CN115667886A - 扩展式立体角浊度传感器 - Google Patents
扩展式立体角浊度传感器 Download PDFInfo
- Publication number
- CN115667886A CN115667886A CN202180036389.3A CN202180036389A CN115667886A CN 115667886 A CN115667886 A CN 115667886A CN 202180036389 A CN202180036389 A CN 202180036389A CN 115667886 A CN115667886 A CN 115667886A
- Authority
- CN
- China
- Prior art keywords
- sensor array
- linear
- linear sensor
- array
- turbidity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007787 solid Substances 0.000 title description 9
- 230000011664 signaling Effects 0.000 claims abstract description 38
- 230000003287 optical effect Effects 0.000 claims abstract description 36
- 238000012545 processing Methods 0.000 claims abstract description 32
- 239000007788 liquid Substances 0.000 claims abstract description 29
- 238000000034 method Methods 0.000 claims description 28
- 230000000694 effects Effects 0.000 claims description 6
- 238000001914 filtration Methods 0.000 claims description 4
- 230000005855 radiation Effects 0.000 description 14
- 230000005284 excitation Effects 0.000 description 10
- 238000005259 measurement Methods 0.000 description 10
- 230000000875 corresponding effect Effects 0.000 description 9
- 238000003491 array Methods 0.000 description 6
- 238000013461 design Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- 238000012937 correction Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 235000013405 beer Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000001506 fluorescence spectroscopy Methods 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/06—Investigating concentration of particle suspensions
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/645—Specially adapted constructive features of fluorimeters
- G01N21/6456—Spatial resolved fluorescence measurements; Imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/06—Investigating concentration of particle suspensions
- G01N15/075—Investigating concentration of particle suspensions by optical means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/4785—Standardising light scatter apparatus; Standards therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/49—Scattering, i.e. diffuse reflection within a body or fluid
- G01N21/53—Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/49—Scattering, i.e. diffuse reflection within a body or fluid
- G01N21/53—Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
- G01N21/532—Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke with measurement of scattering and transmission
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
- G01N21/82—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a precipitate or turbidity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/02—Food
- G01N33/08—Eggs, e.g. by candling
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/18—Water
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/40—Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
- H04N25/46—Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by combining or binning pixels
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N2021/4704—Angular selective
- G01N2021/4709—Backscatter
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
- G01N2021/6439—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/645—Specially adapted constructive features of fluorimeters
- G01N2021/6463—Optics
- G01N2021/6473—In-line geometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N2021/6491—Measuring fluorescence and transmission; Correcting inner filter effect
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/06—Illumination; Optics
- G01N2201/061—Sources
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/06—Illumination; Optics
- G01N2201/063—Illuminating optical parts
- G01N2201/0633—Directed, collimated illumination
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/06—Illumination; Optics
- G01N2201/063—Illuminating optical parts
- G01N2201/0636—Reflectors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/12—Circuits of general importance; Signal processing
- G01N2201/126—Microprocessor processing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/12—Circuits of general importance; Signal processing
- G01N2201/127—Calibration; base line adjustment; drift compensation
- G01N2201/12746—Calibration values determination
- G01N2201/12761—Precalibration, e.g. for a given series of reagents
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/12—Circuits of general importance; Signal processing
- G01N2201/127—Calibration; base line adjustment; drift compensation
- G01N2201/12792—Compensating own radiation in apparatus
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Dispersion Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plasma & Fusion (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Molecular Biology (AREA)
- Optics & Photonics (AREA)
- Vehicle Body Suspensions (AREA)
- Centrifugal Separators (AREA)
- Geophysics And Detection Of Objects (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
浊度传感器的特征在于信号处理器或处理模块,该信号处理器或处理模块被配置为:接收信令,该信令包含与从液体中的悬浮物质反射并由线性传感器阵列感测的光有关的信息,该线性传感器阵列具有光学元件的行和列;以及基于所接收的信令,确定包含与液体的浊度浓度有关的信息的对应信令。
Description
相关申请的交叉引用
本申请要求于2020年5月20日提交的临时专利申请序列号63/027,587(911-023.9-1-1/N-YSI-0045US01)、于2020年5月21日提交的63/028,013号(911-023.010-1-1/N-YSI-0046US02)以及于2020年5月22日提交的63/028,723号(911-023.011-1-1/N-YSI-0047US02)的权益,其全部内容通过引用并入本文。
技术领域
本发明涉及用于测量水质的传感器;并且更具体地涉及用于测量水质的浊度传感器。
背景技术
传统的浊度感测技术由于散射信号(立体角)的捕获较差/低效而具有较差的灵敏度(特别是现场可部署的传感器)。现有的浊度传感器通常采用利用光敏元件的单个激发光源、和单个或点状发射接收器。不考虑所使用的特定光敏元件或激发光源,现有技术中已知的当前浊度传感器不是光-机械配置用于有效捕获立体角,从而导致浊度检测极限受损。
测量基于散射的信号的困难在于:随机散射的光辐射的空间/方向性质。现在考虑单个混浊粒子的激发。对于典型的环境水质监测条件,单个混浊粒子的散射辐射的空间分布由球体很好地近似,从而导致散射辐射的4π[球面度]立体角(参见图1)。为了最佳地捕获这样的浊度信号,需要与辐射图案紧密匹配的光敏面积,即,呈球形壳形状的光敏面积。参见图1,鉴于此,在本领域中需要更好的浊度传感器。
此外,并且例如,于2008年4月7日提交的题为“System and method for high-throughput turbidity measurements”的PCT/US2008/059575公开了使用空间梯度方法来进行浊度测量的技术。浊度测量系统包括:包含多个样本的样本组件;照射样本组件的光源;以及光检测系统,其包括二维光敏阵列。光敏阵列被同时暴露于透过样本组件中的每个样本的光。曝光被分析来确定每个样本的平均透射光强度、并基于其平均透射光强度来计算每个样本的浊度值。在测量时段期间可以进行多次曝光,以获得样本的时间分辨浊度测量值。样本的温度可以在测量时段期间改变,以根据温度来测量浊度。
发明内容
总之,本发明的目的是极大地提高所捕获的立体角,从而显著提高浊度测量的灵敏度。
所考虑的传感器并入了(在现场控制的传感器中可实践的范围内)在理想化的长圆柱几何结构中呈现的许多特征。本发明采用线性光电二极管阵列(所提出的方法不限于光电二极管技术,例如,也可以使用线性CCD或CMOS阵列)。线性阵列允许用于生物污染对抗措施(诸如机动擦拭)的充足空间。附加地,线性传感器阵列目前可作为相对便宜的商业现货(COTS)部件而获得。
本发明的关键具体在于光机配置,其利用沿拟准直光源的长度的宽的线性阵列来增强信号捕获。附加地,该设计允许捕获反向散射辐射-单个实施例中全部如此。
本设计与基于非强度的浊度确定兼容。这些测量是空间相关的,主要构思是光学信号将遵循比尔定律跨线性阵列而经历衰减,从而创建“空间梯度”。该空间梯度包含与浊度浓度有关的信息。
基于非强度的测量不受激发源的“漂移”的影响。换言之,空间梯度不受激发源强度的适度变化(例如,在使用过程中LED强度降级)、或由于热效应引起的光学功率变化的影响。
根据本发明的“空间梯度”方法实现了实时、内部滤波效应(IFE)校正,这极大地增强了高浓度感测范围。(相比之下,内部滤波校正的已知技术涉及在现场部署之后经由实验室分析的后处理。)
附加地,根据本发明的“空间梯度”方法还允许使用本领域已知的基于振幅的技术不能实现的某些类型的干扰校正。
上述“空间梯度”方法要求阵列中的每个光学元件是可单独寻址的。然而,存在可能的设计变型,其涉及以并联配置来连接所有线性阵列元件,这将排除单独可寻址性的可能性。然而,这样的设计变型可以被修改以包括透射光电二极管(位于阵列的端部处,与源相对),该透射光电二极管将恢复传感器执行漂移校正和IFE校正的能力。
根据一些实施例,本发明可以包括或采取以信号处理器或处理模块为特征的装置,信号处理器或处理模块被配置为:
接收信令,信令包含与从液体中的悬浮物质反射、并由线性传感器阵列感测的光有关的信息,该线性传感器阵列具有光学元件的行和列;以及
基于所接收的信令,确定包含与液体的参数浓度有关的信息的对应信令。
装置可以包括以下附加特征中的一个或多个:
参数可以包括液体浊度。
装置可以包括线性传感器阵列。
线性传感器阵列可以包括线性光电二极管阵列。
线性传感器阵列可以包括线性CCD阵列。
线性传感器阵列可以包括线性CMOS阵列。
线性传感器阵列可以包括闭合圆柱传感器阵列,其具有光学元件的行和列的三维圆柱阵列。
装置可以是浊度传感器。
装置可以包括拟准直光源,拟准直光源具有一定长度、并被配置为:沿线性传感器阵列的对应长度,提供包括拟准直光的光。
信号处理器或处理模块可以被配置为:基于跨线性传感器阵列所感测的光学信号的衰减来确定参数。
线性传感器阵列可以包括可单独寻址的二维光学元件阵列。
信号处理器或处理模块可以被配置为:基于跨线性传感器阵列所感测的光学信号的空间梯度来确定浊度,该空间梯度包含与浊度浓度有关的信息。
光学元件可以由信号处理器或处理模块单独寻址。
光学元件的行或列可以并联连接并、且可由信号处理器或处理模块寻址;装置可以包括位于线性传感器阵列的、与光源相对的端部处的透射光电二极管,该透射光电二极管被配置为:对从悬浮物质反射的光做出响应,并且提供包含与悬浮物质有关的信息的透射光电二极管信令;并且信号处理器或处理模块可以被配置为:接收光电二极管信令、并针对漂移或内部滤波效应来校正对应信令。
根据一些实施例,本发明可以包括浊度传感器,该浊度传感器的特征在于拟准直光源、线性传感器阵列和信号处理器或处理模块。拟准直光源具有一定长度、并且可以被配置为向液体样本提供拟准直光。线性传感器阵列可以包括光学元件的行和列,并且被配置为:沿着拟准直光源的长度,感测从液体样本中的悬浮物质反射的光,并且提供包含与从悬浮物质反射的光有关的信息的信令。
信号处理器或处理模块可以被配置为:
接收信令;以及
基于所接收的信令,确定包含与液体的浊度浓度有关的信息的对应信令。
浊度传感器还可以包括上述特征中的一个或多个。
方法
根据一些实施例,本发明可以包括方法,方法的特征在于:
使用信号处理器或处理模块,接收信令,信令包含与从液体中的悬浮物质反射并且由线性传感器阵列感测的光有关的信息,该线性传感器阵列具有光学元件的行和列;以及、
基于所接收的信令,使用信号处理器或处理模块,确定包含与液体的参数的浓度有关的信息的对应信令。
方法还可以包括上述特征中的一个或多个。
计算机可读存储介质
根据本发明的一些实施例,本发明还可以采取计算机可读存储介质的形式,计算机可读存储介质具有用于执行上述方法的步骤的计算机可执行部件。计算机可读存储介质还可以包括上述特征中的一个或多个。
优点
本发明提供优于现有技术中的当前已知技术的明显优点,如下:
1)立体角的优化捕获极大地增强了信号灵敏度,从而显著增强了浊度检测的最低极限。线性传感器阵列提供大得多的总有效面积来捕获散射射线。更重要的是,沿拟准直激发源的方向,在最重要的维度上,有效面积较大。附加地,由于上述原因,较宽的线性阵列优选地在较薄的线性阵列上,以增加了有效面积。然而,存在关于宽度的收益递减的限制,即,不与激发束的直径大致匹配的阵列宽度呈现为非理想的。
2)本发明使得能够测量反向散射的辐射(除了径向发射的侧向散射之外)-全部在单个感测实施例中。
3)准柱状激发源到线性传感器阵列之间的距离被最小化,因为这除了感测范围之外还增强了灵敏度。
附图说明
不一定按比例绘制的附图包括图1-图6B,如下:
图1是由球体近似的单个混浊粒子的散射辐射的空间分布的图,其产生本领域已知的散射辐射的4π[球面度]立体角。
图2A是根据本发明的一些实施例的包括浊度传感器的装置的框图。
图2B是根据本发明的一些实施例的具有光学元件的行和列的线性传感器阵列的框图。
图3是根据本发明的一些实施例的相对于线性传感器阵列提供拟准直光的拟准直光源的三维透视图。
图4是图3所示的侧视图,其示出了根据本发明的一些实施例的由线性传感器阵列捕获的反向散射辐射。
图5是相对传感器响应对相对浓度的曲线图,例如,示出了受让人的当前EXO浊度传感器(带点的实线)与线性阵列浊度传感器(实线)的灵敏度比较。注意,该图示出了基于根据本发明的设计的物理模型的仿真数据。
图6A是示出根据本发明的针对理想化的长圆柱壳几何结构(例如,诸如3-D圆柱形线性传感器阵列)的立体角捕获的三维绘制的等距视图。
图6B是示出了理想化的长圆柱壳几何形状(诸如,3-D圆柱形线性传感器阵列)的截面图。
为了减少附图中的混乱,附图中的每个图不必包括其中所示的每个元素的每个附图标记。
具体实施方式
图2示出了根据本发明的包括浊度传感器的装置10,浊度传感器具有拟准直光源20、线性传感器阵列30和信号处理器或处理模块40。
信号处理器或处理模块40可以被配置为:
接收信令,信令包含与从液体中的悬浮物质反射、并由线性传感器阵列30感测的光Lr有关的信息,该线性传感器阵列30具有光学元件的行和列(r1,c1;r1,c2;r1,c3;r1,c4;r1,c5;r1,c6;r1,c7;r1,c8;…;r1,cn;r2,c1;r2,c2;r2,c3;r2,c4;r2,c5;r2,c6;r2,c7;r2,c8;…;r2,cn;r3,c1;r3,c2;r3,c3;r3,c4;r3,c5;r3,c6;r3,c7;r3,c8;…;r3,cn;…;rn,c1;rn,c2;rn,c3;rn,c4;rn,c5;rn,c6;rn,c7;rn,c8;…;rn,cn);以及
基于所接收的信令来确定包含与液体的参数的浓度有关的信息的对应信令。
参数
例如,参数可以包括液体中的浊度浓度,并且装置可以是浊度传感器或采取浊度传感器的形式。然而,本发明的范围并不限于现在已知的或将来开发的液体中被感测的任何特定类型或种类的参数。
