CN115611622A - 一种掺杂碳化硅晶须的硅酸盐粉体材料的制备方法 - Google Patents

一种掺杂碳化硅晶须的硅酸盐粉体材料的制备方法 Download PDF

Info

Publication number
CN115611622A
CN115611622A CN202110795129.6A CN202110795129A CN115611622A CN 115611622 A CN115611622 A CN 115611622A CN 202110795129 A CN202110795129 A CN 202110795129A CN 115611622 A CN115611622 A CN 115611622A
Authority
CN
China
Prior art keywords
powder
whiskers
sic
whisker
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110795129.6A
Other languages
English (en)
Inventor
王超会
王佳宁
王春圻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qiqihar University
Original Assignee
Qiqihar University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qiqihar University filed Critical Qiqihar University
Priority to CN202110795129.6A priority Critical patent/CN115611622A/zh
Publication of CN115611622A publication Critical patent/CN115611622A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5276Whiskers, spindles, needles or pins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明涉及一种掺杂碳化硅晶须的硅酸盐粉体材料的制备方法。步骤如下:按比例称量Yb2O3、SiO2与SiC晶须粉末,按顺序将Yb2O3、SiO2加入球磨机中球磨4小时;将SiC晶须与水混合并超声10min,以使晶须完全分散;将分散好的晶须与球磨后的浆料均匀混合进行喷雾干燥以将三种原料团聚在一起;把得到的粉体在100℃下于干燥箱中烘干24小时,除去残余的少量水分;烘干后将样品置于坩埚中放入真空钨丝烧结炉中,分别在1000℃、1100℃、1200℃、1300℃下烧结,结束后随炉冷却至室温,得到掺杂SiC晶须的环境障涂层材料粉末。本发明制备方法简单、成本低、所得产品纯度高,未经球磨直接分散的处理方法和真空烧结的环境能保证晶须结构的完整,添加的晶须能起到增韧作用,提高涂层的韧性和寿命。

Description

一种掺杂碳化硅晶须的硅酸盐粉体材料的制备方法
技术领域
本发明涉及陶瓷涂层技术领域,具体涉及一种掺杂碳化硅晶须的硅酸盐粉体材料的制备方法。
背景技术
随着航空航天事业的飞速发展,对军用战机要求的不断提高,新一代高推重比发动机已经成航天业和军工业发展的重中之重。对于发动机高推重比的要求必然会导致涡轮热端部件的表面温度大幅升高。传统的高温镍基合金的承受温度一般在1150℃左右,显然已经不适用于作为涡轮发动机的如端部件材料。因此,寻找新的可替代热端部件材料成为科研人员重要的研究目标。陶瓷基复合材料(CMCs)——以陶瓷为基体与各种纤维复合的一类材料,因其质轻、耐高温、高强度和刚度等优异性能而显示出了巨大的应用潜力。CMCs包括很多种类,如SiC-CMC、Si3N4-CMC、Cf/SiC-CMC、SiCf/SiC-CMC等等,目前SiCf/SiC-CMC在尾喷管、燃烧室、涡轮叶片等高温热端部件上的应用最为广泛。该材料能够使发动机工作温度提高约200~300℃,结构减重30%~50%,能够达到实现高推重比发动机的要求。但是,在包含氧气、水蒸气、CMAS等多种腐蚀介质的发动机环境下,CMCs陶瓷基复合材料会与O2反应生成气态氢氧化物,从而造成材料表面衰退。为了解决这一问题,环境障涂层(EBCs)应运而生。EBCs是涂覆在基体上,隔绝基体与外部腐蚀环境直接接触的一道屏障,对基体起到保护作用。
随着对EBCs的研究加深,许多学者发现,EBCs的使用寿命与其涂层结构、化学组成等有的密切联系。传统的第一/二代莫来石及BSAS EBCs由于其热膨胀系数不匹配、最高使用温度低、高温稳定性差和化学相容性差等原因在发动机的燃烧环境中过早开裂,甚至失效。为了改善涂层性能并延长其寿命,开发出了第三代稀土硅酸盐环境障涂层。但是,研究发现,即使最新一代环境障涂层具有许多优异性能,但其在发动机环境中长时间使用时仍会出现微裂纹,这些裂纹可能导致涂层进一步开裂。为了进一步提高涂层的使用性能,采用添加晶须的方法增加涂层韧性。
现已广泛证明,由于成分的不同,涂层和基体之间的热膨胀系数有所差异,所以二者之间会产生体积变化。这种变化会导致裂纹的产生,并且由于涂层的断裂韧性差,裂纹不断扩展,造成水蒸气的向内扩散,涂层最终剥落失效。晶须增强目前是最为有效的一种增韧方式。晶须在涂层材料中,有几种不同的增韧机理。在裂纹扩展过程中,发生在裂纹尖端后方尾流区的晶须架桥以及晶须与基体之间的滑动摩擦,可一定程度地吸收裂纹扩展的能量,导致断裂韧性提高;同时,当裂纹尖端遇到晶须时,必须施加更大能量才能使裂纹绕过晶须,或使晶须破坏才能越过晶须。此时韧性将随晶须直径的增大而增加;涂层发生断裂时由涂层材料传向晶须的力在二者界面处产生剪应力,达到了基体的剪切屈服强度,但晶须因抗拉强度较高而不致断裂,此时就形成了晶须从基体中“拔出”;除此之外,钉扎作用既使得裂纹沿界面晶须转向,又能在界面上造成弹性不连续状态,因而阻止了裂纹穿过晶须继续扩展。综上所述可知,高强度、高弹性模量的晶须既能为基体分担部分外加应力,又可阻碍裂纹扩展,并能在局部晶须发生断裂时,以“拔出功”的形式消耗部分能量,起到提高断裂能并克服脆性的效果。晶须的种种增韧机理都能从根本上提高涂层的韧性,从而减少裂纹数量或减缓裂纹扩展。可以最大程度地减少外部或内部条件对涂层的有害影响。SiCw被誉为“晶须之王”,由于其高强度,高弹性,出色的耐腐蚀性和接近完整晶体的理论强度值而常常被用作增强相。碳化硅晶须的密度为3.2g/cm3,熔点为2690℃,弹性模量约为480GPa。SiCw符合上述高强度、高弹性模量的要求,是晶须中较为优异的增强材料。因此,采用SiCw增强的涂层其韧性较其他晶须相比更高,抗水氧腐蚀能力更强。
目前,多采用溶胶-凝胶法制备环境障涂层材料,然而原料一般含有结晶水。因此在保存过程中易发生变质,会因结晶水含量的变化导致原料比例变化,致使产物化学计量比与预想出现偏差。工艺周期较长,制得的产品形貌不规则,纯度不高。涂层材料粉末的流动性直接影响着喷涂工艺的成败。粉体过细,流动性较差,供粉过程出现问题。因此,采用喷雾干燥技术将纳米小粉体团聚成大颗粒,提高粉体流动性。用固相反应制备的涂层材料具有纯度高、形貌规则、尺寸均匀的特点。真空烧结提供了一种制备含晶须涂层材料的新方法。由于没有氧气,SiC晶须不会像其他方法那样产生SiO2,能以完整的晶须形态存在于涂层中,最大限度的发挥了晶须的增韧作用。此外,烧结过程中,随着温度的升高,晶界移动速率变大、驱动力增大,晶粒容易长大,有利于气孔排出,增加了粉体的致密性。这种致密性的显著提高是其他制备工艺所不能轻易达到的。通过喷雾干燥、真空烧结工艺参数的调节,能够获得具有明显晶须结构的、致密的、流动性较好的EBCs材料。
发明内容
针对现有涂层结构及涂层材料制备方法的不足,本发明提供了一种掺杂碳化硅晶须的硅酸盐粉体材料的制备方法。从结构上来说,SiC晶须具有多种增韧机制,在发动机环境中,晶须可以通过桥连、裂纹偏转和拔出等机制来消耗裂纹扩展或萌生所需要的能量,从而阻止了裂纹的进一步扩展和产生,不但减缓了氧气和水蒸气向内部的扩散,避免因热生长氧化物而导致的的开裂,同时也提高了涂层的韧性,使其应变容限增大,进一步减少了涂层的剥离和脱落,延长了涂层的使用寿命。从制备方法上来说,本发明提供了一种喷雾干燥与真空烧结相结合的方法,该方法能较大程度保持晶须原有形貌,使晶须不被氧化能最大限度发挥增韧作用;提高涂层粉体的致密性,改善粉末的流动性,有利于喷涂过程中的供粉输送过程。
本发明的技术方案如下
1.一种掺杂碳化硅晶须的硅酸盐粉体材料的制备方法,其特征在于,包括以下步骤:
(1)取Yb2O3、SiO2纳米粉末和SiC晶须按比例进行称量,将去离子水、研磨介质、Yb2O3、SiO2和分散剂按顺序依次加入球磨罐中球磨4小时。
(2)将球磨后的介质与浆料分开,得到混合均匀的浆料。并将预先称量好的SiC晶须分散于去离子水中,超声10min。
(3)将晶须与步骤(2)中获得的浆料混合均匀,转移至喷雾干燥机中进行颗粒之间的团聚。
(4)对所得的团聚粉末在100℃下干燥24小时。
(5)将干燥后的粉末以真空烧结的方式在1000℃、1100℃、1200℃、1300℃下进行烧结,反应结束后采用随炉冷却的方式冷却至室温,最终得到掺杂SiC晶须的Yb2Si2O7粉体。
2.根据权利要求1所述的制备方法,其特征在于SiC晶须的质量为总物料量的2%。
3.根据权利要求1所述的制备方法,其特征在于研磨介质为氧化锆球,分散剂为PVA。
4.根据权利要求1所述的制备方法,其特征在于步骤1中,水与混合粉体的质量比为2.5:1,PVA为粉体质量的0.3%。
5.根据权利要求1所述的制备方法,其特征在于步骤1中,喷雾干燥过程的参数设置为:进口温度250℃,出口温度130℃,蠕动泵转速65rpm。
6.根据权利要求1所述的制备方法,其特征在于烧结的升温过程设置为:以5℃/min的速率从室温升温至500℃,在500℃保温1小时,再以5℃/min的速率升温至最终烧结温度,并在此温度下保温2小时。
本发明的优点:
(1)与目前使用较为广泛的溶胶-凝胶法相比,本发明使用的喷雾干燥与真空固相烧结法对工艺流程要求较为简单,每次制备产量较高;能有效提高粉体的致密性和流动性。
(2)原料均为粉末,不存在挥发,结晶等问题,无氧环境避免了SiC晶须的氧化和其它元素与O2的反应,因此所制备的产物纯度高,产物粒径均匀,如图1和图2所示。
(3)所制备的掺杂SiC晶须的硅酸盐粉体材料因为含有碳化硅晶须,能提高所制备的涂层的韧性,能在发动机环境中减缓环境障涂层因裂纹扩展而导致的开裂和剥落。
附图说明
图1为本发明在不同温度下的掺杂SiC晶须的硅酸盐粉体材料的XRD图谱。由图可知:通过真空烧结法,可以将SiC晶须掺杂在环境障涂层中,产物体系除SiC与Yb2Si2O7外,无其他杂质,产品纯度高。
图2为本发明所制备的掺杂SiC晶须的硅酸盐粉体材料的宏观形貌。由图可知:SiC晶须与Yb2Si2O7结合在一起,结构未被破坏,可以发挥其特有的增韧机理阻碍裂纹的扩展;颗粒表面较为光滑,孔隙较少。
具体实施方式
实施例1:
(1)按一公斤总物料量计算出需Yb2O3、SiO2和SiC晶须分别为多少。将直径为3mm的氧化锆球,纳米Yb2O3粉末784.89g加入球磨罐中,加入去离子水1000mL,待Yb2O3均匀分散后,取纳米SiO2 215.11g加入到球磨罐中,再加去离子水1500mL,球磨3小时,加入PVA 3g,继续球磨1小时,使纳米粉完全均匀分散开;
(2)将20.41g SiC晶须粉末混于去离子水中,置于超声清洗机内在室温下超声10min,以使晶须分散开来。
(3)将超声后的溶液与浆料在电动搅拌机的搅拌下均匀混合,在进口温度为250℃,出口温度为130℃,蠕动泵速率为65rpm的参数下进行,得到团聚粉末;
(4)将粉体装入烧杯中,放进真空干燥箱中在100℃下干燥24小时;
(5)取烘干后的样品放入坩埚中,放进真空钨丝烧结炉内,以5℃/min的速率升温至500℃,保温1小时,再以相同的升温速率升温至1000℃,在此温度下保温2小时,反应结束后随炉冷却至室温;
(6)所得产物未结块,呈粉末状,其XRD图谱如图1所示,烧结产物的化学成分为Yb2O3、SiO2和SiC。
实施例2:
(1)按一公斤总物料量计算出需Yb2O3、SiO2和SiC晶须分别为多少。将直径为3mm的氧化锆球,纳米Yb2O3粉末766.36g加入球磨罐中,加入去离子水1000mL,待Yb2O3均匀分散后,取纳米SiO2 233.64g加入到球磨罐中,再加去离子水1500mL,球磨3小时,加入PVA 3g,继续球磨1小时,使纳米粉完全均匀分散开;
(2)将20.41g SiC晶须粉末混于去离子水中,置于超声清洗机内在室温下超声10min,以使晶须分散开来。
(3)将超声后的溶液与浆料在电动搅拌机的搅拌下均匀混合,在进口温度为250℃,出口温度为130℃,蠕动泵速率为65rpm的参数下进行,得到团聚粉末;
(4)将粉体装入烧杯中,放进真空干燥箱中在100℃下干燥24小时;
(5)取烘干后的样品放入坩埚中,放进真空钨丝烧结炉内,以5℃/min的速率升温至500℃,保温1小时,再以相同的升温速率升温至1100℃,在此温度下保温2小时,反应结束后随炉冷却至室温;
(6)所得产物未结块,呈粉末状,其XRD图谱如图1所示,烧结产物的化学成分为Yb2SiO5和SiC。
实施例3:
(1)按一公斤总物料量计算出需Yb2O3、SiO2和SiC晶须分别为多少。将直径为3mm的氧化锆球,纳米Yb2O3粉末749.09g加入球磨罐中,加入去离子水1000mL,待Yb2O3均匀分散后,取纳米SiO2 250.91g加入到球磨罐中,再加去离子水1500mL,球磨3小时,加入PVA3g,继续球磨1小时,使纳米粉完全均匀分散开;
(2)将20.41g SiC晶须粉末混于去离子水中,置于超声清洗机内在室温下超声10min,以使晶须分散开来。
(3)将超声后的溶液与浆料在电动搅拌机的搅拌下均匀混合,在进口温度为250℃,出口温度为130℃,蠕动泵速率为65rpm的参数下进行,得到团聚粉末;
(4)将粉体装入烧杯中,放进真空干燥箱中在100℃下干燥24小时;
(5)取烘干后的样品放入坩埚中,放进真空钨丝烧结炉内,以5℃/min的速率升温至500℃,保温1小时,再以相同的升温速率升温至1200℃,在此温度下保温2小时,反应结束后随炉冷却至室温;
(6)所得产物未结块,呈粉末状,其XRD图谱如图1所示,烧结产物的化学成分为Yb2SiO5、Yb2Si2O7和SiC。
实施例4:
(1)按一公斤总物料量计算出需Yb2O3、SiO2和SiC晶须分别为多少。将直径为3mm的氧化锆球,纳米Yb2O3粉末732.38g加入球磨罐中,加入去离子水1000mL,待Yb2O3均匀分散后,取纳米SiO2 267.62g加入到球磨罐中,再加去离子水1500mL,球磨3小时,加入PVA3g,继续球磨1小时,使纳米粉完全均匀分散开;
(2)将20.41g SiC晶须粉末混于去离子水中,置于超声清洗机内在室温下超声10min,以使晶须分散开来。
(3)将超声后的溶液与浆料在电动搅拌机的搅拌下均匀混合,在进口温度为250℃,出口温度为130℃,蠕动泵速率为65rpm的参数下进行,得到团聚粉末;
(4)将粉体装入烧杯中,放进真空干燥箱中在100℃下干燥24小时;
(5)取烘干后的样品放入坩埚中,放进真空钨丝烧结炉内,以5℃/min的速率升温至500℃,保温1小时,再以相同的升温速率升温至1300℃,在此温度下保温2小时,反应结束后随炉冷却至室温;
(6)所得产物未结块,呈粉末状,其XRD图谱如图1所示,烧结产物的化学成分为Yb2Si2O7和SiC。
以上所述实施例仅为本发明的技术方案,并非对本发明的限制。本领域的技术人员可以在本发明的范围内对上述实例做相应的修改和变形,但不脱离本发明实例技术方案的范围,不背离发明精神。

Claims (6)

1.一种掺杂碳化硅晶须的硅酸盐粉体材料的制备方法,其特征在于,包括以下步骤:
(1)取Yb2O3、SiO2纳米粉末和SiC晶须按比例进行称量,将去离子水、研磨介质、Yb2O3、SiO2和分散剂按顺序依次加入球磨罐中球磨4小时。
(2)将球磨后的介质与浆料分开,得到混合均匀的浆料。并将预先称量好的SiC晶须分散于去离子水中,超声10min。
(3)将晶须与步骤(2)中获得的浆料混合均匀,转移至喷雾干燥机中进行颗粒之间的团聚。
(4)对所得的团聚粉末在100℃下干燥24小时。
(5)将干燥后的粉末以真空烧结的方式在1000℃、1100℃、1200℃、1300℃下进行烧结,反应结束后采用随炉冷却的方式冷却至室温,最终得到掺杂SiC晶须的Yb2Si2O7粉体。
2.根据权利要求1所述的制备方法,其特征在于SiC晶须的质量为总物料量的2%。
3.根据权利要求1所述的制备方法,其特征在于研磨介质为氧化锆球,分散剂为PVA。
4.根据权利要求1所述的制备方法,其特征在于步骤1中,水与混合粉体的质量比为2.5:1,PVA为粉体质量的0.3%。
5.根据权利要求1所述的制备方法,其特征在于步骤1中,喷雾干燥过程的参数设置为:进口温度250℃,出口温度130℃,蠕动泵转速65rpm。
6.根据权利要求1所述的制备方法,其特征在于烧结的升温过程设置为:以5℃/min的速率从室温升温至500℃,在500℃保温1小时,再以5℃/min的速率升温至最终烧结温度,并在此温度下保温2小时。
CN202110795129.6A 2021-07-14 2021-07-14 一种掺杂碳化硅晶须的硅酸盐粉体材料的制备方法 Pending CN115611622A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110795129.6A CN115611622A (zh) 2021-07-14 2021-07-14 一种掺杂碳化硅晶须的硅酸盐粉体材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110795129.6A CN115611622A (zh) 2021-07-14 2021-07-14 一种掺杂碳化硅晶须的硅酸盐粉体材料的制备方法

Publications (1)

Publication Number Publication Date
CN115611622A true CN115611622A (zh) 2023-01-17

Family

ID=84854789

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110795129.6A Pending CN115611622A (zh) 2021-07-14 2021-07-14 一种掺杂碳化硅晶须的硅酸盐粉体材料的制备方法

Country Status (1)

Country Link
CN (1) CN115611622A (zh)

Similar Documents

Publication Publication Date Title
CN104891990B (zh) 共晶结构热障涂层材料及其可用于热喷涂的粉粒制造方法
CN111004990B (zh) 用于热障涂层抗熔融cmas腐蚀的max相涂层及热喷涂制备方法
CN112645699B (zh) 晶须协同max相增韧的稀土硅酸盐材料及其制备方法
CN111777413B (zh) 一种等离子喷涂用纳米锆酸钆粉体的制备方法及应用
CN111233446A (zh) 一种用于陶瓷基复合材料基体的硅酸铪环境障涂层及其制备方法
CN113735629B (zh) 一种碳材料宽温域防氧化抗冲刷复相陶瓷涂层及其制备方法
CN112592207A (zh) 一种自愈合ZrB2-SiC-Y2O3涂层及其在SiC包埋碳碳复合材料上的应用
WO1993006058A1 (en) Rare earth oxide-alumina-silica sinter and production thereof
CN115180981B (zh) 一种纳米线跨尺度增韧复相陶瓷抗氧化涂层及其制备方法与应用
CN106966763B (zh) 一种发动机环境下纤维增强的复合材料表面涂层及其制备方法
CN115611622A (zh) 一种掺杂碳化硅晶须的硅酸盐粉体材料的制备方法
CN109809820B (zh) 碳化锆、碳化硅纳米复合纤维增强碳化硅纤维及其制备方法
CN105908043B (zh) 一种Mo‑ZrB2‑SiC‑AlN复合材料及其制备方法
CN114853494A (zh) 一种具有自修复能力的复合陶瓷粉末及其制备方法和应用
Yu et al. Phase composition evolution and oxidation behavior of atmospheric plasma spraying Si and Si-HfO2 bond coats at 1300℃
CN114086102A (zh) 一种Ba(Mg1/3Ta2/3)O3-YSZ双陶瓷层热障涂层及其制备方法
CN109485387B (zh) 一种环境障涂层用空心球形bsas粉末的制备方法
CN114293132A (zh) 一种利用纳米改性硅粘结层提高环境障涂层结合强度的方法
CN112608161A (zh) 金属增韧型稀土硅酸盐粉末的制备方法
CN114671675B (zh) 一种具有小晶粒尺寸的抗cmas腐蚀的高熵陶瓷材料及其制备方法
CN111410200B (zh) 一种二硅酸钪环境障涂层材料的制备方法
CN116143529B (zh) 一种环保型铁沟浇注料及其制备方法
CN107473739A (zh) 锆酸镧复相陶瓷及其制备方法和应用
CN114262216B (zh) 一种利用TiC改性莫来石制备环境障涂层中间层的方法
CN114086103B (zh) 一种具有自粘性的多模结构热障涂层及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination