CN115650576A - 预制棒制备方法、预制棒、光纤制备方法、设备及光纤 - Google Patents

预制棒制备方法、预制棒、光纤制备方法、设备及光纤 Download PDF

Info

Publication number
CN115650576A
CN115650576A CN202211370873.2A CN202211370873A CN115650576A CN 115650576 A CN115650576 A CN 115650576A CN 202211370873 A CN202211370873 A CN 202211370873A CN 115650576 A CN115650576 A CN 115650576A
Authority
CN
China
Prior art keywords
optical fiber
layer
preform
coating
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211370873.2A
Other languages
English (en)
Inventor
朱钱生
郭雨凡
丁春来
徐海涛
曹珊珊
刘志忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangdong Technology Co ltd
Zhongtian Technologies Fibre Optics Co Ltd
Jiangsu Zhongtian Technology Co Ltd
Original Assignee
Jiangdong Technology Co ltd
Zhongtian Technologies Fibre Optics Co Ltd
Jiangsu Zhongtian Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangdong Technology Co ltd, Zhongtian Technologies Fibre Optics Co Ltd, Jiangsu Zhongtian Technology Co Ltd filed Critical Jiangdong Technology Co ltd
Priority to CN202211370873.2A priority Critical patent/CN115650576A/zh
Publication of CN115650576A publication Critical patent/CN115650576A/zh
Pending legal-status Critical Current

Links

Images

Abstract

本申请涉及光纤制备技术领域,旨在解决已知光纤的光传输效率不高、生产过程中原材料损耗较大的技术问题,提供预制棒制备方法、预制棒、光纤制备方法、设备及光纤。其中,预制棒制备方法包括:在芯层的外表面形成内包层;在内包层的外表面形成包覆层,并在包覆层内形成多个气孔,以使包覆层形成空气辅助层,在空气辅助层的横截面上,气孔的总截面面积为空气辅助层的截面面积的25%至55%;在空气辅助层的外表面制成外包层,并制成预制棒前体;将预制棒前体熔缩并制成预制棒,预制棒的外径为D,20mm≤D≤30mm。本申请的有益效果是提高光纤的光传输效率以及减少生产过程中原材料的损耗。

Description

预制棒制备方法、预制棒、光纤制备方法、设备及光纤
技术领域
本申请涉及光纤制备技术领域,具体而言,涉及预制棒制备方法、预制棒、光纤制备方法、设备及光纤。
背景技术
已知的传能光纤制成后具有较多的内部缺陷,光的吸收率较高,使得光纤的光传输效率较低。
发明内容
本申请旨在提供预制棒制备方法、预制棒、光纤制备方法、设备及光纤,以解决已知光纤的光传输效率较低的问题。
本申请的实施例是这样实现的:
本申请提供一种预制棒制备方法,包括:
在所述芯层的外表面形成内包层,所述内包层的绝对折射率小于所述芯层的绝对折射率;
在所述内包层的外表面形成包覆层,并在所述包覆层内形成多个气孔,以使所述包覆层形成空气辅助层,在所述空气辅助层的横截面上,所述气孔的总截面面积为所述空气辅助层的截面面积的25%至55%,所述空气辅助层的绝对折射率小于所述内包层的绝对折射率;
在所述空气辅助层的外表面制成外包层,并制成预制棒前体;
将所述预制棒前体熔缩并制成预制棒,所述预制棒的外径为D,20mm≤D≤30mm。
根据本申请实施例制备的预制棒,在熔融拉丝形成光纤后,光纤同样具有预制棒的结构,光在光纤的芯层内传播时,大量的光在芯层与内包层之间全反射,并保留于芯层内传播,少量光进入内包层与空气辅助层之间后,又会在空气辅助层处反射,从而再反射至芯层内,由此,本实施例所制备的预制棒可以提高光在光纤内的传输效率,使由其拉丝形成的光纤的光传输率可高达98%。
本申请还提供一种预制棒,所述预制棒的外径为D,20mm≤D≤30mm,所述预制棒包括:芯层;内包层,所述内包层包覆于所述芯层,所述内包层与所述芯层的相对折射率差为Δ1,-0.1%≤Δ1≤-0.4%;空气辅助层,所述空气辅助层包覆于所述内包层,所述空气辅助层内设有多个气孔,所述空气辅助层与所述芯层的相对折射率差为Δ2,-28%≤Δ2≤-15%;外包层,所述外包层包覆于所述空气辅助层。
在一种实施方式中:多个所述气孔均匀分布于所述空气辅助层内。
本申请还提供一种光纤制备方法,包括:
使前述的预制棒沿第一方向进入拉丝通道,所述预制棒的外表面与所述拉丝通道的内壁之间的间距为L,L≤10mm,所述预制棒从所述拉丝通道熔融后拉丝形成裸纤,加工所述裸纤并形成光纤;
调整所述光纤的牵引方向至第二方向,第二方向与第一方向斜交或垂直;
收卷所述光纤。
在一种实施方式中:从所述第一方向调整所述光纤的牵引方向时,在所述光纤的牵引路径上,逐段调整所述光纤的牵引方向,且相邻的两段所述光纤的牵引方向之间的夹角为α,α≤35°。
在一种实施方式中:在步骤所述调整所述光纤的牵引方向至第二方向之前,还包括:
在所述拉丝通道外的所述裸纤的表面涂覆形成涂覆层,固化所述涂覆层以形成所述光纤,再收卷具有所述涂覆层的所述光纤。
在一种实施方式中:在步骤所述拉丝通道外的所述裸纤的表面涂覆并形成涂覆层转向至第二方向之前,直至收卷具有所述涂覆层的所述光纤后,引导所述裸纤保持沿第一方向移动。
本申请还提供一种光纤制备设备,包括:
拉丝装置,用于将前述的预制棒熔融拉丝形成裸纤;
导向装置,用于引导所述裸纤保持沿第一方向移动;
涂覆装置,用于在所述裸纤的表面涂覆涂覆层,以形成光纤;
牵引装置,用于沿第二方向牵引从所述拉丝装置输出的光纤;
转向装置,用于引导所述光纤的牵引方向从第一方向转至第二方向。
在一种实施方式中:
所述转向装置包括多个转向轮,多个所述转向轮沿第二方向依次间隔设置,并且相邻的两个所述转向轮在第一方向间隔设置,相邻的两个所述转向轮的转动轴线之间具有连接线,多个所述转向轮用于引导所述光纤的转向方向,并使相邻的两段所述光纤之间的转向夹角α≤35°。
本申请还提供一种光纤,采用前述的光纤制备方法制成。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请实施例的预制棒制备方法的流程图;
图2为本申请实施例的预制棒的结构示意图;
图3为本申请实施例的光纤制备方法的流程图;
图4为本申请实施例的光纤制备设备的结构示意图;
图5为本申请实施例的光纤的结构示意图;
图6为本申请实施例的裸纤的折射率示意图。
主要元件符号说明:
预制棒 100
预制棒前体 101
芯层 10
内包层 20
空气辅助层 30
包覆层 31
气孔 32
外包层 40
光纤 200
裸纤 201
芯部 202
第一包层 203
第二包层 204
主体层 2041
气孔部分 2042
第三包层 205
涂覆层 206
内层涂层 2061
外层涂层 2062
光纤制备设备 300
拉丝装置 301
炉子 3011
拉丝通道 3012
涂覆装置 302
涂覆单元 3021
固化单元 3022
牵引装置 303
转向装置 304
转向轮 3041
定位轮 3042
收卷装置 305
切纤装置 306
测量装置 307
导向装置 308
送棒装置 3091
测试装置 3092
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。当一个元件被认为是“设置于”另一个元件,它可以是直接设置在另一个元件上或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。本文所使用的术语“或/及”包括一个或多个相关的所列项目的任意的和所有的组合。
本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施方式及实施方式中的特征可以相互组合。
实施例
参见图1,本实施例提供一种预制棒制备方法,包括以下步骤:
S01、在芯层10的外表面形成内包层20,内包层20的绝对折射率小于芯层10的绝对折射率;
S02、在内包层20的外表面形成包覆层31,并在包覆层31内打多个气孔32,以使包覆层31形成空气辅助层30,在空气辅助层30的横截面上,气孔32的总截面面积为空气辅助层30的截面面积的25%至55%,空气辅助层30的绝对折射率小于内包层20的绝对折射率;
S03、在空气辅助层30的外表面制成外包层40,并制成预制棒前体101;
S04、将预制棒前体101熔缩并制成预制棒100,预制棒100的外径为D,20mm≤D≤30mm。
根据本申请实施例制备的预制棒100,在熔融拉丝形成光纤200后,光纤200同样具有预制棒100的结构,光在光纤200的芯层10内传播时,大量的光在芯层10与内包层20之间全反射,并保留于芯层10内传播,少量光进入内包层20与空气辅助层30之间后,又会在空气辅助层30处反射,从而再反射至芯层10内,由此,本实施例所制备的预制棒100可以提高光在光纤200内的传输效率,使由其拉丝形成的光纤200的光传输率可高达98%。
已知技术中为了提高光在芯层10内的传输率,在芯层10外面设置单层低绝对折射率的包层,部分包层由掺杂二氧化硅制成,部分包层则在其中形成气孔32,其均可起到提高光传输效率的目的。然而形成有气孔32的包层的光纤200的光传输效率虽然能够满足部分要求,却存在稳定性问题以及在传播部分参数的光时会出现光传输效率略微下降的问题。申请人在实践研究后发现,上述问题的原因在于,光在反射过程中经过包层的气孔32内的空气后,会被空气吸收,从而导致光的损失。因此,光在本实施例的预制棒100制成的光纤200内传播时,少量光首先穿过内包层20到达空气辅助层30后,部分光反射经过内包层20并再进入芯层10,部分光则进入空气辅助层30,进入空气辅助层30的一部分光被气孔32内的空气吸收,从而通过内包层20与空气辅助层30的设置,使得光在空气辅助层30的损失更少,并且由于内包层20的光还会从空气辅助层30反射至芯层10内,也可以进一步减少进入内包层20的光的损失,从而有效提高了光传输效率,并且降低了气孔32的空气对光的损失影响。
另外,如空气辅助层30内的气孔32比例过高,则使从内包层20到达空气辅助层30的光被空气吸收的量大大提升,且也不利于保证预制棒100的强度;如空气辅助层30内的气孔32比例较小,则从内包层20进入空气辅助层30的光不易出现全反射至芯层10内,易影响到光传输效率,本实施例中气孔32的总截面面积为空气辅助层30的截面面积的25%至55%,既可以起到较好的锁光效果,又能够减少气孔32的空气吸收光的量,并保证预制棒100的强度,使预制棒100可以顺利熔融形成质量较好的光纤200。
此外,由于本实施例的预制棒前体101熔缩形成预制棒100后,预制棒100的外径D的最大值为30mm,最小值为20mm,在预制棒100制成光纤200的熔融拉丝过程中,预制棒100的拉伸速度不快,预制棒100同一部分在拉丝装置301的同一热区的停留时间较短,从而避免预制棒100在同一热区的停留时间过长导致预制棒100析晶的问题,使得预制棒100析晶导致的内部缺陷较少,提高了光纤200的内部品质,并且避免了光纤200内部缺陷影响到其光传输效率的问题。
在本实施例中,可选地,内包层20通过改良化学气相沉积法(Modified ChemicalVapor Deposition,MVCD)制备形成,包覆层31通过改良化学气相沉积法制备形成,并通过物理破坏手段在包覆层31内形成多个气孔32,外包层40通过改良化学气相沉积法制备形成。在本申请的其他实施例中,轴向气相沉积法(Modified Chemical Vapor Deposition,VAD)、棒外化学气相沉积法(Modified Chemical Vapor Deposition,OVD)和等离子化学气相沉积法(Plasma Chemical Vapor Deposition,PVCD)等方法中的任意一种也可用于制备内包层20、包覆层31或外包层40。
在本实施例中,可选地,芯层10的材料为纯二氧化硅;内包层20的材料为掺氟二氧化硅,内包层20与芯层10的相对折射率差为Δ1,-0.1%≤Δ1≤-0.4%;包覆层31的材料为纯二氧化硅,空气辅助层30与芯层10的相对折射率差为Δ2,-28%≤Δ2≤-15%;外包层40的材料为掺氟二氧化硅或者纯二氧化硅,外包层40为掺氟二氧化硅时,外包层40的绝对折射率小于芯层10的绝对折射率。由于掺氟二氧化硅的制备相较于纯二氧化硅的制备更为复杂,本实施例中,外包层40与芯层10之间设有内包层20及空气辅助层30,内包层20和空气辅助层30均可以起到较好的全反射效果,从而仅有微量的光能够折射至外包层40处,在光纤200的光传输率的允许范围内,因外包层40采用纯二氧化硅制成而导致的光的损失量也极小,从而外包层40的具体材质对由预制棒100制成的光纤200的光传输率的影响极小,因此,本申请实施例的外包层40的具体材质可根据实际需求确定。