线性传感器阵列30
例如,装置10可以包括线性传感器阵列30,例如诸如线性光电二极管阵列、线性电荷耦合器件(CCD)阵列、线性CMOS阵列。具体地,例如如图2B所示,线性传感器阵列30可以包括可单独寻址的光学元件的行和列的二维阵列。线性传感器阵列在本领域中是已知的,并且本发明的范围不限于现在已知的或将来开发的任何特定类型或种类。
例如,在以下美国专利号9,020,202;8,022,349;7,956,341;7,040,538;5,252,818和4,193,057中公开了线性传感器阵列,其全部内容通过引用并入本文。
图3和图4
作为示例,装置10可以包括源20,源20被配置为沿着线性传感器阵列30的对应长度(例如,如图2和3中所示)提供光Lc,光Lc包括拟准直光,例如借助相对于光源20和线性传感器阵列30布置的液体样本,将光Lr从被监视或测试的液体样本中的悬浮物质反射到线性传感器阵列30上。例如,光Lr可以被径向反射(图3)和反向反射(图4),即,反向散射的反射光或辐射。
如本领域技术人员将理解的,拟准直光源在本领域中是已知的,并且本发明的范围不旨在限于现在已知或将来以后开发的任何特定类型或种类。
图4示出了与所示一致的由线性传感器阵列30捕获的反向散射辐射,其中反向散射辐射被理解为液体样本中的悬浮物质反射的、且反向行进的光。
信号处理器或处理模块40
例如,信号处理器或处理模块40可以被配置为:基于跨线性传感器阵列所感测的光信号的衰减(跨线性传感器阵列包含其长度和宽度),确定参数,参数包括浊度。用于感测光学信号的衰减(例如,与液体中的浊度浓度相关)的技术在本领域中是已知的,并且本发明的范围不旨在限于现在已知或将来以后开发的任何特定类型或种类。
例如,信号处理器或处理模块40可以被配置为:基于跨线性传感器阵列所感测的光学信号的空间梯度来确定浊度浓度。如本领域的技术人员将理解,用于基于光学信号的空间梯度来确定液体中的浊度浓度的技术在本领域中是已知的,例如,与本文所述的PCT/US2008/059575一致,其全部内容通过引用并入本文,并且本发明的范围不旨在限于现在已知或将来稍后开发的任何特定类型或种类的技术。
在备选实施例中,光学元件的行或列可以并联连接、并且可由信号处理器或处理模块40寻址;装置10可以包括位于线性传感器阵列30的、与光源20相对的端部处的透射光电二极管30a,该透射光电二极管30a被配置为:对从悬浮物质反射的光L做出响应、并且提供包含与悬浮物质有关的信息的透射光电二极管信令;并且信号处理器或处理模块40可以被配置为:接收光电二极管信令、并且针对漂移或内部滤波效应来校正对应信令。
信号处理功能的实现方式
例如,信号处理器或处理模块40的功能可以使用硬件、软件、固件或其组合来实现。在典型的软件实现方式中,信号处理器40将包括基于一个或多个微处理器的架构,该架构具有例如至少一个信号处理器或微处理器。本领域的技术人员将能够利用适当的程序代码对诸如基于微控制器或基于微处理器的实现方式进行编程,以在无需过多实验的情况下,执行本文中所公开的信号处理功能。
本发明的范围不旨在限于使用现在已知的或将来以后开发的技术的任何特定实现方式。本发明的范围旨在包括将(多个)信号处理器的功能实现为独立处理器、信号处理器或信号处理器模块,以及单独处理器或处理器模块以及它们的某种组合。
作为示例,如本领域技术人员将理解的,装置10还可以包括例如整体由50指示的其他信号处理器电路或部件,包括随机存取存储器或存储器模块(RAM)和/或只读存储器(ROM)、输入/输出设备和控件以及将其连接的数据和地址总线和/或至少一个输入处理器和至少一个输出处理器。
作为另一示例,信号处理器可以包括或采取信号处理器和至少一个存储器的某种组合的形式,至少一个存储器包括计算机程序代码,其中信号处理器和至少一个存储器被配置为使得系统实现本发明的功能,例如,响应所接收的信令并基于所接收的信令来确定对应信令。
图6A和图6B:3D圆柱线性传感器阵列60
例如,装置10可以包括闭合圆柱传感器阵列60,闭合圆柱传感器阵列60具有例如如图6A所示的光学元件的行和列的三维圆柱阵列和长度L。
在图6A中,3D圆柱线性传感器阵列32被配置为:沿着其长度L、并且围绕其纵向轴线径向地360度捕获从液体中的悬浮物质反射的光。
如本领域技术人员将理解的,包括LED、激光二极管或宽带灯的普通/实际光源通常被配置为提供柱状或准柱状光学辐射图案,对于该图案,理想的光敏面积采取长的、柱状壳体的形状,捕获与激发柱垂直的射线。根据本专利申请提交时的发明人,没有市售的“闭合圆柱”传感器阵列。
内部滤波效应(IFE)
如本领域技术人员将理解的,IFE是荧光光谱现象,例如,由于接近入射光束的荧光团对激发光的吸收,在浓溶液中观察到的荧光发射存在减少,并且其显著减少了到达样本然后进一步远离该样本的光。
如本领域技术人员将理解的,用于校正IFE的技术在本领域中是已知的,并且本发明的范围不旨在限于现在已知或将来以后开发的任何特定类型或种类。
应用
本发明具有例如在淡水应用(例如,其中浊度是“五大参数”之一)的水质监测以及饮用水监测的基本参数中的应用。
本发明的范围
虽然已参考示例性实施例描述了本发明,但是本领域技术人员将理解,在不脱离本发明的范围的情况下,可以进行各种改变,并且可以使用等同物来替代其元件。附加地,在不脱离本发明的基本范围的情况下,可以进行修改,以使得特定情况或材料适应本发明的教导。因此,本发明不限于本文中所公开的、作为实现本发明的最佳模式的(多个)特定实施例。
Claims (24)
1.一种装置,包括:
信号处理器或处理模块,其被配置为:
接收信令,所述信令包含与从液体中的悬浮物质反射并由线性传感器阵列感测的光有关的信息,所述线性传感器阵列具有光学元件的行和列;以及
基于所接收的所述信令,确定对应信令,所述对应信令包含与所述液体的参数浓度有关的信息。
2.根据权利要求1所述的装置,其中所述参数是所述液体的浊度。
3.根据权利要求1所述的装置,其中所述装置包括所述线性传感器阵列。
4.根据权利要求3所述的装置,其中所述线性传感器阵列包括线性光电二极管阵列。
5.根据权利要求3所述的装置,其中所述线性传感器阵列包括线性CCD阵列。
6.根据权利要求3所述的装置,其中所述线性传感器阵列包括线性CMOS阵列。
7.根据权利要求3所述的装置,其中所述线性传感器阵列包括闭合圆柱传感器阵列,所述闭合圆柱传感器阵列具有所述光学元件的行和列的三维圆柱阵列。
8.根据权利要求1所述的装置,其中所述装置是浊度传感器。
9.根据权利要求1所述的装置,其中所述装置包括拟准直光源,所述拟准直光源具有长度、并且被配置为:沿着所述线性传感器阵列的对应长度提供包括拟准直光的光。
10.根据权利要求1所述的装置,其中所述信号处理器或处理模块被配置为:基于跨所述线性传感器阵列所感测的光学信号的衰减来确定所述参数,其中跨所述线性传感器阵列包括沿着所述线性传感器阵列的长度和宽度。
11.根据权利要求1所述的装置,其中所述线性传感器阵列包括可单独寻址的二维光学元件阵列。
12.根据权利要求2所述的装置,其中所述信号处理器或处理模块被配置为:基于跨所述线性传感器阵列所感测的光学信号的空间梯度来确定所述浊度,所述空间梯度包含与所述浊度的浓度有关的信息。
13.根据权利要求12所述的装置,其中所述光学元件能够由所述信号处理器或处理模块单独寻址。
14.根据权利要求12所述的装置,其中,
所述光学元件的所述行或所述列并联连接、并且能够由所述信号处理器或处理模块寻址;
所述装置包括位于所述线性传感器阵列的、与所述光源相对的端部处的透射光电二极管,所述透射光电二极管被配置为对从所述悬浮物质反射的光做出响应、并且提供包含与所述悬浮物质有关的信息的透射光电二极管信令;并且
所述信号处理器或处理模块可以被配置为:接收所述光电二极管信令、并且针对漂移或内部滤波效应来校正所述对应信令。
15.一种方法,包括:
使用信号处理器或处理模块,接收信令,所述信令包含与从液体中的悬浮物质反射并且由线性传感器阵列感测的光有关的信息,所述线性传感器阵列具有光学元件的行和列;以及
基于所接收的所述信令,使用所述信号处理器或处理模块,确定包含与所述液体的参数的浓度有关的信息的对应信令。
16.根据权利要求15所述的方法,其中所述参数是所述液体的浊度。
17.根据权利要求15所述的方法,其中所述方法包括将所述线性传感器阵列配置为线性光电二极管阵列、线性CCD阵列或线性CMOS阵列。
18.根据权利要求15所述的方法,其中所述方法包括将所述线性传感器阵列配置为闭合圆柱传感器阵列,所述闭合圆柱传感器阵列具有所述光学元件的行和列的三维圆柱阵列。
19.根据权利要求15所述的方法,其中所述方法包括基于跨所述线性传感器阵列所感测的光学信号的衰减来确定所述参数。
20.根据权利要求15所述的方法,其中所述方法包括配置光源以提供所述光,提供所述光包括:使用拟准直光源来提供拟准直光。
21.一种浊度传感器,包括:
拟准直光源,其具有长度、并且被配置为向液体样本提供拟准直光;
线性传感器阵列,其具有光学元件的行和列,并且被配置为:沿着所述拟准直光源的所述长度感测从所述液体样本中的悬浮物质反射的光,并且提供包含与从所述悬浮物质反射的所述光有关的信息的信令,以及
信号处理器或处理模块,其被配置为:
接收所述信令;以及
基于所接收的信令,确定包含与所述液体的浊度浓度有关的信息的对应信令。
22.根据权利要求21所述的浊度传感器,其中所述线性传感器阵列包括线性光电二极管阵列、线性CCD阵列或线性CMOS阵列。
23.根据权利要求21所述的浊度传感器,其中所述信号处理器或处理模块被配置为:基于跨所述线性传感器阵列所感测的光学信号的衰减,确定所述浊度,其中跨所述线性传感器阵列包括沿着所述线性传感器阵列的长度和宽度。
24.根据权利要求21所述的浊度传感器,其中所述信号处理器或处理模块被配置为:基于跨所述线性传感器阵列所感测的光学信号的空间梯度来确定所述浊度,所述空间梯度包含与所述浊度的浓度有关的信息。
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202063027587P | 2020-05-20 | 2020-05-20 | |
US63/027,587 | 2020-05-20 | ||
US202063028013P | 2020-05-21 | 2020-05-21 | |
US63/028,013 | 2020-05-21 | ||
US202063028723P | 2020-05-22 | 2020-05-22 | |
US63/028,723 | 2020-05-22 | ||
PCT/US2021/033083 WO2021236720A1 (en) | 2020-05-20 | 2021-05-19 | Extended solid angle turbidity sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115667886A true CN115667886A (zh) | 2023-01-31 |
Family
ID=78608840
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202180036389.3A Pending CN115667886A (zh) | 2020-05-20 | 2021-05-19 | 扩展式立体角浊度传感器 |
CN202180036220.8A Pending CN115667889A (zh) | 2020-05-20 | 2021-05-19 | 扫频荧光计 |
CN202180036421.8A Active CN115667890B (zh) | 2020-05-20 | 2021-05-19 | 基于空间梯度的荧光计 |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202180036220.8A Pending CN115667889A (zh) | 2020-05-20 | 2021-05-19 | 扫频荧光计 |
CN202180036421.8A Active CN115667890B (zh) | 2020-05-20 | 2021-05-19 | 基于空间梯度的荧光计 |
Country Status (9)
Country | Link |
---|---|
US (3) | US12061149B2 (zh) |
EP (3) | EP4153971A4 (zh) |
JP (3) | JP7303397B2 (zh) |
KR (2) | KR102604781B1 (zh) |
CN (3) | CN115667886A (zh) |
AU (3) | AU2021275061B2 (zh) |
BR (2) | BR112022023420A2 (zh) |
CA (2) | CA3178570A1 (zh) |
WO (3) | WO2021236735A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2021275061B2 (en) * | 2020-05-20 | 2023-01-19 | Ysi, Inc. | Spatial gradient-based fluorometer |
Family Cites Families (148)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2554321A (en) | 1948-10-29 | 1951-05-22 | Socony Vacuum Oil Co Inc | Measurement of fluorescence |
US3967113A (en) | 1974-12-05 | 1976-06-29 | Baxter Laboratories, Inc. | Wavelength-corrected spectrofluorometer |
US4058732A (en) | 1975-06-30 | 1977-11-15 | Analytical Radiation Corporation | Method and apparatus for improved analytical fluorescent spectroscopy |
US4084905A (en) | 1976-03-11 | 1978-04-18 | Canadian Patents & Development Limited | Apparatus for detecting and measuring fluorescence emission |
US4160914A (en) * | 1977-12-16 | 1979-07-10 | Monitek, Inc. | Apparatus for measuring of particulate scattering in fluids |
US4193057A (en) | 1978-03-20 | 1980-03-11 | Bunker Ramo Corporation | Automatic deployment of horizontal linear sensor array |
US4178512A (en) | 1978-07-21 | 1979-12-11 | Impulsphysik Gmbh | Deepwater in-situ fluorometer |
JPS59107239A (ja) * | 1982-12-10 | 1984-06-21 | Mitsubishi Electric Corp | 水質計器 |
US4942303A (en) | 1989-01-31 | 1990-07-17 | Associated Universities, Inc. | Computer controlled fluorometer device and method of operating same |
US4937457A (en) | 1989-02-10 | 1990-06-26 | Slm Instruments, Inc. | Picosecond multi-harmonic fourier fluorometer |
WO1990009637A1 (en) | 1989-02-13 | 1990-08-23 | Research Corporation Technologies, Inc. | Method and means for parallel frequency acquisition in frequency domain fluorometry |
US5059811A (en) * | 1990-08-30 | 1991-10-22 | Great Lakes Instruments, Inc. | Turbidimeter having a baffle assembly for removing entrained gas |
US5252818A (en) | 1991-08-22 | 1993-10-12 | Vision Ten, Inc. | Method and apparatus for improved scanner accuracy using a linear sensor array |
US5294799A (en) | 1993-02-01 | 1994-03-15 | Aslund Nils R D | Apparatus for quantitative imaging of multiple fluorophores |
US5436476A (en) * | 1993-04-14 | 1995-07-25 | Texas Instruments Incorporated | CCD image sensor with active transistor pixel |
PT101290B (pt) | 1993-06-18 | 2000-10-31 | Fernandes Jose Guilherme Da Cu | Fluorometro para medicao da concentracao de fluoroforos de localizacao ocular |
US5426306A (en) | 1993-10-21 | 1995-06-20 | Associated Universities, Inc. | Fast repetition rate (FRR) fluorometer and method for measuring fluorescence and photosynthetic parameters |
US5486693A (en) | 1994-02-17 | 1996-01-23 | Thermedics Detection Inc. | Detection of turbid contaminants in containers by detecting scattered radiant energy |
US5818582A (en) | 1996-09-19 | 1998-10-06 | Ciencia, Inc. | Apparatus and method for phase fluorometry |
US5994707A (en) | 1997-03-18 | 1999-11-30 | Physical Optics Corporation | Modular fiber optic fluorometer and method of use thereof |
JP2001526780A (ja) * | 1997-05-05 | 2001-12-18 | シェモメテック・アクティーゼルスカブ | 液体試料中の粒子の測定の方法およびシステム |
ZA984976B (en) | 1997-06-11 | 1999-04-19 | Nalco Chemical Co | Solid-state fluorometer and methods of use therefore |
US20020158212A1 (en) * | 1998-04-17 | 2002-10-31 | French Todd E. | Apparatus and methods for time-resolved optical spectroscopy |
US5981957A (en) * | 1997-10-27 | 1999-11-09 | Systems&Processes Engineering Corporation | Signal generation and mixing electronics for frequency-domain lifetime and spectral fluorometry |
US6070093A (en) * | 1997-12-02 | 2000-05-30 | Abbott Laboratories | Multiplex sensor and method of use |
KR20010040510A (ko) * | 1998-02-02 | 2001-05-15 | 유니액스 코포레이션 | 전환가능한 감광성을 가진 유기 다이오드 |
WO1999058953A1 (en) | 1998-05-08 | 1999-11-18 | Sequoia Scientific, Inc. | Device for measuring particulate volume and mean size in water |
US6447724B1 (en) * | 1998-08-11 | 2002-09-10 | Caliper Technologies Corp. | DNA sequencing using multiple fluorescent labels being distinguishable by their decay times |
AU5479599A (en) | 1998-08-11 | 2000-03-06 | Caliper Technologies Corporation | Methods and systems for sequencing dna by distinguishing the decay times of fluorescent probes |
CA2379711A1 (en) | 1999-07-02 | 2001-01-25 | Conceptual Mindworks, Inc | Organic semiconductor recognition complex and system |
US6323495B1 (en) | 1999-09-24 | 2001-11-27 | Umm Electronics, Inc. | Method and apparatus for the determination of phase delay in a lifetime fluorometer without the use of lifetime standards |
US6852986B1 (en) | 1999-11-12 | 2005-02-08 | E. I. Du Pont De Nemours And Company | Fluorometer with low heat-generating light source |
US6426505B1 (en) | 2000-01-19 | 2002-07-30 | University Of Maryland Biotechnology Institute | Phase-modulation fluorometer and method for measuring nanosecond lifetimes using a lock-in amplifier |
US7875442B2 (en) * | 2000-03-24 | 2011-01-25 | Eppendorf Array Technologies | Identification and quantification of a plurality of biological (micro)organisms or their components |
US6573991B1 (en) * | 2000-04-26 | 2003-06-03 | Martin Paul Debreczeny | Self-compensating radiation sensor with wide dynamic range |
US6369894B1 (en) | 2000-05-01 | 2002-04-09 | Nalco Chemical Company | Modular fluorometer |
FR2817346B1 (fr) | 2000-11-29 | 2008-11-14 | Edouard Nau | Procede de detection et imagerie de polluants notamment en milieu liquide par fluorescence et/ou absorption induites par laser et dispositifs associes |
AU2002245537B2 (en) | 2001-02-23 | 2007-12-20 | Genicon Sciences Corporation | Methods for providing extended dynamic range in analyte assays |
US7046347B1 (en) * | 2001-03-30 | 2006-05-16 | Amend John R | Instrument with colorimeter and sensor inputs for interfacing with a computer |
US7183050B2 (en) | 2001-04-18 | 2007-02-27 | Krull Ulrich J | Gradient resolved information platform |
FR2824139B1 (fr) * | 2001-04-27 | 2003-05-30 | Commissariat Energie Atomique | Dispositif de mesure de luminescence a elimintation d'effet de prefiltre |
US6929730B2 (en) | 2001-05-01 | 2005-08-16 | Cheng Sheng Lee | Two dimensional microfluidic gene scanner |
EP1390715A4 (en) * | 2001-05-23 | 2005-05-04 | Hach Co | OPTICAL TURBIDIMETER WITH TUBULAR LENS |
US6825927B2 (en) | 2001-06-15 | 2004-11-30 | Mj Research, Inc. | Controller for a fluorometer |
US6670617B2 (en) | 2001-06-28 | 2003-12-30 | Ondeo Nalco Company | Mirror fluorometer |
EP2420824B1 (en) * | 2001-06-29 | 2018-11-28 | Meso Scale Technologies LLC | Multi-well plate having an array of wells and kit for use in the conduct of an ECL assay |
US20030129770A1 (en) | 2001-09-28 | 2003-07-10 | Fernandez Salvador M. | Method to improve sensitivity of molecular binding assays using phase-sensitive luminescence detection |
US20030062485A1 (en) | 2001-09-28 | 2003-04-03 | Fernandez Salvador M. | Compact multiwavelength phase fluorometer |
US6811085B2 (en) | 2001-10-26 | 2004-11-02 | Symbol Technologies, Inc. | Miniature imager |
US6842243B2 (en) * | 2001-12-10 | 2005-01-11 | Apprise Technologies, Inc. | Turbidity sensor |
US6894778B2 (en) | 2002-04-23 | 2005-05-17 | Hach Company | Low detection limit turbidimeter |
US20050219526A1 (en) * | 2003-01-17 | 2005-10-06 | Hong Peng | Method and apparatus for monitoring biological substance |
US7582882B2 (en) | 2003-01-23 | 2009-09-01 | Horiba Jobin Yvon, Inc. | Solid state multi frequency fluorometric measurements system and method |
US7095500B2 (en) | 2004-01-30 | 2006-08-22 | Nalco Company | Interchangeable tip-open cell fluorometer |
EP1828751A4 (en) | 2004-11-24 | 2011-02-23 | Idexx Lab Inc | REFLECTOMETER AND ASSOCIATED LIGHT SOURCE FOR USE IN A CHEMICAL ANALYZER |
US20060257958A1 (en) | 2005-05-13 | 2006-11-16 | Pronucleotein Biotechnologies, Llc | Magnetically-assisted test strip cartridge and method for using same |
US20070128658A1 (en) * | 2005-11-14 | 2007-06-07 | Blackwell Helen E | Fluorescent dyes, methods and uses thereof |
EP1955033A4 (en) * | 2005-11-30 | 2012-01-18 | Microptix Technologies Llc | INTEGRATED MEASURING SYSTEM APPROACH FOR HANDHELD SPECTRAL MEASUREMENTS |
US20160121009A1 (en) * | 2006-02-06 | 2016-05-05 | Woods Hole Oceanographic Institution | Optical Communication Systems and Methods |
US7505132B2 (en) * | 2006-03-23 | 2009-03-17 | Hach Company | Self calibrating measurement system |
US7528951B2 (en) * | 2006-03-23 | 2009-05-05 | Hach Company | Optical design of a measurement system having multiple sensor or multiple light source paths |
US7786457B2 (en) | 2006-06-28 | 2010-08-31 | Alcon, Inc. | Systems and methods of non-invasive level sensing for a surgical cassette |
US7580128B2 (en) * | 2006-11-01 | 2009-08-25 | Finesse Solutions, Llc. | Linear optical loss probe |
DE102006052059A1 (de) * | 2006-11-04 | 2008-05-08 | Leopold Kostal Gmbh & Co. Kg | Verfahren zum Betreiben eines photoelektrischen Sensorarrays |
WO2008103865A2 (en) | 2007-02-23 | 2008-08-28 | Thermo Niton Analyzers Llc | Fast and precise time-resolved spectroscopy with linear sensor array |
US7599055B2 (en) * | 2007-02-27 | 2009-10-06 | Corning Incorporated | Swept wavelength imaging optical interrogation system and method for using same |
WO2008140874A1 (en) * | 2007-05-09 | 2008-11-20 | Dow Global Technologies Inc. | System and method for high-throughput turbidity measurements |
EP2171396B1 (en) | 2007-07-12 | 2020-05-13 | Volcano Corporation | Apparatus and methods for uniform frequency sample clocking |
WO2009017721A2 (en) | 2007-07-28 | 2009-02-05 | Buglab Llc | Particle sensor with wide linear range |
EP2022859A1 (de) | 2007-08-01 | 2009-02-11 | Roche Diagnostics GmbH | Verfahren und Vorrichtung zur Bestimmung der Konzentration eines Analyten mittels Fluoreszenzmessung |
US7920252B2 (en) | 2007-10-19 | 2011-04-05 | Xin Hua Hu | Method and apparatus for spectrophotometric characterization of turbid materials |
KR100903133B1 (ko) | 2007-12-17 | 2009-06-16 | 한국전자통신연구원 | 광공동을 이용한 고감도 혼탁도 센서 및 센싱 방법 |
US8119998B2 (en) * | 2008-01-04 | 2012-02-21 | Pion, Inc. | Methods and systems for in situ physicochemical property testing |
US7738101B2 (en) * | 2008-07-08 | 2010-06-15 | Rashid Mavliev | Systems and methods for in-line monitoring of particles in opaque flows |
GB0813277D0 (en) | 2008-07-18 | 2008-08-27 | Lux Innovate Ltd | Method to assess multiphase fluid compositions |
EP2194381B1 (de) * | 2008-12-03 | 2015-12-02 | Roche Diagnostics GmbH | Testelement mit kombinierter Kontroll- und Kalibrationszone |
US8654319B2 (en) | 2009-01-23 | 2014-02-18 | University Of Maryland, Baltimore County | Chlorophyll and turbidity sensor system |
US8463083B2 (en) | 2009-01-30 | 2013-06-11 | Claudio Oliveira Egalon | Side illuminated multi point multi parameter optical fiber sensor |
US8211708B2 (en) * | 2009-03-13 | 2012-07-03 | Furukawa Electric Co., Ltd. | Optical measuring device and method therefor |
GB0906986D0 (en) * | 2009-04-23 | 2009-06-03 | Avacta Ltd | Apparatus and method |
CN101581668B (zh) * | 2009-06-04 | 2010-11-17 | 山东大学 | 消除荧光测定中内滤效应的新装置及测试新方法 |
US20100321046A1 (en) * | 2009-06-17 | 2010-12-23 | Ysi Incorporated | Wipeable conductivity probe and method of making same |
DE102009027929B4 (de) * | 2009-07-22 | 2021-05-12 | Endress+Hauser Conducta Gmbh+Co. Kg | Trübungsmessgerät und ein Verfahren zur Bestimmung einer Konzentration eines Trübstoffs |
US8486709B2 (en) | 2009-08-21 | 2013-07-16 | Massachusetts Institute Oftechnology | Optical nanosensors comprising photoluminescent nanostructures |
US8526472B2 (en) | 2009-09-03 | 2013-09-03 | Axsun Technologies, Inc. | ASE swept source with self-tracking filter for OCT medical imaging |
US8625104B2 (en) * | 2009-10-23 | 2014-01-07 | Bioptigen, Inc. | Systems for comprehensive fourier domain optical coherence tomography (FDOCT) and related methods |
US8420996B2 (en) * | 2009-12-23 | 2013-04-16 | Nokia Corporation | Intensity estimation using binary sensor array with spatially varying thresholds |
US8661663B2 (en) * | 2010-02-22 | 2014-03-04 | University Of Houston | Method for manufacturing a multimodal neural probe |
US8721858B2 (en) | 2010-03-12 | 2014-05-13 | The Board Of Trustees Of The Leland Stanford Junior University | Non-focusing tracers for indirect detection in electrophoretic displacement techniques |
US8488122B2 (en) * | 2010-05-05 | 2013-07-16 | Ysi Incorporated | Turbidity sensors and probes |
SE1000804A1 (sv) * | 2010-07-30 | 2012-01-31 | System och metod för att mäta optiska egenskaper hos ett elastiskt och oelastiskt spridande medium | |
US8717562B2 (en) | 2010-08-23 | 2014-05-06 | Scattering Solutions, Inc. | Dynamic and depolarized dynamic light scattering colloid analyzer |
JP2012060912A (ja) * | 2010-09-15 | 2012-03-29 | Sony Corp | 核酸増幅反応装置、核酸増幅反応装置に用いる基板、及び核酸増幅反応方法 |
CN103443625B (zh) * | 2010-10-21 | 2017-12-05 | 耐克思乐生物科学有限责任公司 | 成像细胞仪的内部聚焦参考珠 |
JP2012118055A (ja) * | 2010-11-12 | 2012-06-21 | Sony Corp | 反応処理装置及び反応処理方法 |
WO2012099889A2 (en) | 2011-01-17 | 2012-07-26 | Biosynergetics, Inc. | In-line flow meter |
US20120287435A1 (en) * | 2011-05-12 | 2012-11-15 | Jmar Llc | Automatic dilution for multiple angle light scattering (mals) instrument |
TWI582408B (zh) * | 2011-08-29 | 2017-05-11 | 安美基公司 | 用於非破壞性檢測-流體中未溶解粒子之方法及裝置 |
FI20115999A0 (fi) * | 2011-10-11 | 2011-10-11 | Teknologian Tutkimuskeskus Vtt Oy | Optinen mittaus |
US9222888B2 (en) | 2012-04-03 | 2015-12-29 | Ut-Battelle, Llc | Pulse amplitude modulated chlorophyll fluorometer |
US9020202B2 (en) | 2012-12-08 | 2015-04-28 | Masco Canada Limited | Method for finding distance information from a linear sensor array |
WO2014097045A1 (en) | 2012-12-19 | 2014-06-26 | Koninklijke Philips N.V. | Frequency domain time resolved fluorescence method and system for plaque detection |
US9140648B2 (en) | 2013-03-12 | 2015-09-22 | Ecolab Usa Inc. | Fluorometer with multiple detection channels |
MY187829A (en) | 2013-11-29 | 2021-10-26 | Mimos Berhad | Luminescence based water quality sensors system |
CN103630522A (zh) * | 2013-12-11 | 2014-03-12 | 中国科学院南京地理与湖泊研究所 | 一种有色可溶性有机物三维荧光数据的校正和定标方法 |
WO2015089631A1 (en) | 2013-12-20 | 2015-06-25 | Trojan Technologies | Method for assaying for loss of an organism in an aqueous liquid |
US9863881B2 (en) | 2014-01-15 | 2018-01-09 | Purdue Research Foundation | Methods for measuring concentrations of analytes in turbid solutions by applying turbidity corrections to raman observations |
US20150276594A1 (en) | 2014-03-26 | 2015-10-01 | Intellectual Property Transfer, LLC | Method and apparatus for measuring turbidity |
WO2015164274A1 (en) | 2014-04-21 | 2015-10-29 | Buglab Llc | Particle sensor with interferent discrimination |
US9921157B2 (en) * | 2014-08-08 | 2018-03-20 | Quantum-Si Incorporated | Optical system and assay chip for probing, detecting and analyzing molecules |
US10345216B2 (en) * | 2014-08-20 | 2019-07-09 | Research Triangle Institute | Systems, devices, and methods for flow control and sample monitoring control |
US9915600B2 (en) * | 2016-02-19 | 2018-03-13 | Research Triangle Institute | Devices, systems and methods for detecting particles |
CA2953026A1 (en) * | 2014-09-19 | 2016-03-24 | Hach Company | Nephelometric turbidimeter with axial illumination and circumferential photodetector |
US10184892B2 (en) * | 2014-10-29 | 2019-01-22 | Horiba Instruments Incorporated | Determination of water treatment parameters based on absorbance and fluorescence |
WO2016095008A1 (en) | 2014-12-17 | 2016-06-23 | Total E&P Canada Ltd. | Apparatus, systems and methods for real-time solids content measurements |
US20160178618A1 (en) | 2014-12-17 | 2016-06-23 | Stc.Unm | 3d tissue model for spatially correlated analysis of biochemical, physiological and metabolic micro-environments |
US10150680B1 (en) * | 2015-01-05 | 2018-12-11 | Sutro Connect Inc. | Water monitoring device and method |
US10088571B2 (en) | 2015-02-17 | 2018-10-02 | Florida Atlantic University Board Of Trustees | Underwater sensing system |
US9606059B2 (en) | 2015-02-20 | 2017-03-28 | Phytosynthetix Llc | Phase synchronizing pulse amplitude modulation fluorometer |
JP6314872B2 (ja) | 2015-02-25 | 2018-04-25 | 株式会社島津製作所 | 含有蛍光成分数決定方法及びその含有蛍光成分数決定方法を用いた分光蛍光光度計 |
WO2017023925A1 (en) | 2015-08-03 | 2017-02-09 | Ysi, Inc. | Multi excitation-multi emission fluorometer for multiparameter water quality monitoring |
LU92827B1 (en) | 2015-09-14 | 2017-03-20 | Luxembourg Inst Science & Tech List | Method for determining in-situ suspended sediment properties |
WO2017048846A1 (en) * | 2015-09-14 | 2017-03-23 | OptikTechnik LLC | Optical sensing device and method in a liquid treatment system |
CN105318898B (zh) | 2015-10-21 | 2018-02-09 | 武汉理工大学 | 基于扫频光源的全同弱反射光栅传感网络解调系统及方法 |
WO2017155936A1 (en) * | 2016-03-07 | 2017-09-14 | Ysi, Inc. | Optical nitrate sensor for multiparameter water quality measurement |
CA3016594C (en) * | 2016-03-09 | 2021-07-06 | Christopher John Palassis | Optical nitrate sensor compensation algorithm for multiparameter water quality measurement |
US10324019B2 (en) * | 2016-03-17 | 2019-06-18 | Becton, Dickinson And Company | Cell sorting using a high throughput fluorescence flow cytometer |
US10365198B2 (en) * | 2016-04-21 | 2019-07-30 | Malvern Panalytical Limited | Particle characterization |
WO2017199511A1 (ja) * | 2016-05-19 | 2017-11-23 | 富士電機株式会社 | 水質分析計 |
GB2551993B (en) | 2016-07-04 | 2019-09-11 | Process Instruments Uk Ltd | Sensor and measurement method |
JP2019531488A (ja) * | 2016-09-13 | 2019-10-31 | ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツングBASF Coatings GmbH | 液体試料の透過および/または前方散乱および/または再放射の実質的同時測定のため、ならびに透過と前方散乱または透過と再放射の同時測定のためのセンサ |
US10393660B2 (en) * | 2016-11-06 | 2019-08-27 | JianFeng Zhang | Apparatus and method for measuring concentration of materials in liquid or gas |
CN110178014B (zh) | 2016-11-14 | 2023-05-02 | 美国西门子医学诊断股份有限公司 | 用于使用图案照明表征样本的方法和设备 |
WO2018098260A1 (en) * | 2016-11-23 | 2018-05-31 | Ysi, Inc. | Dual function fluorometer-absorbance sensor |
US10036703B1 (en) * | 2017-01-27 | 2018-07-31 | The United States Of America, As Represented By The Secretary Of The Navy | Portable laser biosensor |
CN115372091A (zh) | 2017-03-01 | 2022-11-22 | 富陆意迪恩股份公司 | 可现场部署的多路式取样和监测装置及细菌污染测量方法 |
EP3370486A1 (en) * | 2017-03-02 | 2018-09-05 | ASML Netherlands B.V. | Radiation source |
FR3067460B1 (fr) | 2017-06-08 | 2019-07-19 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Procede de determination des temps de declin d’un signal de luminescence |
CN107144506B (zh) | 2017-06-21 | 2023-08-22 | 华南理工大学 | 一种基于环状交织阵列的悬浮物动态监测方法与装置 |
US10908000B2 (en) * | 2017-07-07 | 2021-02-02 | Ysi, Inc. | Antifouling accessory for field deployed sensors and instruments |
JP7137805B2 (ja) * | 2017-08-10 | 2022-09-15 | フルエンス アナリティクス, ファーマリー アドヴァンスド ポリマー モニタリング テクノロジーズ, インコーポレイテッド | 製造中のバイオポリマーおよび合成ポリマーの特性評価および制御のための装置ならびに方法 |
CN107596461A (zh) * | 2017-09-15 | 2018-01-19 | 广州佩迈医学科技有限公司 | 一种外引流管理系统 |
US20190162662A1 (en) | 2017-11-27 | 2019-05-30 | The Government Of The United States Of America, As Represented By The Secretary Of The Navy | Substrates with independently tunable topographies and chemistries for quantifiable surface-induced cell behavior |
US11612768B2 (en) * | 2018-07-26 | 2023-03-28 | Carnegie Mellon University | In-medium sculpted tunable graded index lenses |
WO2020073018A2 (en) * | 2018-10-04 | 2020-04-09 | First Light Diagnostics, Inc. | Test cartridges |
KR20210075648A (ko) * | 2019-12-13 | 2021-06-23 | 삼성전자주식회사 | 소형 라만 센서 및 생체성분 추정 장치 |
AU2021275061B2 (en) * | 2020-05-20 | 2023-01-19 | Ysi, Inc. | Spatial gradient-based fluorometer |
US20220413166A1 (en) * | 2021-05-18 | 2022-12-29 | Luminated Glazings, Llc | Scattering fields in a medium to redirect wave energy onto surfaces in shadow |
-
2021
- 2021-05-19 AU AU2021275061A patent/AU2021275061B2/en active Active
- 2021-05-19 WO PCT/US2021/033100 patent/WO2021236735A1/en unknown
- 2021-05-19 US US17/324,423 patent/US12061149B2/en active Active
- 2021-05-19 JP JP2022571189A patent/JP7303397B2/ja active Active
- 2021-05-19 CN CN202180036389.3A patent/CN115667886A/zh active Pending
- 2021-05-19 JP JP2022571165A patent/JP7542652B2/ja active Active
- 2021-05-19 AU AU2021273797A patent/AU2021273797B2/en active Active
- 2021-05-19 KR KR1020227040549A patent/KR102604781B1/ko active IP Right Grant
- 2021-05-19 JP JP2022571196A patent/JP7451767B2/ja active Active
- 2021-05-19 WO PCT/US2021/033083 patent/WO2021236720A1/en unknown
- 2021-05-19 AU AU2021276375A patent/AU2021276375B2/en active Active
- 2021-05-19 CA CA3178570A patent/CA3178570A1/en active Pending
- 2021-05-19 CA CA3178563A patent/CA3178563C/en active Active
- 2021-05-19 CN CN202180036220.8A patent/CN115667889A/zh active Pending
- 2021-05-19 BR BR112022023420A patent/BR112022023420A2/pt active Search and Examination
- 2021-05-19 US US17/324,475 patent/US11604143B2/en active Active
- 2021-05-19 KR KR1020227040421A patent/KR20230011951A/ko not_active Application Discontinuation
- 2021-05-19 US US17/324,385 patent/US11860096B2/en active Active
- 2021-05-19 CN CN202180036421.8A patent/CN115667890B/zh active Active
- 2021-05-19 EP EP21808693.2A patent/EP4153971A4/en active Pending
- 2021-05-19 WO PCT/US2021/033090 patent/WO2021236726A1/en unknown
- 2021-05-19 EP EP21809736.8A patent/EP4153972A4/en active Pending
- 2021-05-19 BR BR112022023418A patent/BR112022023418A2/pt unknown
- 2021-05-19 EP EP21807774.1A patent/EP4153970A4/en active Pending
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070201027A1 (en) | Innovative Raster-Mirror Optical Detection System For Bistatic Lidar | |
US20100012850A1 (en) | Ultraviolet radiation detector and apparatus for evaluating ultraviolet radiation protection effect | |
US9746420B2 (en) | Differential scan imaging systems and methods | |
US11906629B2 (en) | Method and device for distance measurement | |
Li et al. | Assessing low-light cameras with photon transfer curve method | |
CN115667886A (zh) | 扩展式立体角浊度传感器 | |
US20150102234A1 (en) | Systems and method for fluorescence imaging | |
US6141097A (en) | Optical measurement of marine conditions | |
US9188528B2 (en) | Sensor for monitoring a medium | |
US11035794B2 (en) | Scalable, large-area optical sensing platform with compact light delivery and imaging system | |
US10823673B2 (en) | Dual function fluorometer-absorbance sensor | |
TWI576576B (zh) | 用於使用多點照射及多通道之晶圓檢測的系統 | |
Park et al. | Line-scan hyperspectral imaging for real-time poultry fecal detection | |
CA3178549A1 (en) | Spatial gradient-based fluorometer | |
KR102721809B1 (ko) | 스위프 주파수 형광계 | |
CN115266590A (zh) | 一种成像系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |