当旋转电机80B在第一动作点Q1在动作中的时刻tf发生短路故障时,通过短路检测在时刻t0立即执行关机控制。为了对应通过执行关机控制而流过的大电流,在时刻t1立即执行主动短路控制。通过主动短路控制,旋转电机80的转速降低,在时刻tz,旋转电机80B的转速变为“零”,旋转电机80B停止。即,以使动作点经过第二动作点Q2朝向原点Q0的方式控制旋转电机80B。这样,在1逆变器系统中,在发生了短路故障的情况下,不能继续旋转电机80B的驱动,也不能继续车辆的行驶。
但是,根据本实施方式,如上所述,能够在构成开路绕组的两端所分别具有的两个逆变器10的开关元件3中的一个发生短路故障的情况下确定故障部位。
(实施方式的概要)
下面,对上述说明的旋转电机控制装置(1)的概要进行简单说明。
(1-1)作为一个方式,一种旋转电机控制装置(1),经由第一逆变器(11)和第二逆变器(12)对具有相互独立的多相开路绕组(8)的旋转电机(80),其中,所述第一逆变器(11)与所述多相开路绕组(8)的一端侧连接,在直流与多相交流之间转换电力,所述第二逆变器(12)与所述多相开路绕组(8)的另一端侧连接,在直流与多相交流之间转换电力,在所述第一逆变器(11)和所述第二逆变器(12)中,交流一相的臂(3A)分别由上级侧开关元件(3H)和下级侧开关元件(3L)的串联电路构成,能够对所述第一逆变器(11)和所述第二逆变器(12)相互独立地进行控制,在所述第一逆变器(11)和所述第二逆变器(12)中的某一个逆变器(10)中发生了一个开关元件(3)始终成为开路状态的开路故障的情况下,对多相的交流电流(Iu、Iv、Iw)分别进行累计并运算各相的电流累计值(∑Iu、∑Iv、∑Iw),基于各个所述电流累计值(∑Iu、∑Iv、∑Iw)的正负来检测所述开路故障的发生,并判别发生了所述开路故障的部位,在通过以在电角度的1/2周期即第一期间中输出模式不同的多个脉冲,在剩余的1/2周期即第二期间中持续非有效状态的方式进行控制的混合脉冲宽度调制控制,对所述第一逆变器(11)和所述第二逆变器(12)这两个所述逆变器进行控制时,在检测到所述开路故障的发生的情况下,基于第一控制状态下的各个所述电流累计值(∑Iu、∑Iv、∑Iw)的正负来判别是第一故障模式(FP1)和第二故障模式(FP2)中的哪一个故障模式(FP),所述第一故障模式(FP1)为所述第一逆变器(11)的上级侧臂和所述第二逆变器(12)的下级侧臂中的某一个是发生了所述开路故障的故障侧臂,所述第二故障模式(FP2)为所述第一逆变器(11)的所述下级侧臂和所述第二逆变器(12)的所述上级侧臂中的某一个是所述故障侧臂,基于与所述第一控制状态不同的第二控制状态下的各个所述电流累计值(∑Iu、∑Iv、∑Iw)来判别是第一下级侧故障模式(LF1)和第二下级侧故障模式(LF2)中的哪一个下级侧故障模式(LF),所述第一下级侧故障模式为所述第二逆变器的所述下级侧臂是所述故障侧臂,所述第二下级侧故障模式为所述第一逆变器的所述下级侧臂是所述故障侧臂,基于所述第一控制状态下的判别结果和所述第二控制状态下的判别结果,判别所述第一逆变器的所述上级侧臂、所述第一逆变器的所述下级侧臂、所述第二逆变器的所述上级侧臂以及所述第二逆变器的所述下级侧臂中的哪一个是所述故障侧臂。
根据发明人的实验和模拟,确认了在两个逆变器(10)中的某一个发生了开关元件(3)的开路故障的情况下,三相电流波形成为非对称且失真的波形。例如,某相的交流电流的波形向正侧大幅偏转,另外,某相的交流电流的波形向负侧大幅偏转。并且,当在规定时间内累计交流电流(Iu、Iv、Iw)时,该偏转的倾向更显著地显现。偏转的方向根据开路故障的开关元件(3)的位置而不同。因此,如果基于电流累计值(∑Iu、∑Iv、∑Iw)的正负,则能够判别发生了开路故障以及开路故障是在哪一个逆变器(10)的上级侧臂和下级侧臂中发生的。另外,根据发明人等实验和模拟,在第二控制状态下,在上级侧臂发生开路故障的情况下,开路故障的检测本身很困难,但是在下级侧臂发生开路故障的情况下,能够检测开路故障,且能够判别是哪一个逆变器(10)中的故障。在第一控制状态下,无论在上级侧臂和下级侧臂中的哪一个发生开路故障,都能够检测开路故障。但是,在第一控制状态下,可以判别故障模式(FP)是第一故障模式(FP1)还是第二故障模式(FP2),但是不能判别是哪一个逆变器(10)。根据本结构,在下级侧臂发生开路故障的情况下,至少能够根据第二控制状态下的判别结果来判别故障侧臂。另外,无论是在上级侧臂发生开路故障的情况下,还是在下级侧臂发生开路故障的情况下,只要基于第一控制状态下的判别结果和第二控制状态下的判别结果,就能够判别故障侧臂。这样,根据本结构,能够在构成开路绕组(8)两端所分别具有的两个逆变器(10)的开关元件(3)中的一个发生了开路故障的情况下确定故障部位。