在本实施例中,可选地,预制棒前体101的截面上,芯层10外表面的半径为r1,160um≤r1≤700um;内包层20外表面的半径为r2,170um≤r2≤750um;空气辅助层30的外表面的半径为r3,175m≤r3≤900um;外包层40外表面的半径为r4,200um≤r4≤1000um。
在本实施例中,步骤S4包括,将预制棒前体101放置于熔缩炉内,设定熔缩炉的温度为2000℃至2300℃,预制棒前体101的熔缩环境为含氟气体和氧气环境。可选地,含氟气体为C2F6、CF4、SF6中的任意一种,含氟气体的气流量可设为50sccm至120sccm,氧气气流量为100sccm至1000sscm。熔缩炉的移动速度可为10mm/min至50mm/min。
在本实施例中,可选地,多个气孔32可均匀地从包覆层31的外表面通过切割形成,由于多个气孔32在包覆层31上均匀分布,使包覆层31各处的强度大致相同。在预制棒100熔融拉丝制备光纤200的过程中,由于空气辅助层30内的气孔32均匀分布,空气辅助层30的各处强度大致相同,使光纤200即使略微晃动也不易产生内部缺陷,并且使得光纤200后续的收卷也不会产生内部缺陷,从而保证了光纤200的强度性能可靠性,以及保证了光纤200的生产质量和收卷质量。
在本实施例中,可选地,芯层10可通过沉积法在预制棒100制备过程中形成,即在步骤S1前,还包括步骤S0,制成芯层10。在本申请的其他实施例中,芯层10也可以通过外部购入直接使用,从而无须预先加工芯层10。
参见图2,本实施例中的预制棒的制备方法制备的预制棒100的外径为D,20mm≤D≤30mm,预制棒100包括芯层10、内包层20、空气辅助层30和外包层40。内包层20包覆于芯层10,内包层20与芯层10的相对折射率差为Δ1,-0.1%≤Δ1≤-0.4%。空气辅助层30包覆于内包层20,空气辅助层30内设有多个气孔32,空气辅助层30与芯层10的相对折射率差为Δ2,-28%≤Δ2≤-15%。外包层40包覆于空气辅助层30。
经过上述步骤S01-步骤S04制得的预制棒100,所生产得到的光纤200具有高光传输效率(达98%)、稳定的强度以及较少的内部缺陷。
本实施例中,可选地,芯层10由纯二氧化硅制成,内包层20由掺氟二氧化硅制成,空气辅助层30由二氧化硅制成。内包层20的相对折射率差Δ1为掺氟二氧化硅与二氧化硅的绝对折射率差值。
本实施例中,可选地,多个气孔32均匀分布于空气辅助层30内,以使空气辅助层30具有均匀稳定的强度。
参见图3,本申请实施例还提供一种光纤制备方法,包括:
步骤S11、使前述的预制棒100沿第一方向进入拉丝通道3012,预制棒100的外表面与拉丝通道3012的内壁之间的间距为L,L≤10mm,预制棒100从拉丝通道3012熔融后拉丝形成裸纤201,加工裸纤201并形成光纤200;
步骤S12、调整光纤200的牵引方向至第二方向,第二方向与第一方向斜交或垂直;
步骤S13、收卷光纤200。
本申请实施例的光纤制备方法采用了前述的预制棒100,根据前述的预制棒100经熔融拉丝形成的裸纤201的结构与前述的预制棒前体101的结构大致相同,因此,本申请的光纤制备方法制得的光纤200具有前述的预制棒100的优点,在此不再赘述。
另外,由于预制棒100的外壁与拉丝通道3012的内壁之间的距离L不大于10mm,从而避免了拉丝通道3012内的气流对流现象,进一步提高了预制棒100熔融拉丝后形成的光纤200质量。可选地,4mm≤L≤6mm,能够进一步降低气流对流现象,并且可以避免L过小导致预制棒100触碰拉丝通道3012的问题,以保证预制棒100拉丝顺利进行。
本实施例中,可选地,拉丝环境温度为1800℃至2200℃之间,拉丝环境中充满氮气、氢气、氘气、氦气、氩气中的一种或者多种的混合气体,混合气体的流量为15L/min至25L/min之间,且氧气含量≤100ppm。
本实施例中,第一方向为重力方向,第二方向为水平方向,根据光纤200的实际制备要求,第一方向和第二方向也可以根据实际需要调整,无须进行具体限定。
本实施例中,预制棒100经熔融拉丝形成的裸纤201的结构与前述的预制棒前体101的结构大致相同,因此,本申请实施例的光纤制备方法所制得的裸纤201的外径介于200um与1000um之间,适用于传能光纤200的制备。
已知技术中的单模光纤200的芯径约为9um,多模光纤200的芯径最大可达62.5um,其均具有相对较小的芯径,小于本申请实施例所制备的裸纤201的最小外径200um。按照已知技术的光纤制备方法制备传能光纤200时,光纤200在拉丝步骤至收卷后,检查光纤200质量时会发现少量光纤200存在内部缺陷问题,申请人在排查生产设备、生产原料的问题后发现,传能光纤200的脆性随着光纤200的芯径增大而提高,使得大芯径光纤200在制备过程中易出现内部缺陷的问题。
已知的光纤制备方法所制备的光纤200外径较小,即使光纤200受到较大角度弯折,也不易出现内部缺陷,出于设备占地等成本考虑,通常没有动机优化光纤200从第一方向转至第二方向的方向。本申请实施例的步骤S12中,从第一方向调整光纤200的牵引方向时,在光纤200的牵引路径上,逐段调整光纤200的牵引方向,且相邻的两段光纤200的牵引方向之间的夹角为α,α≤35°。由于光纤200的牵引方向采用多次小角度的转向方式,使得每段光纤200转向时产生的弯折量均较少,从而本申请的光纤制备方法制得的光纤200收卷后,光纤200所形成的内部缺陷极少,从而保证了光纤200的生产良品率。
另外,在α过小时,则需要占地更多的光纤制备设备300的零件调整多段光纤200的牵引方向,虽然能够相对更好地减少内部缺陷的产生,然而使得光纤200的生产成本大幅提高,因此,本实施例中,α设为20°至30°之前,既保证了光纤200的生产质量,又避免光纤200生产成本过高,具有更优的性价比。
在本实施例中,参见图5,步骤S11中,由预制棒100熔融拉丝形成的裸纤201具有易损坏的性质,从而需要加工裸纤201以形成光纤200。可选地,加工裸纤201的步骤包括:在拉丝通道3012外的裸纤201的表面涂覆形成涂覆层206,固化涂覆层206以形成光纤200,再收卷具有涂覆层206的光纤200。裸纤201受到涂覆层206保护后,具有更稳定的可靠的性质,同时,调整具有涂覆层206的光纤200的牵引方向时,涂覆层206内侧的裸纤201也不易因折弯而产生内部缺陷,从而进一步提高了光纤200的内部质量,保证了收卷起来的光纤200具有较少的内部缺陷和较高的光传输效率。
本实施例中,可选地,涂覆层206的涂覆步骤包括:
对裸纤201进行内外两层涂层的涂覆和固化。
本实施例中,内层涂层2061由内层涂料涂覆,外层涂层2062由外层涂料涂覆。
内层涂料的绝对折射率≤1.4,内层涂料包括15-50份的含氟硅改性丙烯酸酯单体,15-50份的含氟丙烯酸酯单体、10-40份的丙烯酸树酯低聚物以及2-6份的光引发剂。
含氟硅改性丙烯酸酯单体通过丙烯酸羟乙酯、甲基丙烯酸羟乙酯、丙烯酸羟丙酯、聚乙二醇单丙烯酸酯中的一种,以及3,5-二(三氟甲基)苯基二甲基氯硅烷、1H,1H,2H,2H-全氟癸基二甲基氯硅烷、五氟苯基二甲基氯硅烷的一种合成。
光引发剂为2,4,6-三甲基苯甲酰基二苯基氧化膦(简称TPO)、2,4,6-三甲基苯甲酰基苯基膦酸乙酯(简称TPO-L)、苯甲酰甲酸甲酯(简称MBF)中的一种;
或者为2-羟基-2-甲基-1-苯基-1-丙酮(俗称1173)、1-羟基环己基苯酮(俗称184)、2-甲基-2-(4-吗啉基)-1-[4-(甲硫基)苯基]-1-丙酮中(俗称907)中的任意两种。
外层涂料包括丙烯酸树脂材料,其弹性模量≧550Mpa,25℃时涂料粘度为(3000~8000)mPa·s,密度为(0.95~1.3)g/cm3,断裂伸长率≧5%。
在本申请的其他实施例中,内层涂料和外层涂料也可以根据涂覆层206的具体需求,例如耐热、耐酸碱等需求,调整为其他材料,无须进行具体限定。
内层涂料和外侧涂料的处理可以在步骤S11之前进行,以便在涂覆前完成处理,可以直接进行涂覆作业,从而提高工序衔接效率。
本实施例中,内层涂层2061和外层涂层2062的涂覆压力设置为0.04-0.55Mpa每次,涂覆时,涂杯水温为28℃至50℃之间。
内层涂层2061和外层涂层2062的固化均为UV固化,固化光源采用紫外光源或LED光源中的一种,固化环境为无氧环境,氧气含量≤50ppm,固化环境使用的气体为氦气、氩气、氮气中的一种或多种,固化环境使用的气体为多种时,多种气体可以任意比例混合。在固化过程中,光纤200穿过不同的固化炉时,光纤200暴露于空气环境下不得大于0.04S,经固化炉固化后,光纤200内涂层固化度为85%~95%,外层固化度为92%~100%。
经分析,内层涂层2061和外层涂层2062在进行前述光固化后,光引发剂使得内层涂料和外层涂料进行了较高程度的交联固化,使得光纤200具有了一定的机械性能,进而在光纤200变换牵引方向时不易损坏涂覆层206内的裸纤201,减少光纤200内部缺陷,提高光传输效率。
已知的光纤制备方法所制备的光纤200外径较小,其拉丝形成的裸纤201在涂覆过程中更难出现内部缺陷,因此已知的光纤制备方法采用常规的制备步骤所生产得到的光纤200的内部缺陷较少,良品率不低,从而即使出现了内部缺陷,也没有动机优化制备方法以解决内部缺陷,再进一步提高良品率。本申请的光纤制备方法中,在步骤拉丝通道3012外的裸纤201的表面涂覆并形成涂覆层206转向至第二方向之前,直至收卷具有涂覆层206的光纤200后,引导裸纤201保持沿第一方向移动。由于裸纤201在形成涂覆层206之前均保持沿第一方向移动,从而在涂覆过程中也不会晃动,显著降低了涂覆过程中裸纤201因纤径过大而产生的内部缺陷,不仅提高了裸纤201的涂覆质量,并且涂覆过程中裸纤201也不会产生碎裂问题,从而无须重新装预制棒100并重新熔融拉丝,既提高了生产效率,还减少了因生产质量不达标导致的原材料的浪费。此外,在具有涂覆层206的光纤200收卷后,则后续的光纤200离开拉丝通道3012后即会进行涂覆,其间隔较短,不易出现碎裂及内部缺陷问题,因此,在此之后,既可以继续使光纤200保持沿第一方向移动,以进一步确保光纤200的生产质量,也可以无须使光纤200保持第一方向移动,以进一步提高生产效率。
在本实施例中,由于裸纤201的拉丝过程不会中断,如有部分裸纤201堆积在地面,其会对裸纤201的拉丝过程施加沿重力方向向上的力,并对裸纤201的涂覆造成干涉,因此,当部分光纤200快到达地面时,则可以预设频率切除光纤200,以避免堆积在地面的光纤200对裸纤201的拉丝造成影响。
本实施例中的光纤制备方法所制备的光纤200的结构参见图5,该光纤200包括裸纤201和涂覆层206,涂覆层206包括依次包覆于裸纤201外的内层涂层2061和外层涂层2062。裸纤201包括芯部202和依次包覆于芯部202外的第一包层203、第二包层204和第三包层205,第一包层203对应于预制棒100的内包层20,第二包层204对应于预制棒100的空气辅助层30,第三包层205对应于预制棒100的外包层40。本实施例的光纤200具有较大的纤径,在200um至1000um之间,并且还具有极少的内部缺陷,较高的光传输率(达98%)。
参见图6,本实施例的裸纤201的芯部202由二氧化硅制成,第一包层203由掺氟二氧化硅制成,第二包层204由二氧化硅制成并形成有气孔,第三包层由二氧化硅或掺氟二氧化硅制成。其中,芯部202与二氧化硅的相对折射率差为Δ0,第一包层203与二氧化硅的相对折射率差为Δ1,第二包层204与二氧化硅的相对折射率差为Δ2,第三包层205与二氧化硅的相对折射率差为Δ3。其中,Δ0>Δ1>Δ2。第二包层204包括主体层2041及气孔部分2042,气孔部分2042均匀分布于主体层2041内。
此外,芯部202的外径为r1,160um≤r1≤700um;第一包层203外表面的为r2,170um≤r2≤750um;第二包层204的外表面的半径为r3,175m≤r3≤900um;第三包层205外表面的半径为r4,200um≤r4≤1000um。
参见图4,本申请实施例还提供了一种光纤制备设备300,其用于执行前述的光纤制备方法,光纤制备设备300包括:
拉丝装置301,用于将前述的预制棒100熔融拉丝形成裸纤201;
导向装置308,用于引导裸纤201保持沿第一方向移动;
涂覆装置302,用于在裸纤201的表面涂覆涂覆层206,以形成光纤200;
牵引装置303,用于沿第二方向牵引从拉丝装置301输出的光纤200;
转向装置304,用于引导光纤200的牵引方向从第一方向转至第二方向。
本实施例中,转向装置304包括多个转向轮3041,多个转向轮3041沿第二方向依次间隔设置,并且相邻的两个转向轮3041在第一方向间隔设置,相邻的两个转向轮3041的转动轴线之间具有连接线,多个转向轮3041用于引导光纤200的转向方向,并使相邻的两段光纤200之间的转向夹角α≤35°。
例如,在光纤200的移动方向上,一个转向轮3041与位于其前侧的转向轮3041的连线,与其和位于其后侧的转向轮3041的连线之间的夹角即为转向夹角α,故而,通过对多个转向轮3041的排布,即可实现调整光纤200的各个转向夹角。
可选地,转向装置304还包括定位轮3042,定位轮3042设于多个转向轮3041与涂覆装置302之间,定位轮3042与光纤200从涂覆装置302的出口的连线与第一方向的夹角不大于35°,定位轮3042能够对光纤200的首次转向方向起到定位效果。
在本实施例中,导向装置308用于在裸纤201的表面涂覆并形成涂覆层206之前,直至牵引装置303牵引具有涂覆层206的光纤200后,引导所述裸纤201保持沿第一方向移动。通过导向装置308引导裸纤201保持沿第一方向移动,避免裸纤201晃动导致其内部产生内部缺陷的问题,提高了裸纤201的内部结构质量,减少因内部缺陷引起的光吸收现象,提高裸纤201的光传输效率。
具体地,导向装置308包括两个间隔设置的同步带,两个同步带靠近时即可对裸纤201起到导向作用,本申请的其他实施例中,导向装置308也可以设为其他形式的结构,无须进行具体限定。
可选地,光纤制备设备300还包括切纤装置306,切纤装置306能够在光纤200尚未牵引并收卷时,根据光纤200与地面的距离切割光纤200,避免光纤200堆积与地面并对还在拉丝及涂覆的裸纤201产生向上的作用力,并使其破裂,从而切纤装置306可以使光纤200顺利涂覆以及朝牵引装置303运行。本实施例的切纤装置306可参考已知技术中的光纤200切割结构,在此不再赘述。
可选地,光纤制备设备300还包括测量装置307,测量装置307可以对完成涂覆后的光纤200的纤径进行测量,以判断光纤200是否合格。本实施例的测量装置307可参考已知技术中的光纤200测量结构,在此不再赘述。
本实施方式中,可选地,涂覆装置302包括涂覆单元3021和固化单元3022,涂覆单元3021用于将涂覆材料涂覆于裸纤201的外表面,固化单元3022能够将涂覆材料固化,使其固化形成具有较好机械性能的涂覆层206。
可选地,光纤制备设备300还包括收卷装置305,收卷装置305设于牵引装置303的下游,以将生产完毕的光纤200收集备用。
本实施方式中,可选地,光纤制备设备300还包括送棒装置3091和测试装置3092,送棒装置3091用于向拉丝装置301输送预制棒100。测试装置3092设于拉丝装置301与涂覆装置302之间,测试装置3092用于测试裸纤201的性能,以判定裸纤201是否进入涂覆装置302。本实施例的送棒装置3091和测试装置3092的具体结构可参照已知技术中的送棒器及裸纤测试单元的结构,在此不再赘述。
以上实施方式仅用以说明本申请的技术方案而非限制,尽管参照以上较佳实施方式对本申请进行了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或等同替换都不应脱离本申请技术方案的精神和范围。

Claims (10)

1.一种预制棒制备方法,其特征在于,包括:
在所述芯层的外表面形成内包层,所述内包层的绝对折射率小于所述芯层的绝对折射率;
在所述内包层的外表面形成包覆层,并在所述包覆层内形成多个气孔,以使所述包覆层形成空气辅助层,在所述空气辅助层的横截面上,所述气孔的总截面面积为所述空气辅助层的截面面积的25%至55%,所述空气辅助层的绝对折射率小于所述内包层的绝对折射率;
在所述空气辅助层的外表面制成外包层,并制成预制棒前体;
将所述预制棒前体熔缩并制成预制棒,所述预制棒的外径为D,20mm≤D≤30mm。
2.一种预制棒,其特征在于,所述预制棒的外径为D,20mm≤D≤30mm,所述预制棒包括:
芯层;
内包层,所述内包层包覆于所述芯层,所述内包层与所述芯层的相对折射率差为Δ1,-0.1%≤Δ1≤-0.4%;
空气辅助层,所述空气辅助层包覆于所述内包层,所述空气辅助层内设有多个气孔,所述空气辅助层与所述芯层的相对折射率差为Δ2,-28%≤Δ2≤-15%;
外包层,所述外包层包覆于所述空气辅助层。
3.根据权利要求2所述的预制棒,其特征在于:多个所述气孔均匀分布于所述空气辅助层内。
4.一种光纤制备方法,其特征在于,包括:
使如权利要求2或3所述的预制棒沿第一方向进入拉丝通道,所述预制棒的外表面与所述拉丝通道的内壁之间的间距为L,L≤10mm,所述预制棒从所述拉丝通道熔融后拉丝形成裸纤,加工所述裸纤并形成光纤;
调整所述光纤的牵引方向至第二方向,第二方向与第一方向斜交或垂直;
收卷所述光纤。
5.根据权利要求4所述的光纤制备方法,其特征在于:包括:
从所述第一方向调整所述光纤的牵引方向时,在所述光纤的牵引路径上,逐段调整所述光纤的牵引方向,且相邻的两段所述光纤的牵引方向之间的夹角为α,α≤35°。
6.根据权利要求4所述的光纤制备方法,其特征在于:在步骤所述调整所述光纤的牵引方向至第二方向之前,还包括:
在所述拉丝通道外的所述裸纤的表面涂覆形成涂覆层,固化所述涂覆层以形成所述光纤,再收卷具有所述涂覆层的所述光纤。
7.根据权利要求6所述的光纤制备方法,其特征在于:
在步骤所述拉丝通道外的所述裸纤的表面涂覆并形成涂覆层转向至第二方向之前,直至收卷具有所述涂覆层的所述光纤后,引导所述裸纤保持沿第一方向移动。
8.一种光纤制备设备,其特征在于,包括:
拉丝装置,用于将如权利要求3所述的预制棒熔融拉丝形成裸纤;
导向装置,用于引导所述裸纤保持沿第一方向移动;
涂覆装置,用于在所述裸纤的表面涂覆涂覆层,以形成光纤;
牵引装置,用于沿第二方向牵引从所述拉丝装置输出的光纤;
转向装置,用于引导所述光纤的牵引方向从第一方向转至第二方向。
9.根据权利要求8所述的光纤制备设备,其特征在于:所述转向装置包括多个转向轮,多个所述转向轮沿第二方向依次间隔设置,并且相邻的两个所述转向轮在第一方向间隔设置,相邻的两个所述转向轮的转动轴线之间具有连接线,多个所述转向轮用于引导所述光纤的转向方向,并使相邻的两段所述光纤之间的转向夹角α≤35°。
10.一种光纤,其特征在于,采用权利要求4至7中任一项所述的光纤制备方法制成。
CN202211370873.2A 2022-11-03 2022-11-03 预制棒制备方法、预制棒、光纤制备方法、设备及光纤 Pending CN115650576A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211370873.2A CN115650576A (zh) 2022-11-03 2022-11-03 预制棒制备方法、预制棒、光纤制备方法、设备及光纤

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211370873.2A CN115650576A (zh) 2022-11-03 2022-11-03 预制棒制备方法、预制棒、光纤制备方法、设备及光纤

Publications (1)

Publication Number Publication Date
CN115650576A true CN115650576A (zh) 2023-01-31

Family

ID=84994768

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211370873.2A Pending CN115650576A (zh) 2022-11-03 2022-11-03 预制棒制备方法、预制棒、光纤制备方法、设备及光纤

Country Status (1)

Country Link
CN (1) CN115650576A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5320658A (en) * 1990-06-27 1994-06-14 Sumitomo Electric Industries, Ltd. Process of drawing optical fiber
US20040231366A1 (en) * 2003-05-24 2004-11-25 Lee Jae-Ho Apparatus and method for fabricating optical fiber by spinning
US20080013905A1 (en) * 2006-06-30 2008-01-17 Bookbinder Dana C Low bend loss optical fiber with high modulus coating
US20080170830A1 (en) * 2007-01-16 2008-07-17 Fujikura Ltd Photonic band gap fiber and method of producing the same
CN103399376A (zh) * 2013-08-16 2013-11-20 长飞光纤光缆有限公司 一种弯曲不敏感单模光纤及其制造方法
CN106291809A (zh) * 2016-09-20 2017-01-04 长飞光纤光缆股份有限公司 一种大芯径石英传能光纤

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5320658A (en) * 1990-06-27 1994-06-14 Sumitomo Electric Industries, Ltd. Process of drawing optical fiber
US20040231366A1 (en) * 2003-05-24 2004-11-25 Lee Jae-Ho Apparatus and method for fabricating optical fiber by spinning
US20080013905A1 (en) * 2006-06-30 2008-01-17 Bookbinder Dana C Low bend loss optical fiber with high modulus coating
US20080170830A1 (en) * 2007-01-16 2008-07-17 Fujikura Ltd Photonic band gap fiber and method of producing the same
CN103399376A (zh) * 2013-08-16 2013-11-20 长飞光纤光缆有限公司 一种弯曲不敏感单模光纤及其制造方法
CN106291809A (zh) * 2016-09-20 2017-01-04 长飞光纤光缆股份有限公司 一种大芯径石英传能光纤

Similar Documents

Publication Publication Date Title
EP2638419B1 (en) Multi-core optical fiber ribbons and methods for making the same
US8635889B2 (en) Refraction-sensitive optical fiber, quartz glass tube as a semi-finished product for the manufacture-thereof and method for the manufacture of the fiber
US8687936B2 (en) Optical fiber, optical transmission system, and method of making optical fiber
US7946135B2 (en) Extended-baking process for glass deposition tubes
JP6129270B2 (ja) 曲げ耐性のマルチモード光ファイバ
US20090052853A1 (en) Holey fiber and method of manufacturing the same
JP2012020908A (ja) 光ファイバの製造方法及び光ファイバ
CN105911639B (zh) 一种低衰减单模光纤
WO2001023924A1 (fr) Fibre optique a gestion de distribution, son procede de fabrication, systeme de communication optique l'utilisation et materiau de base de fibre optique
US8606065B2 (en) Optical fiber and method for fabricating the same
JP6402466B2 (ja) マルチコア光ファイバの製造方法
CN109061793B (zh) 一种七芯小径单模光纤及其制造方法
CN109298482A (zh) 一种低衰减和低弯曲损耗的大有效面积单模光纤
JP4547848B2 (ja) 光ファイバ、その製造方法及びそれを含む光伝送システム
CN113582534A (zh) 光纤的制备方法及其装置
JP2008026903A (ja) クリンプおよびクリーブコネクタ用の拡張帯域光ファイバ
CN115650576A (zh) 预制棒制备方法、预制棒、光纤制备方法、设备及光纤
WO2012100581A1 (zh) 一种抗弯曲多模光纤
US6304704B1 (en) Mode mixing buffered optical fiber apparatus and method for making
US8567217B2 (en) Optical fiber preform and manufacturing method therefor
CN110937796B (zh) 宽带多模光纤预制棒的制造方法
CN109179981B (zh) 光纤预制棒及其制备方法、光纤及其制备方法
CN113848608B (zh) 单模光纤及其制备方法
RU2272003C1 (ru) Способ высокотемпературной химической обработки поверхности стекла
JP4890767B2 (ja) 光ファイバ用プリフォームロッドの製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination