WO1993006058A1 - Rare earth oxide-alumina-silica sinter and production thereof - Google Patents

Rare earth oxide-alumina-silica sinter and production thereof Download PDF

Info

Publication number
WO1993006058A1
WO1993006058A1 PCT/JP1992/001236 JP9201236W WO9306058A1 WO 1993006058 A1 WO1993006058 A1 WO 1993006058A1 JP 9201236 W JP9201236 W JP 9201236W WO 9306058 A1 WO9306058 A1 WO 9306058A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
silica
rare earth
earth oxide
alumina
Prior art date
Application number
PCT/JP1992/001236
Other languages
French (fr)
Japanese (ja)
Inventor
Mamoru Omori
Toshio Hirai
Original Assignee
Mamoru Omori
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mamoru Omori filed Critical Mamoru Omori
Priority to US08/066,005 priority Critical patent/US5384293A/en
Priority to DE4293404A priority patent/DE4293404C2/en
Publication of WO1993006058A1 publication Critical patent/WO1993006058A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide

Definitions

  • the present invention relates to a rare earth oxide-alumina-silicon-based sintered body and a method for producing the same, and particularly to high strength and excellent toughness obtained by suppressing abnormal growth of crystal grains that cause a decrease in strength and toughness.
  • the present invention relates to a rare earth oxide-alumina-silica sintered compact having a dense structure and a method for producing the same. Background technology
  • Oxide-based ceramics have high strength at high temperatures and excellent heat resistance, oxidation resistance, and corrosion resistance, and can be reliably used at least up to several hundred degrees of their melting point. Therefore, rare-earth oxides (oxides of rare-earth elements and their mixtures) with melting points exceeding 20001 and alumina have been regarded as promising ceramic materials for high temperatures. In particular, in the case of mixed ceramics composed of these two types of oxides, their melting points are around 2000, respectively, and are considered to be effective as so-called high temperature materials.
  • Ln 4 Al 2 0 3 compound is Y, Sm, Bu, Gd, Tb, Dy, Ho, Br, Tm, Yb, Lu and mixtures thereof, hereinafter the same; however, U, Ce, Pr, and Nd compound except because not known
  • LNA 10 3 compound comprising (Ln is Y, La, Ce, Pr, M, Sra, Bu, Gd, Tb, Dy, Ho, Br, Tm, Yb, Lu and their Mixture, the same as in J £ IT)
  • An object of the present invention is to establish the above-mentioned repetitive suppression technique, that is, for a polycrystalline sintered body of an oxide mixed ceramic, by adding a third substance thereto,
  • An object of the present invention is to propose a rare earth oxide-alumina-based sintered body having an appropriately controlled grain size, a high strength and excellent toughness, and a dense structure suitable for practical use, and a method for producing the same. Disclosure of the invention
  • the present invention focuses on silica (Si0 2) as a third material, the together the addition compounding this, the average crystal of the sintered body The particle size was controlled to a predetermined size.
  • the present invention constructed on the basis of such a basic concept is a mixture sintered body of a rare earth oxide, alumina and silica, characterized in that the sintered body has an average crystal grain size of Rare earth oxide-alumina-silicone sintered body, Preferably, it has a composition of 5 to 95 wt% of rare earth oxide, 94.9 to 4.9 wt% of alumina and 0.1 to 10 wt% of silica, and has an average crystal grain size of 30 im or less, more preferably Rare earth oxide 64.9 to 89.9 wt%, alumina 10 to 35 wt%, silica 0.1 to 10 wt%, and a sintered body with a crystal grain size of 10 ⁇ m or less.
  • Such a rare earth oxide-alumina-silica sintered body can be manufactured by the following method. That is,
  • a method for producing a rare earth oxide-alumina-silica sintered body characterized by being produced through
  • the mixed raw material powder is a mixture of 5 to 95 wt% of a rare earth oxide powder, 94.9 to 4.9 wt% of an alumina powder, and 0.1 to 10 wt% of a siliceous powder.
  • the mixed raw material powder is a mixture of 64.9 to 89.9 wt% of rare earth oxide powder, 10 to 35 wt% of alumina powder and 0.1 to 10 wt% of powdered silica.
  • rare earth oxide-alumina-silica sintered body of the present invention can also be produced by the following method. That is,
  • a method for producing a rare earth oxide-alumina-silicone sintered compact characterized in that it is produced through
  • the mixed raw material powder, and Ln 4 Al 2 (] 3 compound or LNA 10 3 Compound 99.9 mixture of 90 wt% and the silica powder 0. 1 10 wt%.
  • the appropriate firing temperature range is 1500 to 18001
  • the firing time is 1 to 8 hours
  • the heating rate is 5 to 30 tZ minutes.
  • the average crystal grain size of the constituent particles can be easily controlled to 30 ⁇ m or less, preferably 10 im or less by adding the silicide powder. become.
  • the rare earth oxide-alumina-silica sintered body of the present invention exhibits strength and toughness values that could not be expected in the past.
  • rare earth oxide is 5 to 95 wt%
  • alumina is 94.9 to 9 wt%
  • silica is 0.9 to 0.9 wt%.
  • the composition is 1 to 10 wt%.
  • the strength of ceramics decreases significantly when the crystal grain size of the constituent particles exceeds 50 ⁇ m. Therefore, in order to obtain a high-strength ceramic material, the crystal grain size must be below 50 um2i. Therefore, in the present invention, when the average crystal grain size of the constituent particles is set to 30 imJei or less, the maximum crystal grain size becomes 50 «m or less, so the average crystal grain size is controlled to 30/111 or less. It is.
  • twins are basically not formed in the constituent particles.
  • this sintered body a small number of twins is formed only with the progress of cracks.
  • the generated twin itself not only absorbs the strain energy of the cracks but also absorbs the energy of the strain due to the movement of the twin plane, so that the strength and toughness of the sintered body are increased. It is thought that it greatly improves. This is a mechanism of toughness that has never been known before.
  • the method for producing a rare earth oxide-alumina-silica sintered compact of the present invention is produced through the following steps. '
  • the mixed raw material powder is desirably a mixture of rare earth oxide powder 5 to 95 wt%, alumina powder 94.9 to 9 wt%, and silica powder 0.1 to 10 wt%.
  • a mixed raw material powder mainly composed of Ln 4 Al 2 0 3 or LnAl (] 3 mixed silica force thereto It is preferable to use the one obtained.
  • the mixed raw material powder, Ln 4 Al 2 0 3 compound or LNA 10 3 Compound 99.9-9 ( ⁇ 1: a% and silica flour 0.1 mixture of 10 wt%.
  • the amount of the rare earth oxide powder is 5 to 95 wt%.
  • the reason for this is that if the rare earth oxide powder is less than 5 wt%, the properties of the obtained rare earth oxide-alumina-silica sintered compact are biased toward those of the alumina sintered compact alone. If the content is less than 9 wt%, the characteristics of the obtained rare earth oxide-alumina-silica sintered body are biased to those of the rare earth oxide alone.
  • the compounding amount of the rare earth oxide powder is 64.9 to 89.9 wt%. This is because the sintered body of the present invention, in order to effectively exhibit its properties, composition compounds of Ln 4 AI 2 0 3 or LnAlD 3 is produced, or the arbitrary desired to be in the vicinity of its composition It is.
  • the amount of silica powder added is 0.1 to 10 wt%.
  • the reason for this is that if the content is less than 0.1 wt%, it is not possible to suppress the growth of crystal grains in the sintered body, and thus it is impossible to obtain a dense sintered body.
  • the effect of addition does not change, but silica powder larger than the amount of solid solution reacts with rare earth oxide or alumina powder to form a silicate compound, which is rather undesirable.
  • the mixing of the oxide powder may be performed by using a usual machine used for mixing or kneading powder.
  • This mixing may be either a dry method or a wet method.
  • mixing can be performed effectively by using a surfactant such as ethylamine or fish oil.
  • an organic polymer polyethylene glycol, polyvinyl alcohol, etc.
  • molding can be carried out by applying a known molding technique of an ordinary method.
  • the appropriate firing temperature is in the range of 1400 to 2000 ° C.
  • the sintering temperature is lower than UOOt, sintering becomes insufficient and a dense sintered body cannot be obtained.
  • the sintering temperature is higher than 2000, abnormal growth of crystal grains is caused. It is.
  • a more preferable firing temperature range is 1500 to 1800.
  • the firing time is in the range of 0.1 to 24 hours.
  • the reason for this is related to the sintering temperature. It is preferable to shorten the sintering temperature when the sintering temperature is low and to shorten it when the sintering temperature is high. On the other hand, over 24 hours causes abnormal growth of crystal grains.
  • a more preferable range of the firing time is 1 to 8 hours.
  • the heating rate during firing is in the range of 1 to 200 / min. The reason is that if it is less than 1 minute, sintering takes too much time and it is not economical, while if it is faster than 20'0 t / min, a dense sintered body cannot be obtained.
  • a more preferable range of the temperature rising rate is 5 to 30 ° CZ.
  • the atmosphere during firing is preferably an oxidizing atmosphere, but may be a non-oxidizing atmosphere (eg, nitrogen gas, argon gas, helium gas), or may be fired in a vacuum.
  • oxidizing atmosphere e.g, nitrogen gas, argon gas, helium gas
  • non-oxidizing atmosphere e.g, nitrogen gas, argon gas, helium gas
  • the obtained calcined sample was heated to 17001 at a heating rate of 10: Z in air, and kept at 1700 for 1 hour to obtain a sintered body.
  • the average crystal grain size of the obtained sintered body was as follows.
  • the bending strength of the sintered body was 700 MPa, and the fracture toughness value K IC was 10 MP * m 1/2 .
  • the average crystal grain size of the obtained sintered body was 5 ⁇ m.
  • the bending strength of the sintered body was 600 MPa, and the fracture toughness value K IC was 6 MP ⁇ m 1/2 .
  • the mixture was wet-mixed for 48 hours using a pole mill.
  • the average crystal grain size of the obtained sintered body was 4 jum.
  • the bending strength of the sintered body was 700 MPa, and the fracture toughness value K IC was 9 MP ⁇ m 1/2 .
  • the obtained mixture was heated to 60 t to evaporate the alcohol, and then added to a 5% aqueous polyethylene glycol solution for further mixing, followed by drying. Thereafter, the mixture was molded to form a molded body having a size of 45 ⁇ 20 ⁇ 4 shelves 3 .
  • the average crystal grain size of the obtained sintered body was 6 m.
  • the bending strength of the sintered body was 700 MPa, and the fracture toughness value K IC was 8 MP ⁇ m 1/2 .
  • this formed body was heated in air to 500 at a heating rate of 5 minutes for Z, and calcined at 500 for 2 hours.
  • the sintered body was dense, had no pores, and was composed of particles having an average crystal grain size of 30 m or less. Furthermore, the sintered body of the present invention had sufficient strength and fracture toughness for practical use. In particular, the fracture toughness value was about 2-3 times that of alumina mullite.
  • the rare earth oxide-alumina-silica sintered body of the present invention can be used for engine parts, gas turbine blades, parts for gas turbines, parts for corrosion-resistant equipment, parts for crucibles, pole mills, heat exchangers for high-temperature furnaces, Heat-resistant materials, heat-resistant materials for high-flying vehicles, combustion tubes, die-casting parts, insulating materials, fusion reactor materials, reactor materials, solar furnace materials, tools, heat shielding materials, electronic circuit substrates, sealing materials, joints, Valve parts, biomaterials such as artificial bones and artificial roots, dielectric materials, blades and cutter blades, sports equipment,

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

A highly reliable, high-strength and high-toughness rare earth oxide-alumina sinter free from defects such as void or pore, which can be readily produced by adding silica to a mixture of a rare earth oxide with alumina so as to regulate the grain diameter of the sinter to 30 νm or less and inhibit abnormal grain growth and pore formation, thereby giving a practicable, structurally homogeneous rare earth oxide-alumina-silica sinter excellent in both strength and toughness.

Description

明 細 希土類酸化物一アルミナーシリ力焼結体およびその製造方法 技 術 分 野  Meihou rare earth oxide-alumina-silica sintered body and method for producing the same
本発明は、 希土類酸化物一アルミナーシリ力系焼結体およびその製造方法 に関し、 とくに、 強度ゃ靱性低下の原因となる結晶粒の異常成長を抑制する ことによって得られた、 高い強度ならびに優れた靱性をもち、 かつ緻密な組 織を有する希土類酸化物一アルミナーシリ力焼結体と、 それを製造する方法 に関するものである。 背 景 技 術  TECHNICAL FIELD The present invention relates to a rare earth oxide-alumina-silicon-based sintered body and a method for producing the same, and particularly to high strength and excellent toughness obtained by suppressing abnormal growth of crystal grains that cause a decrease in strength and toughness. The present invention relates to a rare earth oxide-alumina-silica sintered compact having a dense structure and a method for producing the same. Background technology
酸化物系セラミックスは、 高温での強度が高く、 かつ耐熱性, 耐酸化性お よび耐食性に優れているため、 少なくともその融点の数百度以下の温度まで は信頼して使用することができる。 それ故に、 融点が 20001を超える希土類 酸化物 (希土類元素およびそれらの混合物の酸化物) やアルミナは、 高温用 セラミ ックス材料として有望視されていた。 特に、 この 2種類の酸化物から なる混合セラミックスの場合、 これらの融点はそれぞれ 2000で近傍であり、 いわゆる高温用材料として有効なものと考えられている。  Oxide-based ceramics have high strength at high temperatures and excellent heat resistance, oxidation resistance, and corrosion resistance, and can be reliably used at least up to several hundred degrees of their melting point. Therefore, rare-earth oxides (oxides of rare-earth elements and their mixtures) with melting points exceeding 20001 and alumina have been regarded as promising ceramic materials for high temperatures. In particular, in the case of mixed ceramics composed of these two types of oxides, their melting points are around 2000, respectively, and are considered to be effective as so-called high temperature materials.
しかしながら、 一般に、 酸化物混合セラミックスについては、 酸化物の混 合物を焼成して焼結体を得る際、 結晶粒の異常成長を引起こし、 100 im以 上という大きな結晶粒径となるために、 ポアが形成されやすく緻密化されに くいという問題があった。 しかも、 得られる焼結体は、 異常成長した結晶粒 や前記ポアのために、 強度, 靱性ならびに硬度が著しく小さいものにしかな らなかった。 このような理由で、 今日まで、 このような酸化物混合セラミツ クスの焼結体は、 実用に供されるまでに到らなかったのである。 例えば、 Ln4Al203化合物 ( は Y, Sm, Bu, Gd, Tb, Dy, Ho, Br, Tm, Yb, Luおよびそれらの混合物、 以下同じ; ただし、 U, Ce, Pr, Ndを含む化合 物は知られていないので除く) および LnA103化合物 (Lnは Y, La, Ce, Pr, M, Sra, Bu, Gd, Tb, Dy, Ho, Br, Tm, Yb, Luおよびそれらの混合物, J£IT 同じ) については、焼成の際に、 マルテンサイ ト変態によって双晶を生成す るために、 穽常に脆い多結晶焼結体しか得ることができないという致命的な 欠酷があった。 However, in general, when oxide mixed ceramics are fired to obtain a sintered body by firing an oxide mixture, abnormal growth of crystal grains occurs, resulting in a large crystal grain size of 100 im or more. However, there was a problem that pores were easily formed and hardly densified. Moreover, the resulting sintered body had extremely low strength, toughness, and hardness due to the abnormally grown crystal grains and the pores. For this reason, to date, such sintered bodies of such oxide-mixed ceramics have not reached practical use. For example, Ln 4 Al 2 0 3 compound (is Y, Sm, Bu, Gd, Tb, Dy, Ho, Br, Tm, Yb, Lu and mixtures thereof, hereinafter the same; however, U, Ce, Pr, and Nd compound except because not known) and LNA 10 3 compound comprising (Ln is Y, La, Ce, Pr, M, Sra, Bu, Gd, Tb, Dy, Ho, Br, Tm, Yb, Lu and their Mixture, the same as in J £ IT), there was a critical cruelty that, during firing, twins were formed by martensite transformation, so that only brittle polycrystalline sintered bodies could always be obtained. .
これに対し、上述した酸化物混合セラミッタスの多結晶焼結体の異常粒成 長を抑制する方法の 1つとして、従来、 第 3の物質の添加によって制御する 方法が有効であると漠然と考えられていた。 しかし、 希土類酸化物一アルミ ナ系の焼結体は、 前記抑制技術が未だ確立されていないため、 セラミックス 材料として実用化されていないのが実情であった。  On the other hand, it has been vaguely considered that a method of controlling the abnormal grain growth of the polycrystalline sintered body of the above-mentioned oxide-mixed ceramics by adding a third substance is conventionally effective. I was However, a rare earth oxide-alumina sintered body has not been put into practical use as a ceramic material because the suppression technology has not yet been established.
本発明の目的は、 反復可能性のある前記抑制技術を確立すること、 即ち、 酸化物混合セラミッタスの多結晶焼結体について、 それに第 3の物質を添加 することによって、該焼結体の結晶粒径を適性に制御し、 もつて高い強度な らびに優れた靱性をもち, 実用に適する緻密な組織を有する希土類酸化物一 アルミナ系の焼結体およびその製造方法を提案することにある。 発 明 の 開 示  An object of the present invention is to establish the above-mentioned repetitive suppression technique, that is, for a polycrystalline sintered body of an oxide mixed ceramic, by adding a third substance thereto, An object of the present invention is to propose a rare earth oxide-alumina-based sintered body having an appropriately controlled grain size, a high strength and excellent toughness, and a dense structure suitable for practical use, and a method for producing the same. Disclosure of the invention
上記目的を実現し得る希土類酸化物一アルミナ系焼結体として、 本発明で は、 第 3の物質としてシリカ (Si02) に着目し、 これを添加配合するととも に、焼結体の平均結晶粒径を所定の大きさに制御することとした。 As rare earth oxide one alumina-based sintered body which can achieve the above object, the present invention focuses on silica (Si0 2) as a third material, the together the addition compounding this, the average crystal of the sintered body The particle size was controlled to a predetermined size.
このような基本的な考え方に基づいて構成された本発明は、希土類酸化物, アルミナおよびシリカの混合物焼結体であって、 この焼結体の平均結晶粒 径が であることを特徵とする希土類酸化物一アルミナーシリ力焼 結体であり、 好ましくは、 希土類酸化物 5〜95wt%, アルミナ 94. 9〜4. 9 wt%およびシ リカ 0. 1 〜10wt%の配合組成を有し、 平均結晶粒径は 30 im以下, より好ま しくは、 希土類酸化物 64. 9〜89. 9wt%, アルミナ 10〜35wt%およびシリカ 0. 1 〜10wt%の配合組成を有し、 結晶粒径が 10 um以下の焼結体である。 The present invention constructed on the basis of such a basic concept is a mixture sintered body of a rare earth oxide, alumina and silica, characterized in that the sintered body has an average crystal grain size of Rare earth oxide-alumina-silicone sintered body, Preferably, it has a composition of 5 to 95 wt% of rare earth oxide, 94.9 to 4.9 wt% of alumina and 0.1 to 10 wt% of silica, and has an average crystal grain size of 30 im or less, more preferably Rare earth oxide 64.9 to 89.9 wt%, alumina 10 to 35 wt%, silica 0.1 to 10 wt%, and a sintered body with a crystal grain size of 10 μm or less.
また、 この希土類酸化物一アルミナ一シリカ焼結体は、 Ln4Al 203化合物ま たは LnA103化合物とシリ力との混合物焼結体であることが好適であり、 より好ましくは、 Ln4Al203化合物またはし πΑ103化合物 99. 9〜90wt%とシリ 力 0. 1 〜10wt%との混合物焼結体である。 Further, the rare earth oxide one alumina one silica sintered body, Ln 4 Al 2 0 3 compound or is suitably a mixture sintered body of the LNA 10 3 compound and silica force, more preferably, Ln 4 is Al 2 0 3 compound or tooth Paiarufa10 3 compound 99. 9~90wt% of a mixture sintered body of silicon force 0. 1 10 wt%.
そして、 このような希土類酸化物一アルミナ一シリカ焼結体は、 つぎのよ うな方法によって製造できる。 すなわち、  Such a rare earth oxide-alumina-silica sintered body can be manufactured by the following method. That is,
(a) 希土類酸化物粉, アルミナ粉およびシリカ粉とをそれぞれ所定量混合 する工程、  (a) mixing rare earth oxide powder, alumina powder and silica powder in predetermined amounts,
(b) 得られた混合原料粉を乾燥し、 所定形状の生成形体に成形する工程、 (b) a step of drying the obtained mixed raw material powder and forming it into a formed product having a predetermined shape;
(c) 得られた生成形体を、 1〜20G tZ分の昇温速度にて加熱する工程、 (d) 前記生成形体を、 1400~2000 の温度に、 0. 1〜24時間保持して焼成 し焼結体とする工程、 (c) a step of heating the obtained formed form at a heating rate of 1 to 20 GtZ, (d) holding the formed form at a temperature of 1400 to 2000, for 0.1 to 24 hours and firing To make a sintered body,
を経て製造することを特徴とする希土類酸化物一アルミナ一シリカ焼結体の 製造方法であって、 A method for producing a rare earth oxide-alumina-silica sintered body, characterized by being produced through
この方法では、 上記混合原料粉は、 希土類酸化物粉 5〜95wt%, アルミナ 粉 94. 9-4. 9 wt%およびシリ力粉 0. 1 〜10wt%との混合物とする。  In this method, the mixed raw material powder is a mixture of 5 to 95 wt% of a rare earth oxide powder, 94.9 to 4.9 wt% of an alumina powder, and 0.1 to 10 wt% of a siliceous powder.
好ましくは、 上記混合原料粉は、 希土類酸化物粉 64. 9〜89. 9wt%, アルミ ナ粉 10〜35wt%およびシリ力粉 0. 1 〜10wt%との混合物である。  Preferably, the mixed raw material powder is a mixture of 64.9 to 89.9 wt% of rare earth oxide powder, 10 to 35 wt% of alumina powder and 0.1 to 10 wt% of powdered silica.
また、 本発明の希土類酸化物一アルミナ一シリカ焼結体は、 つぎのような 方法によっても製造できる。 すなわち、  Further, the rare earth oxide-alumina-silica sintered body of the present invention can also be produced by the following method. That is,
(a) Ln4Al 203化合物またはし nA103化合物からなる原料粉とシリカ粉を所定 量混合する工程、 (b) 得られた混合原料粉を乾燥し、 所定形状の生成形体に成形する工程、 (a) Ln 4 Al 2 0 3 compound or tooth NA 10 3 process raw material powder and the silica powder is mixed predetermined amounts to a compound, (b) a step of drying the obtained mixed raw material powder and forming it into a formed product having a predetermined shape;
(b) 得られた生成形体を 1〜200 "CZ分の昇温速度にて加熱する工程、(b) heating the obtained formed form at a heating rate of 1 to 200 "CZ,
(c) 前記生成形体を、 1400〜2000 の温度域で 0. 1 〜24時間保持して焼成 し焼結体とする工程、 (c) a step of holding the formed form in a temperature range of 1400 to 2000 for 0.1 to 24 hours and firing to form a sintered body;
を経て製造することを特徵とする希土類酸化物一アルミナ一シリ力焼結体の 製造方法であって、  A method for producing a rare earth oxide-alumina-silicone sintered compact, characterized in that it is produced through
この方法では、上記混合原料粉は、 Ln4Al2(]3化合物または LnA103化合物 99. 9 〜90wt%とシリカ粉 0. 1 〜10wt%との混合物とする。 In this method, the mixed raw material powder, and Ln 4 Al 2 (] 3 compound or LNA 10 3 Compound 99.9 mixture of 90 wt% and the silica powder 0. 1 10 wt%.
また、 本発明方法における焼成では、 好ましくは、 適性焼成温度の範囲を 1500~18001:とし、 焼成時間を 1〜8時間とし、 昇温速度を 5〜30tZ分と することが好適である。  In the firing in the method of the present invention, it is preferable that the appropriate firing temperature range is 1500 to 18001, the firing time is 1 to 8 hours, and the heating rate is 5 to 30 tZ minutes.
このように本発明の希土類酸化物一了ルミナ一シリ力焼結体では、 シリ力 粉の添加によって、 構成粒子の平均結晶粒径を容易に 30 um以下, 望ましく は 10 i m以下に制御できるようになる。 その結果、 本発明の希土類酸化物一 アルミナ一シリカ焼結体は、 従来では期待できなかった強度と靱性値を示す ようになる。  As described above, in the rare-earth oxide luminous-silicon sintered compact of the present invention, the average crystal grain size of the constituent particles can be easily controlled to 30 μm or less, preferably 10 im or less by adding the silicide powder. become. As a result, the rare earth oxide-alumina-silica sintered body of the present invention exhibits strength and toughness values that could not be expected in the past.
本発明においては、かかる希土類酸化物一アルミナーシリ力焼結体の平均 結晶粒径を 以下に制御するために、 希土類酸化物 5〜95wt%, アルミ ナ 94. 9〜 · 9 wt%およびシリカ 0. 1 〜10wt%の組成とする。  In the present invention, in order to control the average crystal grain size of the rare earth oxide-alumina-silica sintered compact as follows, rare earth oxide is 5 to 95 wt%, alumina is 94.9 to 9 wt% and silica is 0.9 to 0.9 wt%. The composition is 1 to 10 wt%.
一般に、 セラミックスは、 構成粒子の結晶粒径が 50 umを超えると、 強度 の低下が著しくなる。 従って、 高強度のセラミックス材料を得るためには、 結晶粒径を 50 um2i下にしなければならない。 それゆえに、本発明では、 構 成粒子の平均結晶粒径を 30 imJei下にすると最大粒径は 50 «m以下となるこ とから、平均結晶粒径を 30 / 111以下に制御することにしたのである。  In general, the strength of ceramics decreases significantly when the crystal grain size of the constituent particles exceeds 50 μm. Therefore, in order to obtain a high-strength ceramic material, the crystal grain size must be below 50 um2i. Therefore, in the present invention, when the average crystal grain size of the constituent particles is set to 30 imJei or less, the maximum crystal grain size becomes 50 «m or less, so the average crystal grain size is controlled to 30/111 or less. It is.
このようなシリ力の添加による結晶粒径の制御は、 焼成時にマルテンサイ ト変態を生じる Ln4Al 203化合物およびし πΑ103化合物に対して用いるときに特 に有効に作用する。 すなわち、 Ln4Al 203化合物または LnA103化合物 99. 9〜90 wt%とシリカ 0. 1 ~10wt%との焼結体である希土類酸化物一アルミナーシリ 力焼結体は、 平均結晶粒径が 以下に制御されていれば、 結晶粒径が 10 0 jumの場合に見られた脆さが全く無くなるからである。 JP When such control of the grain size by the addition of silica force used against firing Ln 4 Al 2 0 3 compound which produces a martensitic transformation during and periodontitis Paiarufa10 3 Compound Works effectively. That, Ln 4 Al 2 0 3 compound or LNA 10 3 Compound 99.9 to 90 rare earth oxide one Aruminashiri force sintered a sintered body of wt% silica 0. 1 ~ 10wt%, the average grain size If is controlled as follows, the brittleness observed when the crystal grain size is 100 jum is completely eliminated.
この理由は、 該希土類酸化物一アルミナーシリ力焼結体の場合、 基本的に 構成粒子に双晶が生成しないからである。 この焼結体では、 クラックの進展 に伴って初めて少ない数の双晶が生成する。 ところが、 この焼結体では、 生 成した双晶自体が、 クラックの歪みエネルギーを吸収する上、 この双晶面の 動きによっても、 歪みのエネルギーを吸収するため、 該焼結体の強度と靱性 とを大きく改善すると考えられる。 これは、 従来全く知られていなかった強 靱化の機構である。  The reason for this is that in the case of the rare earth oxide-alumina-silicone sintered compact, twins are basically not formed in the constituent particles. In this sintered body, a small number of twins is formed only with the progress of cracks. However, in this sintered body, the generated twin itself not only absorbs the strain energy of the cracks but also absorbs the energy of the strain due to the movement of the twin plane, so that the strength and toughness of the sintered body are increased. It is thought that it greatly improves. This is a mechanism of toughness that has never been known before.
次に、 本発明の前記希土類酸化物一アルミナーシリ力焼結体を製造する方 法について説明する。  Next, a method for producing the rare earth oxide-alumina-silica sintered compact of the present invention will be described.
すなわち、 本発明の希土類酸化物一アルミナーシリ力焼結体の製造方法は 、 次のような工程を経て製造される。 '  That is, the method for producing a rare earth oxide-alumina-silica sintered compact of the present invention is produced through the following steps. '
(a) 希土類酸化物粉, アルミナ粉およびシリカ粉とを混合する工程、 (a) mixing rare earth oxide powder, alumina powder and silica powder,
(b) 得られた混合原料粉を乾燥し、 所定形状の生成形体に成形する工程、(b) a step of drying the obtained mixed raw material powder and forming it into a formed product having a predetermined shape;
(c) 得られた生成形体を、 1 ~20[) 分の昇温速度にて加熱する工程、 '(c) heating the obtained shaped body at a heating rate of 1 to 20 [) minutes;
(d) 前記生成形体を、 1400〜2000での温度に、 0. 1〜24時間保持して焼成 し焼結体とする工程。 (d) a step of holding the formed body at a temperature of 1400 to 2000 for 0.1 to 24 hours and firing to form a sintered body.
この方法では、 上記混合原料粉は、 希土類酸化物粉 5〜95wt%, アルミナ 粉 94. 9〜 9 wt%およびシリカ粉 0. 1 〜10wt%との混合物とすることが望ま しい。  In this method, the mixed raw material powder is desirably a mixture of rare earth oxide powder 5 to 95 wt%, alumina powder 94.9 to 9 wt%, and silica powder 0.1 to 10 wt%.
また、 本発明の希土類酸化物一アルミナーシリ力焼結体を製造する方法に おいては、 混合原料粉として、 Ln4Al 203または LnAl(]3を主成分とし、 これに シリ力を混合したものを用いることが好適である。 この方法では、 上記混合原料粉は、 Ln4Al 203化合物または LnA103化合物 99. 9 ~9(^1:%とシリ力粉 0. 1 〜10wt%との混合物とする。 Further, Oite to a method for producing a rare earth oxide one Aruminashiri force sintered body of the present invention, as a mixed raw material powder mainly composed of Ln 4 Al 2 0 3 or LnAl (] 3, mixed silica force thereto It is preferable to use the one obtained. In this method, the mixed raw material powder, Ln 4 Al 2 0 3 compound or LNA 10 3 Compound 99.9-9 (^ 1: a% and silica flour 0.1 mixture of 10 wt%.
ここで、本発明の希土類酸ィ匕物一アルミナーシリ力焼結体の製造方法にお いては、 希土類酸化物粉の配合量を 5〜95wt%とする。 この理由は、 希土類 酸化物粉が 5 wt%未満では、 得られる希土類酸化物一アルミナーシリ力焼結 体の特性がアルミナ焼結体単独の特性に片寄ったものとなり、 —方、 アルミ ナ粉が 4. 9 wt%未満では、得られる希土類酸化物一アルミナ一シリカ焼結体 の特性が希土類酸化物単独の特性に片寄つたものとなるためである。  Here, in the method for producing a rare earth oxide-alumina-silica sintered compact of the present invention, the amount of the rare earth oxide powder is 5 to 95 wt%. The reason for this is that if the rare earth oxide powder is less than 5 wt%, the properties of the obtained rare earth oxide-alumina-silica sintered compact are biased toward those of the alumina sintered compact alone. If the content is less than 9 wt%, the characteristics of the obtained rare earth oxide-alumina-silica sintered body are biased to those of the rare earth oxide alone.
好ましくは、 希土類酸化物粉の配合量を 64. 9〜89. 9wt%とする。 この理由 は、 本発明の焼結体が、 その特性を有効に発揮させるには、 Ln4AI 203または LnAlD3の化合物が生成する組成, あるいはその組成の近傍であることが望ま しいからである。 Preferably, the compounding amount of the rare earth oxide powder is 64.9 to 89.9 wt%. This is because the sintered body of the present invention, in order to effectively exhibit its properties, composition compounds of Ln 4 AI 2 0 3 or LnAlD 3 is produced, or the arbitrary desired to be in the vicinity of its composition It is.
また、本発明の製造方法においては、 シリカ粉の添加量を 0. 1 〜10wt%と する。 この理由は、 0. 1 wt%未満では、 焼結体の結晶粒の臭常粒成長を抑制 できないため、 繳密な焼結体を得ることができないからであり、 一方、 10 t %超では、 添加効果は変わらないが、 固溶量より多いシリカ粉が希土類酸化 物あるいはアルミナ粉と反応してシリケィ ト化合物を形成するため、 却って 好ましくないからである。  Further, in the production method of the present invention, the amount of silica powder added is 0.1 to 10 wt%. The reason for this is that if the content is less than 0.1 wt%, it is not possible to suppress the growth of crystal grains in the sintered body, and thus it is impossible to obtain a dense sintered body. However, the effect of addition does not change, but silica powder larger than the amount of solid solution reacts with rare earth oxide or alumina powder to form a silicate compound, which is rather undesirable.
なお、 本発明の製造方法において、希土類酸化物 (Ln203 ) としては、 例 えば、 SC203, Y203j La203, CeD2, Pr203l N'd203, Sra203, Eu203, Gd2035 Tb2 03, Dy203, Ho203, Br203, Tm203, Yb2Q3, Lu203が好適に用いられる。 In the production method of the present invention, the rare earth oxide (Ln 2 0 3), if example embodiment, SC 2 0 3, Y 2 0 3j La 2 0 3, CeD 2, Pr 2 0 3l N'd 2 0 3 , Sra 2 0 3 , Eu 2 0 3 , Gd 2 0 35 Tb 2 0 3 , Dy 2 0 3 , Ho 2 0 3 , Br 2 0 3 , Tm 2 0 3 , Yb 2 Q 3 , Lu 2 0 3 Is preferably used.
また、 本発明の製造方法において、 前記酸化物粉の混合は、 粉体の混合あ るいは混練に用いられる通常の機械を使用することができる。 この混合は、 乾式, 湿式のどちらでもよく、 湿式の場合は、 ェチルァミン, 魚油等の表面 活性剤を使用すると効果的に混合できる。  Further, in the production method of the present invention, the mixing of the oxide powder may be performed by using a usual machine used for mixing or kneading powder. This mixing may be either a dry method or a wet method. In the case of the wet method, mixing can be performed effectively by using a surfactant such as ethylamine or fish oil.
次に、本発明の希土類酸化物一アルミナーシリ力焼結体の製造方法におい ては、 成形工程で、 成形助剤として有機高分子 (ポリエチレングリコール, ポリビニルアルコール等) を上記混合原料に添加し、 常法の既知成形技術を 適用して成形することができる。 Next, in the method for producing a rare earth oxide-alumina-silica sintered compact of the present invention, In the molding step, an organic polymer (polyethylene glycol, polyvinyl alcohol, etc.) is added to the above mixed raw material as a molding aid, and molding can be carried out by applying a known molding technique of an ordinary method.
次に、 本発明の希土類酸化物一アルミナーシリ力焼結体の製造方法におい ては、 適性焼成温度の範囲は、 1400〜2000°Cの範囲とする。 この理由は、 こ の焼成温度が、 UOOtより低いと、 焼結が不十分になるために緻密な焼結体 を得ることができず、 一方、 2000 より高いと結晶粒の異常成長を招くから である。 より好ましい焼成温度の範囲は、 1500〜1800である。  Next, in the method for producing a rare earth oxide-alumina-silicone sintered compact of the present invention, the appropriate firing temperature is in the range of 1400 to 2000 ° C. The reason is that if the sintering temperature is lower than UOOt, sintering becomes insufficient and a dense sintered body cannot be obtained.On the other hand, if the sintering temperature is higher than 2000, abnormal growth of crystal grains is caused. It is. A more preferable firing temperature range is 1500 to 1800.
また、 本発明の製造方法においては、 焼成時間は、 0. 1 〜24時間の範囲と する。 この理由は、 前記焼成温度に関連し、 焼成温度が低い時には長く、 ま た高い時には短くすることが好ましいが、 0. 1 時間より短いと焼結が不十分 なために緻密な焼結体を得ることができず、 一方、 24時間超では結晶粒の異 常成長を招くためである。 より好ましい焼成時間の範囲は、 1〜8時間であ さらに、 本発明の製造方法においては、 焼成時の昇温速度は、 1〜200 で /分の範囲とする。 この理由は、 1 分より遅いと焼結に時間がかかりす ぎて経済的でなく、 一方、 20'0 t/分より速いと緻密な焼結体が得られない ためである。 より好ましい昇温速度の範囲は、 5〜30°CZ分である。  Further, in the production method of the present invention, the firing time is in the range of 0.1 to 24 hours. The reason for this is related to the sintering temperature. It is preferable to shorten the sintering temperature when the sintering temperature is low and to shorten it when the sintering temperature is high. On the other hand, over 24 hours causes abnormal growth of crystal grains. A more preferable range of the firing time is 1 to 8 hours. Further, in the production method of the present invention, the heating rate during firing is in the range of 1 to 200 / min. The reason is that if it is less than 1 minute, sintering takes too much time and it is not economical, while if it is faster than 20'0 t / min, a dense sintered body cannot be obtained. A more preferable range of the temperature rising rate is 5 to 30 ° CZ.
なお、 焼成時の雰囲気としては、 酸化雰囲気が好ましいが、 非酸化雰囲気 (例えば、 窒素ガスや了ルゴンガス, ヘリウムガス) でも良く、 さらに真空 中で焼成してもよい。 The atmosphere during firing is preferably an oxidizing atmosphere, but may be a non-oxidizing atmosphere (eg, nitrogen gas, argon gas, helium gas), or may be fired in a vacuum.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
実施例 1  Example 1
(1) 50mlのアルコール中に、 Y』3粉 60g, A1203粉 13.5gおよび Si02粉 の混合粉体を入れ、 さらに lmlのジェチルァミンを添加し、 ボールミ ルを用いて 48時間湿式混合した。 (1) alcohol in 50 ml, Y "3 flour 60 g, placed in A1 2 0 3 powder 13.5g and mixed powder of Si0 2 powder was further added Jechiruamin of lml, 48 hours wet mixing using a ball mill did.
(2) 混合終了後、得られた混合物を、 60t:に加熱してアルコールを蒸発さ せ、 次いで、 5%のポリエチレングリコール水溶液に入れてさらに混合し、 これを乾燥した。 その後、 この混合物を成形し、 45X20X 4画3 の大きさの 生成形体とした。 (2) After the mixing was completed, the obtained mixture was heated to 60 t: to evaporate the alcohol, and then added to a 5% aqueous polyethylene glycol solution for further mixing, followed by drying. Thereafter, this mixture was molded to form a formed body having a size of 45 × 20 × 4 strokes 3 .
(3) 次に、 この生成形体を、 空気中にて 2 t:Z分の昇温速度で 500 まで 加熱し、 500 でで 2時間保持して仮焼した。  (3) Next, the formed body was heated to 500 at a heating rate of 2 t: Z in air, and calcined at 500 at the temperature for 2 hours.
(4) 次に、 得られた仮焼試料を、空気中にて 10 : Z分の昇温速度で 17001 まで加熱し、 1700 で 1時間保持して焼結体を得た。  (4) Next, the obtained calcined sample was heated to 17001 at a heating rate of 10: Z in air, and kept at 1700 for 1 hour to obtain a sintered body.
得られた焼結体の平均結晶粒径は、 であった。 また、 焼結体の曲げ 強度は 700MPaであり、 破壊靱性値 KIC=10MP*m1/2であった。 The average crystal grain size of the obtained sintered body was as follows. The bending strength of the sintered body was 700 MPa, and the fracture toughness value K IC was 10 MP * m 1/2 .
実施例 2 Example 2
(1) 70mlのエチルアルコール中に、 Ho2(]3粉 87.7g, A1203粉 11, 8gおよ び Si02粉 0.5 gの混合粉体を入れ、 さらに lmlのジェチルァミンを添加し、 ボールミルを用いて 72時間湿式混合した。 (1) in ethyl alcohol in 70ml, Ho 2 (] 3 powder 87.7 g, was charged with a mixed powder of A1 2 0 3 powder 11, 8 g and Si0 2 powder 0.5 g, further added Jechiruamin of lml, The mixture was wet-mixed for 72 hours using a ball mill.
(2) 混合 #了後、 得られた混合物を、 60でに加熱してアルコールを蒸発さ せ、次いで、 5%のポリエチレングリコール水溶液に入れてさらに混合し、 これを乾煖した。 その後、 この混合物を成形し、 45x20x 4mm3 の大きさの 生成形体とした。 (2) After mixing #, the obtained mixture was heated at 60 to evaporate the alcohol, and then added to a 5% aqueous solution of polyethylene glycol for further mixing, followed by heating. Thereafter, this mixture was molded to obtain a green compact having a size of 45 × 20 × 4 mm 3 .
(3) 次に、 この生成形体を、空気中にて 2 分の昇温速度で 500 まで 加熱し、 500 でで 2時間保持して仮焼した。 - (3) Next, the formed body was heated to 500 at a heating rate of 2 minutes in air, and calcined at 500 at 2 hours. -
(4) 次に、得られた仮焼試料を、 空気中にて 10 :Z分の昇温速度で 1600 : まで加熱し、 1600 で 4時間保持して焼結体を得た。 (4) Next, the obtained calcined sample was heated in air at a heating rate of 10: Z for 1600: And maintained at 1600 for 4 hours to obtain a sintered body.
得られた焼結体の平均結晶粒径は、 であった。 また、 焼結体の曲げ 強度は 700MPaであり、 破壊靱性値1^11:=91^ ' [111/2でぁった。 The average crystal grain size of the obtained sintered body was as follows. Furthermore, the bending strength of the sintered body is 700 MPa, fracture toughness value 1 ^ 11 = 91 ^ '[11 1/2 Deatta.
実施例 3 Example 3
(1) 80mlのエチルアルコール中に、 La203 粉 74.6g, A1203 粉 23.4gおよ ぴ Si 02粉 2 gの混合粉体を入れ、 さらに lmlのジェチルァミ ンを添加し、 ポ 一ルミルを用いて 48時間湿式混合した。 (1) in ethyl alcohol in 80ml, La 2 0 3 powder 74.6 g, was charged with a mixed powder of A1 2 0 3 powder 23.4g Oyo Pi Si 0 2 powder 2 g, further added Jechiruami emissions of lml, The mixture was wet-mixed for 48 hours using a poll mill.
(2) 混合終了後、 得られた混合物を、 60 に加熱してアルコールを蒸発さ せ、 次いで、 5%のポリエチレングリコール水溶液に入れてさらに混合し、 これを乾燥した。 その後、 この混合物を成形し、 45x20x 4隨 3 の大きさの 生成形体とした。 (2) After completion of mixing, the obtained mixture was heated to 60 to evaporate the alcohol, and then added to a 5% aqueous solution of polyethylene glycol for further mixing and dried. Thereafter, molding the mixture to obtain a green product of the magnitude of 45X20x 4隨3.
(3) 次に、 この生成形体を、 空気中にて 2で 分の昇温速度で 500· まで 加熱し、 500 tで 2時間保持して仮焼した。 '  (3) Next, the formed body was heated to 500 ° at a heating rate of 2 minutes in air, and calcined at 500 t for 2 hours. '
(4) 次に、 得られた仮焼試料を、 空気中にて 10 分の昇温速度で 1500°C まで加熱し、 1500でで 8時間保持して焼結体を得た。  (4) Next, the obtained calcined sample was heated to 1500 ° C at a heating rate of 10 minutes in air, and held at 1500 for 8 hours to obtain a sintered body.
得られた焼結体の平均結晶粒径は、 5 umであった。 また、 焼結体の曲げ 強度は 600MPaであり、 破壊靱性値 KIC = 6MP · m 1/2であった。 The average crystal grain size of the obtained sintered body was 5 μm. The bending strength of the sintered body was 600 MPa, and the fracture toughness value K IC was 6 MP · m 1/2 .
実施例 4 Example 4
(1) 80mlのエチルアルコール中に、 Yb203 粉 65.08 g, A1203 粉 8.42gお よび Si02粉 1.5gの混合粉体を入れ、 さらに lmlのジェチルァミ ンを添加し(1) in ethyl alcohol in 80ml, Yb 2 0 3 powder 65.08 g, A1 2 0 3 was charged with a mixed powder of powder 8.42g Contact and Si0 2 powder 1.5g, further added Jechiruami emissions of lml
、 ポールミルを用いて 48時間湿式混合した。 The mixture was wet-mixed for 48 hours using a pole mill.
(2) 混合終了後、 得られた混合物を、 60t:に加熱してアルコールを蒸発さ せ、 次いで、 5 %のポリエチレングリコ一ル水溶液に入れてさらに混合し、 これを乾燥した。 その後、 この混合物を成形し、 45x20x 4i i3 の大きさの 生成形体とした。 (2) After completion of the mixing, the obtained mixture was heated to 60 t: to evaporate the alcohol, and then added to a 5% aqueous solution of polyethylene glycol for further mixing, followed by drying. The mixture was then molded to form a 45 × 20 × 4i i 3 shaped form.
(3) 次に、 この生成形体を、 空気中にて 2 :Z分の昇温速度で 500 でまで  (3) Next, the formed form is heated in air at a heating rate of 2: Z for 500 minutes.
7 加熱し、 500 t;で 2時間保持して仮焼した。 7 The mixture was heated, held at 500 t; for 2 hours, and calcined.
(4) 次に 得られた仮焼試料を、空気中にて lO :,分の昇温速度で 1600で まで加熱し、 1600 :で 3時間保持して焼結体を得た。  (4) Next, the obtained calcined sample was heated in air at a heating rate of lO :, min to 1600, and kept at 1600: 3 for 3 hours to obtain a sintered body.
得られた焼結体の平均結晶粒径は、 4jumであった。 また、 焼結体の曲げ 強度は 700MPaであり、 破壊靱性値 KIC= 9 MP · m1/2であった。 The average crystal grain size of the obtained sintered body was 4 jum. The bending strength of the sintered body was 700 MPa, and the fracture toughness value K IC was 9 MP · m 1/2 .
実施例 5  Example 5
(1) 90mlのエチルアルコール中に、 Br203粉 90g, A1203粉 23.8gおよび Si02粉 3 gの混合粉体を入れ、 さらに 1mlのジェチルァミンを添加し、 ボー ルミルを用いて 72時間湿式混合した。 (1) in ethyl alcohol of 90 ml, was charged with a mixed powder of Br 2 0 3 powder 90g, A1 2 0 3 powder 23.8g and Si0 2 powder 3 g, further added Jechiruamin of 1 ml, using a bow mill Wet mixed for 72 hours.
(2) 混合 了後、 得られた混合物を、 60tに加熱してアルコールを蒸発さ せ、 次いで、 5 %のポリエチレングリコール水溶液に入れてさらに混合し、 これを乾燥した。 その後、 この混合物を成形し、 45x20x4棚3 の大きさの 生成形体とした。 (2) After completion of the mixing, the obtained mixture was heated to 60 t to evaporate the alcohol, and then added to a 5% aqueous polyethylene glycol solution for further mixing, followed by drying. Thereafter, the mixture was molded to form a molded body having a size of 45 × 20 × 4 shelves 3 .
(3) 次に、 この生成形体を、 空気中にて 2 :Z分の昇温速度で 500 まで 加熱し、 500 :で 2時間保持して仮焼した。  (3) Next, the formed body was heated to 500 at a heating rate of 2: Z in air, and calcined at 500: 2 for 2 hours.
(4) 次に、 得られた仮焼試料を、 空気中にて 10 Z分の昇温速度で 1650 まで加熱し、 1650:で 3時間保持して焼結体を得た。  (4) Next, the obtained calcined sample was heated up to 1650 at a heating rate of 10 Z in air, and kept at 1650: 3 for 3 hours to obtain a sintered body.
得られた焼結体の平均結晶粒径は、 6 mであった。 また、 焼結体の曲げ 強度は 700MPaであり、 破壊靱性値 KIC=8MP · m 1/2であった。 The average crystal grain size of the obtained sintered body was 6 m. The bending strength of the sintered body was 700 MPa, and the fracture toughness value K IC was 8 MP · m 1/2 .
実施例 6 Example 6
(1) 80mlのエチルアルコール中に、 Nd203粉 75.2g, A1203粉 22.8gおよ び Si02粉 2 gの混合粉体を入れ、 さらに 1mlのジェチルァミンを添加し、 ボ ールミルを用いて 48時間湿式混合した。 (1) in ethyl alcohol in 80ml, Nd 2 0 3 powder 75.2 g, was charged with a mixed powder of A1 2 0 3 powder 22.8g and Si0 2 powder 2 g, further added Jechiruamin of 1 ml, ball mill The mixture was wet-mixed for 48 hours.
(2) 混合終了後、 得られた混合物を、 60tに加熱してアルコールを蒸発さ せ、 次いで、 5 %のポリェチレングリコール水溶液に入れてさらに攪拌混合 し、 これを乾燥した。 その後、 この混合物を成形し、 45x20x4mn]3 の大き (2) After the mixing was completed, the obtained mixture was heated to 60 t to evaporate the alcohol, and then put into a 5% aqueous polyethylene glycol solution, further stirred and mixed, and dried. After that, this mixture is molded, 45x20x4mn] 3 size
I D さの生成形体とした。 ID It was made into a form of production.
(3) 次に、 この生成形体を、 空気中にて 5で Z分の昇温速度で 500 まで 加熱し、 500 でで 2時間保持して仮焼した。  (3) Next, this formed body was heated in air to 500 at a heating rate of 5 minutes for Z, and calcined at 500 for 2 hours.
(4) 次に、 得られた仮焼試料を、 空気中にて 分の昇温速度で 1650t まで加熱し、 16501:に 2時間保持して焼結体を得た。  (4) Next, the obtained calcined sample was heated to 1650t in air at a heating rate of 1 minute, and kept at 16501: for 2 hours to obtain a sintered body.
得られた焼結体の平均結晶粒径は、 4 mであった。 また、 焼結体の曲げ 強度は 600MPaであり、 破壊靱性値 1 ( = 6 ^ ' [111 /2でぁった。 このように本発明の方法で得られた希土類酸化物ー了ルミナーシリ力焼結 体は、 緻密でポアがなく、 平均結晶粒径 30 m以下の粒子で構成されていた 。 しかも、 本発明の焼結体は、 実用に供されるに充分な強度ならびに破壊靱 性値を示すことを確認した。 特に破壊靱性値に関しては、 アルミナゃムライ トの約 2〜 3倍の値を示した。 産業上の利用可能性 The average crystal grain size of the obtained sintered body was 4 m. Further, the bending strength of the sintered body was 600 MPa, and the fracture toughness value was 1 ( = 6 ^ '[11 1/2 ]. Thus, the rare earth oxide obtained by the method of the present invention was obtained. The sintered body was dense, had no pores, and was composed of particles having an average crystal grain size of 30 m or less.Moreover, the sintered body of the present invention had sufficient strength and fracture toughness for practical use. In particular, the fracture toughness value was about 2-3 times that of alumina mullite.
上述したように、 本発明によれば、 緻密でポアがなく、 高い強度と靱性を 有する組織的に均一な希土類酸化物一アルミナーシリ力焼結体を容易に得る ことができる。  As described above, according to the present invention, it is possible to easily obtain an organically uniform rare earth oxide-alumina-silica force sintered body that is dense, has no pores, and has high strength and toughness.
これにより、 従来、 セラミックス材料として実用に供されなかった希土類 酸化物一アルミナ系焼結体の実用化を可能にすることができる。  As a result, it is possible to commercialize a rare earth oxide-alumina sintered body that has not been practically used as a ceramic material.
従って、 本発明の希土類酸化物一アルミナ一シリカ焼結体は、 エンジン部 品, ガスタービン翼, ガスタービン用部品, 耐腐食性装置部品, 坩堝, ポー ルミル用部品, 高温炉用熱交換器, 耐熱材, 高空飛翔体用耐熱材, 燃焼管, ダイカスト用部品, 絶縁材料, 核融合炉材料, 原子炉用材料, 太陽炉材料, 工具, 熱遮蔽材料, 電子回路用基体, シール材, 継手やバルブ用部品, 人工 骨や人工歯根等の生体材料, 誘電材料, 刃物やカッター刃, スポーツ用品,  Therefore, the rare earth oxide-alumina-silica sintered body of the present invention can be used for engine parts, gas turbine blades, parts for gas turbines, parts for corrosion-resistant equipment, parts for crucibles, pole mills, heat exchangers for high-temperature furnaces, Heat-resistant materials, heat-resistant materials for high-flying vehicles, combustion tubes, die-casting parts, insulating materials, fusion reactor materials, reactor materials, solar furnace materials, tools, heat shielding materials, electronic circuit substrates, sealing materials, joints, Valve parts, biomaterials such as artificial bones and artificial roots, dielectric materials, blades and cutter blades, sports equipment,
/ / 058 ポンプ, ノズル, 磁気へッ ド, 口 —ラー- ガイド, 軸受, フヱルール, その 他の広い分野で有効に用いられる / / 058 Effectively used in pumps, nozzles, magnetic heads, mouth guides, bearings, ferrules, and other wide fields

Claims

言青求の範画 A model of the word blue
1 . 希土類酸化物, アルミナおよびシリカの混合物焼結体であって、 この焼 結体の平均結晶粒径が 30 β m以下であることを特徴とする希土類酸化物一 アルミナ一シリカ焼結体。  1. A rare earth oxide-alumina-silica sintered body, which is a mixture sintered body of a rare earth oxide, alumina and silica, wherein the sintered body has an average crystal grain size of 30 βm or less.
2 . し n4Al 20s化合物 (Lnは Y, Sm, Bu, Gd, Tb, Dy, Ho, Br, Tm, Yb, Luお よびそれらの混合物) とシリカとの混合物焼結体であって、 こめ焼結体の 平均結晶粒径が 30 umi¾下であることを特徵とする希土類酸化物一アルミ ナーシリカ焼結体。 2. A sintered compact of silica and n 4 Al 20 s compound (Ln is Y, Sm, Bu, Gd, Tb, Dy, Ho, Br, Tm, Yb, Lu and mixtures thereof). A rare earth oxide-alumina silica sintered body, characterized in that the average grain size of the sintered body is less than 30 um.
3. LnA103化合物 (し nは Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er , Tm, Yb, Luおよびそれらの混合物) とシリカとの混合物焼結体であって この焼結体の平均結晶粒径が 30 m以下であることを特徴とする希土類酸 化物ーァルミナ一シリカ焼結体。 3. LNA 10 3 compound (which n is Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and mixtures thereof) a mixture sintered with silica A rare earth oxide-alumina-silica sintered body characterized in that the sintered body has an average crystal grain size of 30 m or less.
4. 焼結体の平均結晶粒径が Ιθ ίπι以下であることを特徵とする請求項 1〜 3のいずれか 1つに記載の希土類酸化物一アルミナーシリ力焼結体。  4. The rare earth oxide-alumina-silica sintered compact according to any one of claims 1 to 3, wherein an average crystal grain size of the sintered compact is not more than Ιθίπι.
5 . 上記焼結体が、 希土類酸化物 5〜95wt%, アルミナ 94. 9〜4. 9 wt%およ ぴシリカ 0. 1 〜10wt%の焼結体である請求項 1に記載の希土類酸化物ーァ ルミナ一シリカ焼結体。 5. The rare earth oxide according to claim 1, wherein the sintered body is a sintered body of 5 to 95 wt% of a rare earth oxide, 94.9 to 4.9 wt% of alumina, and 0.1 to 10 wt% of silica. Luminous-silica sintered body.
6 . 上記焼結体が、 希土類酸化物 64. 9〜89. 9wt%, アルミナ 10〜35wt%およ びシリカ 0. 1 〜10wt%の焼結体である請求項 1に記載の希土類酸化物一了 ルミナーシリカ焼結体。  6. The rare earth oxide according to claim 1, wherein the sintered body is a sintered body of 64.9 to 89.9 wt% of a rare earth oxide, 10 to 35 wt% of alumina, and 0.1 to 10 wt% of silica. Ichiyo Luminar silica sintered body.
7 . 上記焼結体が、 し π4Α1203化合物 (Lnは Y, Sm, Eu, Gd, Tb, Dy, Ho, Er , Tm, Yb, Luおよびそれらの混合物) 99. 9〜90wt%とシリカ 0. 1 〜: I0wt% との焼結体である請求項 2に記載の希土類酸化物一アルミナーシリ力焼結 体。 7. The sintered body, the teeth π 4 Α1 2 0 3 compound (Ln is Y, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and mixtures thereof) 99. 9~90wt The rare earth oxide-alumina-silica sintered body according to claim 2, wherein the sintered body is a sintered body of 0.1% and silica 0.1 to: I0 wt%.
8. 上記焼結体が、 LnAli I:合物 (Lnは Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Br, Tm, Yb, Luおよびそれらの混合物) 99. 9~90wt%とシリ l i 力 0. 1 ~10wt%との焼結体である請求項 3に記載の希土類酸化物一アルミ ナ一シリカ焼結体。 8. The above sintered body is LnAli I: compound (Ln is Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Br, Tm, Yb, Lu and a mixture thereof) 99.9 ~ 90wt% and sili li 4. The rare earth oxide-alumina-silica sintered body according to claim 3, which is a sintered body having a power of 0.1 to 10% by weight.
9. (a) 希土類酸化物粉, アルミナ粉およびシリカ粉を混合する工程、 9. (a) mixing rare earth oxide powder, alumina powder and silica powder,
(b) 得られた混合原料粉を乾燥し、 所定形状の生成形体に成形する工程、 (b) 得られた生成形体を 1〜200 で 分の昇温速度にて加熱する工程、(b) a step of drying the obtained mixed raw material powder and forming it into a shaped product having a predetermined shape; (b) heating the obtained shaped product at a heating rate of 1 to 200 minutes.
(c) 前記生成形体を、 1400〜2000 の温度域で 0. 1 〜24時間保持して焼成 し焼結体とする工程、 (c) a step of holding the formed form in a temperature range of 1400 to 2000 for 0.1 to 24 hours and firing to form a sintered body;
を経て製造することを特徵とする希土類酸化物一アルミナーシリ力焼結体 の製造方法。  And a method for producing a rare earth oxide-alumina-silica sintered compact.
10. 上記混合原料粉が、希土類酸化物粉 5〜95wt%, アルミナ粉 94. 9〜4. 9 wt%およびシリカ 0. 1 〜; I0wt%との混合物である請求項 9に記載の製造方  10. The method according to claim 9, wherein the mixed raw material powder is a mixture of rare earth oxide powder 5 to 95 wt%, alumina powder 94.9 to 4.9 wt% and silica 0.1 to 1.0 wt%.
11. 上記混合原料粉が、 希土類酸化物粉 64. 9〜89. 9wt%, アルミナ粉 10〜35 wt%およびシリ力粉 0. 1〜10wt%の混合物である請求項 9に記載の製造方 法。 -11. The method according to claim 9, wherein the mixed raw material powder is a mixture of rare earth oxide powder 64.9 to 99.9 wt%, alumina powder 10 to 35 wt%, and siliceous powder 0.1 to 10 wt%. Law. -
12. 上記混合原料粉が、 Ln4Al203化合物 (Lnは Y, Sm, Eu, Gd, Tb, Dy, Ho , Br, ¼ Yb, Luおよびそれらの混合物) とシリカとの混合原料粉である 請求項 9に記載の製造方法。 12. The mixed raw material powder is, Ln 4 Al 2 0 3 compound (Ln is Y, Sm, Eu, Gd, Tb, Dy, Ho, Br, ¼ Yb, Lu and mixtures thereof) and mixed raw material powder of silica The method according to claim 9, wherein:
13. 上記混合原料粉が、 LnA103化合物 ( は Y, La, Ce, Pr, Nd, Sm, Bu, Gd, Tb, Dy, Ho, Br, Tm, Yb, Luおよびそれらの混合物) とシリカとの混 合原料粉である請求項 9に記載の製造方法。 13. The mixed raw material powder is, LNA 10 3 Compound (is Y, La, Ce, Pr, Nd, Sm, Bu, Gd, Tb, Dy, Ho, Br, Tm, Yb, Lu and mixtures thereof) and silica 10. The production method according to claim 9, which is a mixed raw material powder.
14. 上記混合原料粉が、 Ln4Al203化合物 (Lnは Y, Sm, Eu, Gd, Tb, Dy, Ho , Br, Tm, Yb, Luおよびそれらの混合物) 99. 9〜90wt%とシリカ 0. 1〜10 wt%との混合物である請求項 9に記載の製造方法。 14. The mixed raw material powder is, Ln 4 Al 2 0 3 compound (Ln is Y, Sm, Eu, Gd, Tb, Dy, Ho, Br, Tm, Yb, Lu and mixtures thereof) 99. 9~90wt% 10. The method according to claim 9, wherein the mixture is a mixture of silica and 0.1 to 10 wt%.
15. 上記混合原料粉が、 し nAlOs化合物 (Lnは Y, La, Ce, ' Pr, Nd, Sm, Bu, Gd, Tb, Dy, Ho, Br, Tm, Yb, Luおよびそれらの混合物) 99. 9〜901 %と シリ力 0. l〜10wt%との混合物である請求項 9に記載の製造方法。 15. The mixed raw material powder is an aluminum oxide compound (Ln is Y, La, Ce, 'Pr, Nd, Sm, Bu, Gd, Tb, Dy, Ho, Br, Tm, Yb, Lu, and a mixture thereof). 9-901% 10. The production method according to claim 9, wherein the mixture is a mixture with 0.1 to 10 wt% of the sily power.
16. 焼成時の昇温速度が 5〜30 :Z分、 焼成温度が 1500〜: 1800^:、 焼成時間 が 1〜 8時間である請求項 9に記載の製造方法。 16. The production method according to claim 9, wherein the heating rate during firing is 5 to 30: Z minutes, the firing temperature is 1500 to: 1800 ^ :, and the firing time is 1 to 8 hours.
PCT/JP1992/001236 1991-09-26 1992-09-28 Rare earth oxide-alumina-silica sinter and production thereof WO1993006058A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US08/066,005 US5384293A (en) 1991-09-26 1992-09-28 Rare earth oxide-alumina-silica sintered body and method of producing the same
DE4293404A DE4293404C2 (en) 1991-09-26 1992-09-28 Rare earth metal oxide-alumina-silica sintered body and process for its production

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3273602A JP2951771B2 (en) 1991-09-26 1991-09-26 Rare earth oxide-alumina-silica sintered body and method for producing the same
JP3/273602 1991-09-26

Publications (1)

Publication Number Publication Date
WO1993006058A1 true WO1993006058A1 (en) 1993-04-01

Family

ID=17530053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/001236 WO1993006058A1 (en) 1991-09-26 1992-09-28 Rare earth oxide-alumina-silica sinter and production thereof

Country Status (4)

Country Link
US (1) US5384293A (en)
JP (1) JP2951771B2 (en)
DE (2) DE4293404C2 (en)
WO (1) WO1993006058A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0659705A1 (en) * 1993-12-24 1995-06-28 Agency of Industrial Science and Technology of Ministry of International Trade and Industry Sintered ceramic article formed mainly of alumina

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1072249A (en) * 1996-05-23 1998-03-17 Ngk Spark Plug Co Ltd Alumina ceramic sintered compact and alumina ceramic parts
JP3211683B2 (en) * 1996-07-18 2001-09-25 株式会社日立製作所 Glass substrate for information recording disk
US6577472B2 (en) * 1997-07-24 2003-06-10 Hitachi, Ltd. Glass substrate for a magnetic disk, a magnetic disk which can be formed with a stable texture
JPH11100266A (en) * 1997-09-30 1999-04-13 Mamoru Omori Martensitic transforming ceramic compound, its production and high toughness conjugate material
US5977007A (en) * 1997-10-30 1999-11-02 Howmet Research Corporation Erbia-bearing core
AT406673B (en) * 1998-03-04 2000-07-25 Treibacher Auermet Prod Gmbh USE OF METAL OXIDES FOR PREPARING CERAMIC MOLDS
JP4213790B2 (en) * 1998-08-26 2009-01-21 コバレントマテリアル株式会社 Plasma-resistant member and plasma processing apparatus using the same
US6410471B2 (en) * 2000-03-07 2002-06-25 Shin-Etsu Chemical Co., Ltd. Method for preparation of sintered body of rare earth oxide
DE10063939B4 (en) * 2000-12-20 2005-01-27 3M Espe Ag Dental cement containing a reaction-resistant dental glass and method for its production
JP4723127B2 (en) 2001-07-23 2011-07-13 日本特殊陶業株式会社 Alumina ceramic sintered body, method for producing the same, and cutting tool
US20060008677A1 (en) * 2004-07-12 2006-01-12 General Electric Company Ceramic bonding composition, method of making, and article of manufacture incorporating the same
KR101478885B1 (en) 2009-07-03 2015-01-02 니혼도꾸슈도교 가부시키가이샤 Spark plug and process for producing spark plug
WO2011001699A1 (en) 2009-07-03 2011-01-06 日本特殊陶業株式会社 Spark plug
JP5458053B2 (en) * 2011-03-31 2014-04-02 コバレントマテリアル株式会社 Translucent ceramics and method for producing the same
US10501373B1 (en) * 2014-01-24 2019-12-10 United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Multi-phase ceramic system
CN112759368B (en) * 2021-01-25 2022-06-21 中国地质大学(北京) Rare earth oxide reinforced and toughened ceramic rock plate and preparation method thereof
CN116003109B (en) * 2022-12-05 2023-10-31 广东工业大学 High-performance alumina ceramic riving knife and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059194B2 (en) * 1980-03-17 1985-12-24 東芝セラミツクス株式会社 Method for manufacturing high-density europium oxide sintered body
JPH02283663A (en) * 1989-04-25 1990-11-21 Natl Inst For Res In Inorg Mater Clear polycrystalline yttrium-aluminum garnet and its production
JPH03218963A (en) * 1989-11-11 1991-09-26 Kurosaki Refract Co Ltd Production of transparent yttrium-aluminumgarvent-ceramics

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5567564A (en) * 1978-11-17 1980-05-21 Mitsubishi Chem Ind Improved quality refractory inorganic material composition
SU1028641A1 (en) * 1982-02-05 1983-07-15 Восточный научно-исследовательский и проектный институт огнеупорной промышленности Refractory filler composition
FR2538370B1 (en) * 1982-12-28 1986-01-24 Ceraver VITREOUS CERAMIC MATERIALS, PROCESS FOR MANUFACTURING SUCH MATERIALS AND APPLICATION THEREOF FOR BONDING CERAMIC PARTS
JPS6059194A (en) * 1983-09-07 1985-04-05 株式会社協立有機工業研究所 Papermaking method for internal sizing of cation modified starch
AT392064B (en) * 1987-03-05 1991-01-25 Olajipari Foevallalkozoe Es Te Process for producing ceramic aluminium oxide articles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059194B2 (en) * 1980-03-17 1985-12-24 東芝セラミツクス株式会社 Method for manufacturing high-density europium oxide sintered body
JPH02283663A (en) * 1989-04-25 1990-11-21 Natl Inst For Res In Inorg Mater Clear polycrystalline yttrium-aluminum garnet and its production
JPH03218963A (en) * 1989-11-11 1991-09-26 Kurosaki Refract Co Ltd Production of transparent yttrium-aluminumgarvent-ceramics

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0659705A1 (en) * 1993-12-24 1995-06-28 Agency of Industrial Science and Technology of Ministry of International Trade and Industry Sintered ceramic article formed mainly of alumina
US5447894A (en) * 1993-12-24 1995-09-05 Agency Of Industrial Science & Technology Sintered ceramic article formed mainly of alumina

Also Published As

Publication number Publication date
DE4293404C2 (en) 2000-04-06
JP2951771B2 (en) 1999-09-20
JPH0585822A (en) 1993-04-06
DE4293404T1 (en) 1993-10-07
US5384293A (en) 1995-01-24

Similar Documents

Publication Publication Date Title
WO1993006058A1 (en) Rare earth oxide-alumina-silica sinter and production thereof
CN111253162B (en) Method for preparing high-strength high-toughness high-thermal-conductivity silicon nitride ceramic
WO2000058235A1 (en) Method for preparing eutectic ceramics
JP3007730B2 (en) Rare earth oxide-alumina sintered body and method for producing the same
US5439853A (en) Mixed oxide composite ceramics and method of producing the same
JPS6220151B2 (en)
JP3007732B2 (en) Silicon nitride-mixed oxide sintered body and method for producing the same
CN105601283A (en) Making method for Si3N4 ceramic of conductive network structure
JP2960591B2 (en) Silicon carbide-silicon nitride-mixed oxide-based sintered body and method for producing the same
JP3007731B2 (en) Silicon carbide-mixed oxide sintered body and method for producing the same
JP2927919B2 (en) Crystallizing heat treatment method for silicon nitride sintered body
JPH0224789B2 (en)
CN114031401B (en) Low-temperature sintered nickel niobate ceramic material with high hardness and high strength
JPH0769715A (en) Oxide ceramic having high tenacity and its production
JP2004010381A (en) Surface-coated silicon nitride sintered compact
JPH055780B2 (en)
JPH05139840A (en) Siliceous nitride sintered compact and its production
JPH06128052A (en) Sintered compact of silicon nitride and its production
JPH052622B2 (en)
JP3035163B2 (en) Silicon nitride sintered body and method for producing the same
JP2944787B2 (en) SiC-based oxide sintered body and method for producing the same
JPH0379308B2 (en)
JP3207065B2 (en) Silicon nitride sintered body
JPH0840774A (en) Silicon nitride sintered product
JP2687633B2 (en) Method for producing silicon nitride sintered body

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE US

WWE Wipo information: entry into national phase

Ref document number: 08066005

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 4293404

Country of ref document: DE

Date of ref document: 19931007

WWE Wipo information: entry into national phase

Ref document number: 4293404

Country of ref document: DE