(1-2)优选地,旋转电机控制装置(1)在所述第一控制状态下判别为是所述第一故障模式(FP1)且在所述第二控制状态下判别为所述第一下级侧故障模式(LF)的情况下,判别为所述第二逆变器(12)的所述下级侧臂是所述故障侧臂,在所述第一控制状态下判别为是所述第一故障模式(FP1)且在所述第二控制状态下判别为不是所述下级侧故障模式(LF)的情况下,判别为所述第一逆变器(11)的所述上级侧臂是所述故障侧臂,在所述第一控制状态下判别为是所述第二故障模式(FP2)且在所述第二控制状态下判别为是所述下级侧故障模式(LF)的情况下,判别为所述第一逆变器的所述下级侧臂是所述故障侧臂,在所述第一控制状态下判别为是所述第二故障模式(FP2)且在所述第二控制状态下判别为不是所述下级侧故障模式(1F)的情况下,判别为所述第二逆变器(12)的所述上级侧臂是所述故障侧臂。
根据该结构,能够基于在第一控制状态下判别的故障模式(FP)和在第二控制状态下判别的是否是下级侧故障模式(LF)的判别结果,来适当地确定故障侧臂。
(1-3)另外,优选地,在旋转电机控制装置(1)中,在多个所述电流累计值(∑Iu、∑Iv、∑Iw)中的一相的所述电流累计值为负且其他相的所述电流累计值为正的情况下,判别为所述第一故障模式(FP1),在多个所述电流累计值(∑Iu、∑Iv、∑Iw)中的一相的所述电流累计值为正且其他相的所述电流累计值为负的情况下,判别为所述第二故障模式(FP2)。
通过发明人的实验和模拟,确认了包含发生了开路故障的开关元件(3)的相的交流电流在第一控制状态时,以与其他相的交流电流不同的倾向偏转。因此,能够基于如上所述的偏转的倾向来确定故障部位。
(1-4)另外,优选地,在旋转电机控制装置(1)中,在多个所述电流累计值(∑Iu、∑Iv、∑Iw)中的一相的所述电流累计值为负且其他相的所述电流累计值为正的情况下,判别为是所述第一下级侧故障模式(LF1),在多个所述电流累计值(∑Iu、∑Iv、∑Iw)中的一相的所述电流累计值为正,其他相的所述电流累计值为负的情况下,判别为所述第二下级侧故障模式(LF2)。
通过发明人的实验和模拟,确认了包含发生了开路故障的开关元件(3)的相的交流电流在第二控制状态时,以与其他相的交流电流不同的倾向偏转。因此,能够根据如上所述的偏转倾向来确定故障部位。
(1-5)另外,优选地,所述第一控制状态为所述旋转电机(80)的转速在预先规定的第一规定转速以上的动力运行,所述第二控制状态为再生。
根据发明人的实验和模拟,确认了在发生开路故障的情况下,当通过混合脉冲宽度调制控制对逆变器(10)进行开关控制时,交流电流(Iu、Iv、Iw)的举动根据动力运行和再生而不同。因此,通过使第一控制状态为动力运行、使第二控制状态为再生,能够适当地判别故障臂。
(1-6)另外,优选地,在所述旋转电机控制装置(1)中,在所述第二控制状态为再生,在所述第二控制状态下检测出所述开路故障的发生的情况下,执行抑制因所述开路故障引起的多相的交流电流(Iu、Iv、Iw)的失真的再生失效动作。
根据发明人的实验和模拟,在上级侧臂发生了开路故障的情况下,在第二控制状态下,交流电流(Iu、Iv、Iw)的波形不会发生大的失真。因此,即使上级侧臂发生开路故障,在第二控制状态下,在一定的条件下,也有与未发生了开路故障的情况同样地控制逆变器10的余地。根据本结构,通过执行抑制因开路故障引起的多相的交流电流(Iu,Iv,Iw)的失真的再生失效动作,即使发生开路故障,也能够与未发生了开路故障的情况同样地控制逆变器(10)。
(1-7)在此,优选地,所述再生失效动作对所述第一逆变器(11)的所述上级侧臂的开关模式和所述第二逆变器(12)的所述下级侧臂的开关模式进行调换,并且对所述第一逆变器(11)的所述下级侧臂的开关模式和所述第二逆变器(12)的所述上级侧臂的开关模式进行调换,或者,对所述第一逆变器(11)的所述上级侧臂的开关模式和所述下级侧臂(12)的开关模式进行调换,并且对所述第二逆变器(12)的所述上级侧臂的开关模式和所述下级侧臂的开关模式进行调换,进而,使多相的所述交流电流(Iu、Iv、Iw)彼此的正负反转。
根据发明人的实验和模拟,在上级侧臂正在发生开路故障的情况下,在第二控制状态下,交流电流(Iu、Iv、Iw)的波形不会发生大的失真。根据本结构,从外观上看,通过调换上级侧臂和下级侧臂,能够将发生开路故障的故障侧臂设为上级侧臂,从而能够得到抑制失真的交流电流(Iu、Iv、Iw)。
(1-8)在此,优选地,通过再生,使所述旋转电机(80)的转速降低。
根据该结构,通过利用用于判别故障部位的再生动作,使旋转电机80的转速降低,从而能够缩短到在判别出故障部位后使用一个逆变器(10)来驱动旋转电机80等的下一个控制为止的准备时间(lead time)。
(1-9)另外,优选地,所述第一控制状态为所述旋转电机(80)的转速在预先规定的第一规定转速以上的动力运行,所述第二控制状态为所述旋转电机(80)的转速在低于所述第一规定转速的第二规定转速以下的动力运行。
根据发明人的实验和模拟,确认了在发生开路故障的情况下,当通过混合脉冲宽度调制控制对逆变器(10)进行开关控制时,即使是相同的动力运行,交流电流(Iu,Iv,Iw)的举动也根据转速而不同。特别是,确认了在转速低的情况下,成为与再生同样的举动。因此,通过将第一控制状态设为动力运行,将第二控制状态设为基于比第一控制状态低的转速的动力运行,能够适当地判别故障臂。
(1-10)另外,优选地,在旋转电机控制装置(1)中,在所述第一控制状态下,检测所述开路故障的发生并且判别所述故障模式(FP),之后,在所述第二控制状态下判别所述下级侧故障模式(LF),之后,基于所述第一控制状态的判别结果和所述第二控制状态的判别结果来判别所述故障侧臂。
根据该结构,通过依次执行实现第一控制状态的控制和实现第二控制状态的控制,能够适当地判别故障侧臂。
(1-11)另外,优选地,在旋转电机控制装置(1)中,在所述第一控制状态下检测所述开路故障的发生并且判别所述故障模式(FP)后,在所述旋转电机(80)的转速在预先规定的第一规定转速以上的情况下,将再生设为所述第二控制状态来判别所述下级侧故障模式(LF),在所述旋转电机(80)的转速小于所述第一规定转速的情况下,将比所述第一规定转速低的第二规定转速以下的动力运行作为所述第二控制状态来判别所述下级侧故障模式(LF)。
若将控制方式从动力运行变更为再生,则旋转电机(80)的转速降低。在旋转电机80的转速低的情况下,有可能通过再生而使旋转电机(80)停止。根据本结构,在旋转电机80的转速小于第一规定转速的情况下,进行在第一规定转速以下的动力运行,而不进行再生,因此能够以不使旋转电机(80)停止的方式适当地判别故障部位。
(1-12)在此,优选地,在所述旋转电机(80)的转速小于预先规定的第一规定转速的情况下,通过将多相的全部的所述开关元件(3)设为断开状态的关机控制或以所述旋转电机(80)的输出扭矩变为零的方式进行控制的零牛顿控制,使所述旋转电机(80)的转速降低到所述第二规定转速以下。
根据该结构,在不能再生的转速的情况下,能够适当地使旋转电机(80)的转速降低到第二规定转速以下而成为第二控制状态。
(1-13)另外,在所述第一控制状态下,检测所述开路故障的发生并且判别所述故障模式(FP),之后,在所述第二控制状态下判别所述下级侧故障模式(LF),之后,基于所述第一控制状态的判别结果和所述第二控制状态的判别结果来判别所述故障侧臂的旋转电机控制装置(1),在不通过所述混合脉冲宽度调制控制,而通过在所述第二期间(T2)中也输出模式不同的多个脉冲并在电角度的一个周期中输出模式不同的多个脉冲的脉冲宽度调制控制,或者通过在电角度的一个周期中输出一个脉冲的矩形波控制对所述第一逆变器(11)和所述第二逆变器(12)这两个所述逆变器(10)进行控制时,在所述第一控制状态下检测出所述开路故障的发生的情况下,在所述第一控制状态下判别所述故障模式(FP),之后,将所述第一逆变器(11)和所述第二逆变器(12)这两个所述逆变器(10)的控制方式变更为所述混合脉冲宽度调制控制,并且在所述第二控制状态下判别所述下级侧故障模式(LF),之后,基于所述第一控制状态的判别结果和所述第二控制状态的判别结果来判别所述故障侧臂。
根据发明人等实验和模拟,在两个逆变器(10)通过混合脉冲宽度调制控制进行开关控制的情况下,如上所述,在发生了开路故障的情况下,在第一控制状态和第二控制状态下,观察到交流电流(Iu,Iv,Iw)的举动不同,但当通过例如通常已知的脉冲宽度调制控制进行开关控制时,发现没有观察到这样的差异。但是,在发生了开路故障的情况下,判别发生了开路故障以及故障模式(FP)是第一故障模式(FP1)还是第二故障模式(FP2)。根据本结构,在第一控制状态下判别了这些之后,逆变器10的控制方式被变更为混合脉冲宽度调制控制,从而实现第二控制状态。因此,在第一控制状态和第二控制状态下,观测到交流电流(Iu,Iv,Iw)的举动不同,从而能够判别故障侧臂。
(1-14)另外,作为一个方式,一种旋转电机控制装置(1),经由第一逆变器(11)和第二逆变器(12)对具有相互独立的多相开路绕组(8)的旋转电机进行驱动控制,其中,所述第一逆变器(11)与所述多相开路绕组(8)的一端侧连接,在直流与多相交流之间转换电力,所述第二逆变器(12)与所述多相开路绕组(8)的另一端侧连接,在直流与多相交流之间转换电力,在所述第一逆变器(11)和第二逆变器(12)中,交流一相的臂(3A)分别由上级侧开关元件(3H)和下级侧开关元件(3L)的串联电路构成,能够对所述第一逆变器(11)和所述第二逆变器(12)相互独立地进行控制,在所述第一逆变器(11)和所述第二逆变器(12)中的某一个逆变器(10)中发生了一个开关元件(3)始终成为开路状态的开路故障的情况下,对多相的交流电流(Iu、Iv、Iw)分别进行累计并计算各相的电流累计值(∑Iu、∑Iv、∑Iw),基于各个所述电流累计值(∑Iu、∑Iv、∑Iw)的正负来检测所述开路故障的发生,并判别发生了所述开路故障的部位,在检测到所述开路故障的发生的情况下,基于各个所述电流累计值(∑Iu、∑Iv、∑Iw)的正负来判别是第一故障模式(FP1)和第二故障模式(FP2)中的哪一个故障模式,所述第一故障模式(FP1)为在所述第一逆变器(11)的上级侧臂和所述第二逆变器(12)的下级侧臂中的某一个发生了所述开路故障,所述第二故障模式(FP2)为在所述第一逆变器(11)的所述下级侧臂和所述第二逆变器(12)的所述上级侧臂中的某一个发生了所述开路故障,之后,将所述第一逆变器(11)和所述第二逆变器(12)中的某一个所述逆变器(10)假设为发生了所述开路故障的故障逆变器并作为假设故障逆变器,基于判别出的所述故障模式(FP),在该假设故障逆变器的所述上级侧臂和所述下级侧臂中的被假设为发生所述开路故障的故障侧臂的假设故障侧臂的所述开关元件(3)的全部设为接通状态,将另一侧的非假设故障侧臂的所述开关元件(3)的全部的全部设为接通状态来进行主动短路控制,并且对与所述假设故障逆变器不同的所述逆变器进行开关控制,之后,基于各个所述电流累计值(∑Iu、∑Iv、∑Iw)的正负,在未检测到所述开路故障的情况下,判别为所述假设故障逆变器是所述故障逆变器,并且判别为所述假设故障侧臂是所述故障侧臂,在检测到所述开路故障的情况下,判别为与所述假设故障逆变器不同的所述逆变器是所述故障逆变器,并且基于所述故障模式(FP)来判别该故障逆变器中的所述故障侧臂。
根据该结构,在检测到发生开路故障的情况下,假设故障侧臂并作为假设故障侧臂,以即使该假设故障侧臂发生开路故障也能够进行的方式对逆变器(10)进行开关控制。在该状态下,如果没有再次检测出是开路故障,则判断为假设正确,如果再次检测出是开路故障,则判断为假设错误。因此,根据本结构,能够确定故障侧臂。
(1-15)在此,优选地,在旋转电机控制装置(1)中,在检测到所述开路故障的发生的情况下,判别是所述第一故障模式(FP1)和所述第二故障模式(FP2)中的哪一个故障模式(FP),之后,通过所述主动短路控制、或将多相的全部的所述开关元件(3)设为断开状态的关机控制、或以所述旋转电机(80)的输出扭矩变为零的方式进行控制的零牛顿控制,使所述旋转电机(80)的转速降低,之后,对与所述假设故障逆变器不同的所述逆变器(10)进行开关控制。
在旋转电机(80)仅由与假设故障逆变器不同的逆变器(10)驱动的情况下,旋转电机(80)的动作区域比使用两个逆变器(10)驱动的情况窄,例如能够动作的转速也变低。根据该结构,通过在对与假设故障逆变器不同的逆变器(10)进行开关控制之前降低旋转电机(80)的转速,能够适当地仅由该逆变器(10)驱动旋转电机(80)。
(1-16)另外,优选地,在旋转电机控制装置(1)中,在因所述开路故障的发生而发生过电流状态的情况下,通过将多相的全部的所述开关元件(3)设为断开状态的关机控制、或者将多相的全部的所述臂(3A)的所述上级侧开关元件(3H)设为接通状态或将多相的全部的所述臂(3A)的所述下级侧开关元件(3L)设为接通状态的主动短路控制,使所述旋转电机(80)的转速降低来消除所述过电流状态,之后,判别所述故障侧臂。
根据发明人的实验和模拟,确认了例如在旋转电机(80)的输出扭矩大、转速也高的动作点发生开路故障等情况下,三相交流电流的瞬时值有时会成为非常大的值。在这种情况下,检测为过电流状态,一般来说限制逆变器(10)的控制。因此,在这种情况下,优选在消除过电流状态后,判别故障侧臂。
(1-17)另外,优选地,在旋转电机控制装置(1)中,将在所述第一逆变器(11)和所述第二逆变器(12)中的发生了所述开路故障的所述逆变器(10)设为故障逆变器,将与所述故障逆变器不同的所述逆变器(10)设为正常逆变器,在所述故障逆变器的所述上级侧臂和所述下级侧臂中的与所述故障侧臂相反一侧设为非故障侧臂,进行将所述故障逆变器的所述故障侧臂的所述开关元件(3)的全部设为断开状态,将所述非故障侧臂的所述开关元件(3)的全部设为接通状态的主动短路控制,并且进行经由所述正常逆变器来驱动所述旋转电机(80)的单逆变器驱动控制。
在开路绕组(8)的两端分别连接有逆变器(10)的情况下,如果通过主动短路控制使故障逆变器短路,则多相开路绕组(8)在故障逆变器中被短路。即,故障逆变器成为中性点,开路绕组(8)被Y型接线。在故障逆变器的上级侧臂和下级侧臂中的包含发生了开路故障的开关元件(3)的故障侧臂成为断开状态而被进行主动短路控制,因此,发生开路故障的开关元件(3)与未发生开路故障的状态等价。因此,旋转电机控制装置1能够适当地对具有经由正常逆变器而Y型接线的开路绕组8的旋转电机80进行驱动控制
(1-18)在此,优选地,在旋转电机控制装置(1)中,通过在电角度的一个周期中输出模式不同的多个脉冲的脉冲宽度调制控制来进行所述单逆变器驱动控制。
在混合脉冲宽度调制控制中,在第二期间(T2),开关控制信号成为非有效状态,能够降低系统损耗。通过在第一逆变器(11)和第二逆变器(12)中将相互不同的期间作为第二期间(T2),作为整体,能够实现连续地由多个脉冲进行开关的状态。但是,在单逆变器驱动控制中,由于仅切换某一个逆变器(10),所以在混合脉冲宽度调制控制中,交流波形发生失真。因此,单逆变器驱动控制优选通过在电角度的一个周期中输出模式不同的多个脉冲的脉冲宽度调制控制来执行。
(2-1)另外,作为一个方式,一种旋转电机控制装置(1),经由第一逆变器(11)和第二逆变器(12)对具有相互独立的多相开路绕组(8)的旋转电机(80)进行驱动控制,其中,所述第一逆变器(11)与所述多相开路绕组(8)的一端侧连接,在直流与多相交流之间转换电力,所述第二逆变器(12)与所述多相开路绕组(8)的另一端侧连接,在直流与多相交流之间转换电力,在所述第一逆变器(11)和所述第二逆变器(12)中,交流一相的臂(3A)分别由上级侧开关元件(3H)和下级侧开关元件(3L)的串联电路构成,能够对所述第一逆变器(11)和所述第二逆变器(12)相互独立地进行控制,在所述第一逆变器(11)和所述第二逆变器(12)中的某一个逆变器(10)中,在发生了一个开关元件(3)短路的短路故障的情况下,将发生了所述短路故障的所述逆变器(10)设为故障逆变器,对多相的交流电流(Iu、Iv、Iw)分别进行累计并运算各相的电流累计值(∑Iu、ΣIv、∑Iw),并基于各个所述电流累计值(∑Iu、∑Iv、∑Iw)的正负来判别在所述故障逆变器的上级侧臂和下级侧臂中的哪一个发生所述短路故障。
根据发明人的实验和模拟,在确认了在两个逆变器(10)中的某一个发生了开关元件(3)的短路故障的情况下,三相电流波形成为非对称且失真的波形。例如,某相的交流电流的波形向正侧大幅偏转,另外,某相的交流电流的波形向负侧大幅偏转。并且,当在规定时间内累计交流电流(Iu、Iv、Iw)时,该偏转的倾向更显著地显现。偏转的方向根据发生了短路故障的开关元件(3)的位置而不同。因此,如果基于电流累计值(∑Iu、∑Iv、∑Iw)的正负,则能够判别在故障逆变器的上级侧臂和下级侧臂中的哪一个发生短路故障。能够通过确定故障部位,以不受该故障部位的影响的方式,控制两个逆变器10,从而能够继续驱动旋转电机80。这样,根据本结构,能够在构成开路绕组(8)两端所分别具有的两个逆变器(10)的开关元件(3)中的一个发生短路故障的情况下确定故障部位。
(2-2)另外,优选地,在旋转电机控制装置(1)中,在所述第一逆变器(11)是所述故障逆变器的情况下,在多个所述电流累计值(∑Iu、∑Iv、∑Iw)中的一相的所述电流累计值为正且其他相的所述电流累计值为负的情况下,判定为在所述故障逆变器的所述上级侧臂发生所述短路故障,在多个所述电流累计值(∑Iu、∑Iv、∑Iw)中的一相的所述电流累计值为负且其他相的所述电流累计值为正的情况下,判定为在所述故障逆变器的所述下级侧臂发生所述短路故障,在所述第二逆变器(12)是所述故障逆变器的情况下,在多个所述电流累计值(∑Iu、∑Iv、∑Iw)中的一相的所述电流累计值为正且其他相的所述电流累计值为负的情况下,判定为在所述故障逆变器的所述下级侧臂发生所述短路故障,在多个所述电流累计值(∑Iu、∑Iv、∑Iw)中的一相的所述电流累计值为负且其他相的所述电流累计值为正的情况下,判定为在所述故障逆变器的所述上级侧臂发生所述短路故障。
通过发明人的实验和模拟,确认了包含短路故障的开关元件(3)的相的交流电流以与其他相的交流电流不同的倾向偏转。因此,能够根据如上所述的偏转倾向来确定故障部位。
(2-3)另外,优选地,在旋转电机控制装置(1)中,在上述旋转电机(80)的转速在预先规定的规定转速以上的情况下,或者在多相交流的线电压的有效值相对于直流电压的比例即调制率为预先规定的规定调制率以上的情况下,执行使所述第一逆变器(11)和所述第二逆变器(12)这两个所述逆变器(10)的全部的所述开关元件(3)为断开状态的关机控制,在执行所述关机控制的过程中,基于各个所述电流累计值(∑Iu、∑Iv、∑Iw)的正负,判别在所述故障逆变器的所述上级侧臂和所述下级侧臂中的哪一个发生所述短路故障。
在第一逆变器(11)和第二逆变器(12)分别连接在开路绕组(8)的两端的方式中,在未发生故障的一个逆变器(10)的全部的开关元件(3)成为非导通状态的情况下,只能向从负极朝向正极的方向流过电流。但是,当反电动势(BEMF)大于逆变器(10)的直流侧的电压(Vdc)时,经由与逆变器(10)连接的直流电源(6),也能够在全部的开关元件(3)成为非导通状态的逆变器(10)上形成电流的流通路径。由于反电动势(BEMF)与旋转电机(80)的转速之间具有线性,因此,在旋转电机(80)的转速为规定转速以上的情况下,能够如上所述迅速地判别故障部位。另外,即使在调制率高的情况下,也存在旋转电机80的输出变大、转速也变高的倾向,因此,能够如上所述迅速地判别故障部位。
(2-4)另外,优选地,在旋转电机控制装置(1)中,在所述旋转电机(80)转速小于预先规定的规定转速的情况下,或者多相交流的线电压的有效值相对于直流电压的比例即调制率小于预先规定的规定调制率的情况下,基于预先规定的规定扭矩(T2)以下的扭矩指令,对所述第一逆变器(11)和所述第二逆变器(12)进行扭矩控制,在执行所述扭矩控制的过程中,基于各个所述电流累计值(∑Iu、∑Iv、∑Iw)的正负,判别在所述故障逆变器的所述上级侧臂和所述下级侧臂中的哪一个发生所述短路故障。
在第一逆变器11和第二逆变器12分别与开路绕组8的两端连接的方式中,在反电动势(BEMF)比逆变器10的直流侧的电压(Vdc)小的情况下,在未发生故障的一个逆变器(10)的全部的开关元件(3)成为非导通状态的情况下,只能向从负极朝向正极的方向流过电流。因此,如果在检测到短路故障的情况下进行关机控制,则无法判别故障部位。根据本结构,通过利用消耗电流相对少的低扭矩的规定扭矩(T2)驱动两个逆变器(10),能够使电流流过逆变器(10)。因此,在发生短路故障的状态下,既能够抑制对逆变器(10)或开路绕组(8)的负荷,又能够进行故障部位的判别。
(2-5)另外,优选地,在旋转电机控制装置(1)中,将所述第一逆变器(11)及所述第二逆变器(12)中的与所述故障逆变器不同所述逆变器(10)设为正常逆变器,将所述故障逆变器的所述上级侧臂及所述下级侧臂中的发生所述短路故障一侧设为故障侧臂,将另一侧设为非故障侧臂,进行将所述故障逆变器的所述故障侧臂的所述开关元件(3)的全部设为接通状态,将上述非故障侧臂的上述开关元件(3)的全部设为断开状态的主动短路控制,并且进行经由所述正常逆变器来驱动所述旋转电机(80)的单逆变器驱动控制。
在开路绕组(8)的两端分别连接有逆变器(10)的情况下,如果通过主动短路控制使故障逆变器短路,则多相开路绕组(8)在故障逆变器中被短路。即,故障逆变器成为中性点,开路绕组(8)被Y型接线。在故障逆变器的上级侧臂和下级侧臂中的包含发生了短路故障的开关元件(3)的故障侧臂被短路而被进行主动短路控制,因此,发生短路故障的开关元件(3)与未发生短路故障的状态等价。因此,旋转电机控制装置1能够适当地驱动控制具有经由正常逆变器而Y型接线的开路绕组(8)的旋转电机(80)。
附图标记的说明:
1:旋转电机控制装置,3:开关元件,3A:臂,3H:上级侧开关元件,3L:下级侧开关元件,8:定子线圈(开路绕组),10:逆变器,11:第一逆变器,12:第二逆变器,80:旋转电机,FP:故障模式,FP1:第一故障模式,FP2:第二故障模式,LF:下级侧故障模式,LF1:第一下级故障模式,LF2:第二下级故障模式,H1:第一期间,H2:第二期间,Iu:U相电流(交流电流),Iv:V相电流(交流电流),Iw:W相电流(交流电流),T2:第二扭矩指令(规定扭矩),∑Iu:U相累计电流(电流累计值),∑Iv:V相累计电流(电流累计值),∑Iw:W相累计电流(电流累计值)。

Claims (10)

1.一种旋转电机控制装置,经由第一逆变器和第二逆变器对具有相互独立的多相开路绕组的旋转电机进行驱动控制,其中,
所述第一逆变器与所述多相开路绕组的一端侧连接,在直流与多相交流之间转换电力,
所述第二逆变器与所述多相开路绕组的另一端侧连接,在直流与多相交流之间转换电力,
在所述第一逆变器和所述第二逆变器中,交流一相的臂分别由上级侧开关元件和下级侧开关元件的串联电路构成,
能够对所述第一逆变器和所述第二逆变器相互独立地进行控制,
在所述第一逆变器和所述第二逆变器中的某一个逆变器中发生了一个开关元件始终成为开路状态的开路故障的情况下,对多相的交流电流分别进行累计并运算各相的电流累计值,基于各个所述电流累计值的正负来检测所述开路故障的发生,并判别发生了所述开路故障的部位,
在通过以在电角度的1/2周期即第一期间中输出模式不同的多个脉冲,在剩余的1/2周期即第二期间中持续非有效状态的方式进行控制的混合脉冲宽度调制控制,对所述第一逆变器和所述第二逆变器这两个所述逆变器进行控制时,在检测到所述开路故障的发生的情况下,
基于第一控制状态下的各个所述电流累计值的正负来判别是第一故障模式和第二故障模式中的哪一个故障模式,所述第一故障模式为所述第一逆变器的上级侧臂和所述第二逆变器的下级侧臂中的某一个是发生了所述开路故障的故障侧臂,所述第二故障模式为所述第一逆变器的所述下级侧臂和所述第二逆变器的所述上级侧臂中的某一个是所述故障侧臂,
基于与所述第一控制状态不同的第二控制状态下的各个所述电流累计值来判别是第一下级侧故障模式和第二下级侧故障模式中的哪一个下级侧故障模式,所述第一下级侧故障模式为所述第二逆变器的所述下级侧臂是所述故障侧臂,所述第二下级侧故障模式为所述第一逆变器的所述下级侧臂是所述故障侧臂,
基于所述第一控制状态下的判别结果和所述第二控制状态下的判别结果,判别所述第一逆变器的所述上级侧臂、所述第一逆变器的所述下级侧臂、所述第二逆变器的所述上级侧臂以及所述第二逆变器的所述下级侧臂中的哪一个是所述故障侧臂。
2.根据权利要求1所述的旋转电机控制装置,其中,
在所述第一控制状态下判别为是所述第一故障模式且在所述第二控制状态下判别为所述第一下级侧故障模式的情况下,判别为所述第二逆变器的所述下级侧臂是所述故障侧臂,
在所述第一控制状态下判别为是所述第一故障模式且在所述第二控制状态下未判别为所述下级侧故障模式的情况下,判别为所述第一逆变器的所述上级侧臂是所述故障侧臂,
在所述第一控制状态下判别为是所述第二故障模式且在所述第二控制状态下判别为所述第二下级侧故障模式的情况下,判别为所述第一逆变器的所述下级侧臂是所述故障侧臂,
在所述第一控制状态下判别为是所述第二故障模式且在所述第二控制状态下未判别为所述下级侧故障模式的情况下,判别为所述第二逆变器的所述上级侧臂是所述故障侧臂。
3.根据权利要求1或2所述的旋转电机控制装置,其中,
在多个所述电流累计值中的一相的所述电流累计值为负且其他相的所述电流累计值为正的情况下,判别为所述第一故障模式,
在多个所述电流累计值中的一相的所述电流累计值为正且其他相的所述电流累计值为负的情况下,判别为所述第二故障模式。
4.根据权利要求1~3中任意一项所述的旋转电机控制装置,其中,
在多个所述电流累计值中的一相的所述电流累计值为负且其他相的所述电流累计值为正的情况下,判别为是所述第一下级侧故障模式,
在多个所述电流累计值中的一相的所述电流累计值为正且其他相的所述电流累计值为负的情况下,判别为是所述第二下级侧故障模式。
5.根据权利要求1~4中任意一项所述的旋转电机控制装置,其中,
所述第一控制状态为所述旋转电机的转速在预先规定的第一规定转速以上的动力运行,所述第二控制状态为再生。
6.根据权利要求1~4中任意一项所述的旋转电机控制装置,其中,
所述第一控制状态为所述旋转电机的转速在预先规定的第一规定转速以上的动力运行,所述第二控制状态为所述旋转电机的转速在低于所述第一规定转速的第二规定转速以下的动力运行。
7.根据权利要求1~6中任意一项所述的旋转电机控制装置,其中,
在所述第一控制状态下,检测所述开路故障的发生并且判别所述故障模式,之后,在所述第二控制状态下判别所述下级侧故障模式,之后,基于所述第一控制状态的判别结果和所述第二控制状态的判别结果来判别所述故障侧臂,
在不通过所述混合脉冲宽度调制控制,而通过在所述第二期间中也输出模式不同的多个脉冲并在电角度的一个周期中输出模式不同的多个脉冲的脉冲宽度调制控制,或者通过在电角度的一个周期中输出一个脉冲的矩形波控制对所述第一逆变器和所述第二逆变器这两个所述逆变器进行控制时,在所述第一控制状态下检测出所述开路故障的发生的情况下,
在所述第一控制状态下判别所述故障模式,
之后,将所述第一逆变器和所述第二逆变器这两个所述逆变器的控制方式变更为所述混合脉冲宽度调制控制,并且在所述第二控制状态下判别所述下级侧故障模式,
之后,基于所述第一控制状态的判别结果和所述第二控制状态的判别结果来判别所述故障侧臂。
8.一种旋转电机控制装置,经由第一逆变器和第二逆变器对具有相互独立的多相开路绕组的旋转电机进行驱动控制,其中,
所述第一逆变器与所述多相开路绕组的一端侧连接,在直流与多相交流之间转换电力,
所述第二逆变器与所述多相开路绕组的另一端侧连接,在直流与多相交流之间转换电力,
在所述第一逆变器和所述第二逆变器中,交流一相的臂分别由上级侧开关元件和下级侧开关元件的串联电路构成,
能够对所述第一逆变器和所述第二逆变器相互独立地进行控制,
在所述第一逆变器和所述第二逆变器中的某一个逆变器中发生了一个开关元件始终成为开路状态的开路故障的情况下,对多相的交流电流分别进行累计并运算各相的电流累计值,基于各个所述电流累计值的正负来检测所述开路故障的发生,并判别发生了所述开路故障的部位,
在检测到所述开路故障的发生的情况下,
基于各个所述电流累计值的正负来判别是第一故障模式和第二故障模式中的哪一个故障模式,所述第一故障模式为在所述第一逆变器的上级侧臂和所述第二逆变器的下级侧臂中的某一个发生了所述开路故障,所述第二故障模式为在所述第一逆变器的所述下级侧臂和所述第二逆变器的所述上级侧臂中的某一个发生了所述开路故障,
之后,将所述第一逆变器和所述第二逆变器中的某一个所述逆变器假设为发生了所述开路故障的故障逆变器并作为假设故障逆变器,
基于判别出的所述故障模式,将在该假设故障逆变器的所述上级侧臂和所述下级侧臂中的被假设为发生所述开路故障的故障侧臂的假设故障侧臂的所述开关元件的全部设为接通状态,将另一侧的非假设故障侧臂的所述开关元件的全部设为接通状态来进行主动短路控制,并且对与所述假设故障逆变器不同的所述逆变器进行开关控制,
之后,基于各个所述电流累计值的正负,在未检测到所述开路故障的情况下,判别为所述假设故障逆变器是所述故障逆变器,并且判别为所述假设故障侧臂是所述故障侧臂,
在检测到所述开路故障的情况下,判别为与所述假设故障逆变器不同的所述逆变器是所述故障逆变器,并且基于所述故障模式来判别该故障逆变器中的所述故障侧臂。
9.一种旋转电机控制装置,经由第一逆变器和第二逆变器对具有相互独立的多相开路绕组的旋转电机进行驱动控制,其中,
所述第一逆变器与所述多相开路绕组的一端侧连接,在直流与多相交流之间转换电力,
所述第二逆变器与所述多相开路绕组的另一端侧连接,在直流与多相交流之间转换电力,
在所述第一逆变器和所述第二逆变器中,交流一相的臂分别由上级侧开关元件和下级侧开关元件的串联电路构成,
能够对所述第一逆变器和所述第二逆变器相互独立地进行控制,
在所述第一逆变器和所述第二逆变器中的某一个逆变器中发生了一个开关元件短路的短路故障的情况下,
将发生了所述短路故障的所述逆变器设为故障逆变器,
对多相的交流电流分别进行累计并运算各相的电流累计值,并基于各个所述电流累计值的正负来判别所述故障逆变器的上级侧臂和下级侧臂中的哪一个发生所述短路故障。
10.根据权利要求9所述旋转电机控制装置,其中,
在所述第一逆变器是所述故障逆变器的情况下,
在多个所述电流累计值中的一相的所述电流累计值为正且其他相的所述电流累计值为负的情况下,判别为在所述故障逆变器的所述上级侧臂发生所述短路故障,
在多个所述电流累计值中的一相的所述电流累计值为负且其他相的所述电流累计值为正的情况下,判别为在所述故障逆变器的所述下级侧臂发生所述短路故障,
在所述第二逆变器是所述故障逆变器的情况下,
在多个所述电流累计值中的一相的所述电流累计值为正且其他相的所述电流累计值为负的情况下,判别为在所述故障逆变器的所述下级侧臂发生所述短路故障,
在多个所述电流累计值中的一相的所述电流累计值为负且其他相的所述电流累计值为正的情况下,判别为在所述故障逆变器的所述上级侧臂发生所述短路故障。
CN202180039030.1A 2020-06-18 2021-03-26 旋转电机控制装置 Pending CN115668745A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2020105404A JP7417941B2 (ja) 2020-06-18 2020-06-18 回転電機制御装置
JP2020-105403 2020-06-18
JP2020105403A JP7424583B2 (ja) 2020-06-18 2020-06-18 回転電機制御装置
JP2020-105404 2020-06-18
PCT/JP2021/013071 WO2021256045A1 (ja) 2020-06-18 2021-03-26 回転電機制御装置

Publications (1)

Publication Number Publication Date
CN115668745A true CN115668745A (zh) 2023-01-31

Family

ID=79267820

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180039030.1A Pending CN115668745A (zh) 2020-06-18 2021-03-26 旋转电机控制装置

Country Status (4)

Country Link
US (1) US20230261604A1 (zh)
EP (1) EP4170896A4 (zh)
CN (1) CN115668745A (zh)
WO (1) WO2021256045A1 (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4930546B2 (ja) * 2009-05-13 2012-05-16 日産自動車株式会社 インバータ異常検出装置
JP2014192950A (ja) 2013-03-26 2014-10-06 Denso Corp 電力変換装置
US11258391B2 (en) * 2018-01-18 2022-02-22 Aisin Aw Co., Ltd. Rotating electrical machine control device
JP2019134590A (ja) * 2018-01-31 2019-08-08 アイシン・エィ・ダブリュ株式会社 インバータ制御装置
JP6907171B2 (ja) * 2018-09-25 2021-07-21 株式会社Soken 回転電機の駆動装置
JP7167685B2 (ja) * 2018-12-13 2022-11-09 株式会社デンソー 電力制御装置

Also Published As

Publication number Publication date
WO2021256045A1 (ja) 2021-12-23
EP4170896A4 (en) 2023-11-15
EP4170896A1 (en) 2023-04-26
US20230261604A1 (en) 2023-08-17

Similar Documents

Publication Publication Date Title
JP5471259B2 (ja) 制御装置
US8390223B2 (en) Control device for electric motor drive device
US8232753B2 (en) Control device for electric motor drive apparatus
JP4306298B2 (ja) モーター制御装置
JP6697788B1 (ja) 電力変換装置、発電電動機の制御装置、および、電動パワーステアリング装置
JP6173516B1 (ja) 電動機制御装置および電動機制御方法
JP7424583B2 (ja) 回転電機制御装置
JP7447838B2 (ja) 回転電機制御システム
US11909342B2 (en) Rotating electrical machine control device
CN115668745A (zh) 旋转电机控制装置
CN113366756B (zh) 旋转电机的驱动装置
JP7417941B2 (ja) 回転電機制御装置
JP2003018887A (ja) 電動機制御装置及び方法
US20230378896A1 (en) Rotating electrical machine control system
JP6681266B2 (ja) 電動機の制御装置及びそれを備えた電動車両
JP7317064B2 (ja) 回転電機制御装置
Saeidabadi et al. Simplified Model Predictive Control for a Five-Phase PMSM Using Four-Leg Inverter
CN116569476A (zh) 电动机控制装置、机电一体单元、升压转换器系统、电动车辆系统和电动机控制方法
CN112953350A (zh) 回转机械控制装置以及控制方法
JP2017200372A (ja) モータ駆動装置および電力貯蔵装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination