CN115608177B - 一种聚醚嵌段聚酰胺/聚二甲基硅氧烷复合气体分离膜、制备方法及应用 - Google Patents

一种聚醚嵌段聚酰胺/聚二甲基硅氧烷复合气体分离膜、制备方法及应用 Download PDF

Info

Publication number
CN115608177B
CN115608177B CN202211267933.8A CN202211267933A CN115608177B CN 115608177 B CN115608177 B CN 115608177B CN 202211267933 A CN202211267933 A CN 202211267933A CN 115608177 B CN115608177 B CN 115608177B
Authority
CN
China
Prior art keywords
polydimethylsiloxane
pdms
peo
layer
gas separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211267933.8A
Other languages
English (en)
Other versions
CN115608177A (zh
Inventor
刘公平
刘姜颖
金万勤
潘阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN202211267933.8A priority Critical patent/CN115608177B/zh
Publication of CN115608177A publication Critical patent/CN115608177A/zh
Application granted granted Critical
Publication of CN115608177B publication Critical patent/CN115608177B/zh
Priority to US18/337,452 priority patent/US11944942B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/80Block polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0013Casting processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/009After-treatment of organic or inorganic membranes with wave-energy, particle-radiation or plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1214Chemically bonded layers, e.g. cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/52Polyethers
    • B01D71/521Aliphatic polyethers
    • B01D71/5211Polyethylene glycol or polyethyleneoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
    • B01D71/701Polydimethylsiloxane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • B01J20/28035Membrane, sheet, cloth, pad, lamellar or mat with more than one layer, e.g. laminates, separated sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/46Block-or graft-polymers containing polysiloxane sequences containing polyether sequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • B01D2323/081Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/219Specific solvent system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/34Use of radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/34Molecular weight or degree of polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/52Polyethers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

本发明涉及一种聚醚嵌段聚酰胺/聚二甲基硅氧烷复合气体分离膜、制备方法及应用,属于膜分离技术领域。本发明将两性共聚物聚二甲基硅氧烷(PDMS)‑聚环氧乙烯(PEO)(PDMS‑b‑PEO)引入到中间层以调整界面结合性,从而促进了超薄聚醚嵌段聚酰胺复合膜的制备。研究表明,PEO段的表面富集不仅抑制了由于PDMS中间层的等离子体处理而形成的致密的SiOx层,而且还为随后的选择层提供了额外的亲水位点和界面相容性。通过PDMS‑b‑PEO在中间层中的应用,成功制备出厚度约为50纳米的选择性层。

Description

一种聚醚嵌段聚酰胺/聚二甲基硅氧烷复合气体分离膜、制备方法及应用
技术领域
本发明涉及一种聚醚嵌段聚酰胺/聚二甲基硅氧烷复合气体分离膜、制备方法及应用,属于膜分离技术领域。
背景技术
来自烟气和化石燃料燃烧的过量二氧化碳排放加剧了一些严峻的环境问题,如温室效应以及气候变化和冰川融化。膜分离过程因其低成本、可行的放大升级和节能而被认为是实现高效碳捕集的候选技术。聚合物膜已经吸引了大量的研究,涉及不同程度的二氧化碳选择性和渗透速率。聚合物膜的分离过程遵循溶液-扩散机制。膜材料对二氧化碳的亲和力和质量传输的自由体积主导着二氧化碳/二氧化氮的分离性能。
聚醚嵌段聚酰胺(如
Figure BDA0003894210240000011
)和聚二甲基硅氧烷(PDMS)是用于气体分离的代表性橡胶聚合物材料。聚环氧乙烯(PEO)链段使Pebax对二氧化碳具有很强的亲和力,而聚酰胺的玻璃段则增加了质量传输的阻力。另外,主链较软且含有高自由体积分数的PDMS在渗透速率方面表现出明显的优势。尽管对PDMS膜和Pebax膜的开发进行了积极的研究,但渗透速率和选择性之间的权衡关系仍然制约着二氧化碳的分离性能。在努力提高具有本质选择性的膜的气体渗透速率时,超薄厚度和选择层的完整性都是不可缺少的。然而,低浓度的铸膜液将不可避免地侵入支撑体的纳米孔中,导致气体渗透速率和选择性的下降。
中间层和选择层之间的界面相容性对于多层膜来说至关重要。然而,为了开发超薄的Pebax复合膜,亲水性的Pebax铸膜液要均匀地沉积在疏水性的PDMS中间层上是很困难的。因此,通常采用PDMS表面亲水改性的预处理过程来提高Pebax选择性层在PDMS中间层上的界面结合力。到目前为止,表面改性策略主要是基于应用高能量的辐照,如等离子体和紫外线,以打破强大的Si-C键和Si-O-Si键,并产生大量的羟基。目前的策略在完成实际应用方面有几个限制。首先,低聚物的重排导致PDMS中间层的疏水性迅速恢复。其次,处理过程需要特定的气氛(例如,纯氧)来提供足够的自由基,这将增加设备投资并限制规模化生产。很少有报道说直接应用空气作为处理气氛。因为空气中氧的体积分数低,很难产生足够的氧自由基,从而限制了亲水改性的效果。尽管在CO2/N2分离性能方面取得了重大进展,但由于PDMS表面的不均匀性和有限的处理时间诱发了界面缺陷,因此取得了相对较低的气体渗透速率。同时,在PDMS中间层的等离子体处理过程中,不可避免地形成了具有高传输阻力的SiOx层,抑制了气体渗透速率的进一步提高。
发明内容
本发明所要解决的技术问题:由于PDMS中间层的疏水性导致的超薄聚醚嵌段聚酰胺
Figure BDA0003894210240000021
复合膜的界面附着力低,以及PDMS中间层在等离子体处理中形成SiOx层抑制了气体渗透速率。
本发明的技术方案中,通过在PDMS中掺入两性共聚物PDMS-b-PEO形成中间层,共聚物对提高亲水性的作用是可以通过空气等离子体处理激活,空气氛围足以构建一个具有高极性的表面。PDMS-b-PEO共聚物的PEO段自迁移到中间层的表面,保持亲水性,以提供与Pebax选择层高度增强的界面相容性。因此,制备具有超薄厚度的多层复合膜是可行的。为了研究界面结合性能,我们全面研究了空气等离子体处理后中间层表面的化学环境和成分的变化。为了追求超薄Pebax/PDMS-PEO/PAN复合膜更高的CO2/N2分离性能,优化了等离子体处理时间、共聚物混合量和Pebax铸膜液浓度等制备条件。
一种聚醚嵌段聚酰胺/聚二甲基硅氧烷复合气体分离膜,包括支撑层、中间层以及选择分离层,所述的中间层中包含端羟基聚二甲基硅氧烷和聚二甲基硅氧烷嵌段聚乙烯氧化物,所述的选择分离层的材质是聚醚嵌段聚酰胺。
所述的中间层中的端羟基聚二甲基硅氧烷和聚二甲基硅氧烷嵌段聚乙烯氧化物的质量比范围1:0.5-1.5。
所述的中间层中的端羟基聚二甲基硅氧烷和聚二甲基硅氧烷嵌段聚乙烯氧化物经过了交联处理。
交联处理过程所采用的交联剂是正硅酸四乙酯。
所述的端羟基聚二甲基硅氧烷分子量20000-200000;聚二甲基硅氧烷嵌段聚乙烯氧化物分子量2000-20000;聚醚嵌段聚酰胺采用
Figure BDA0003894210240000022
上述的一种聚醚嵌段聚酰胺/聚二甲基硅氧烷复合气体分离膜的制备方法,包括如下步骤:
步骤1,将端羟基聚二甲基硅氧烷、交联剂、催化剂、聚二甲基硅氧烷嵌段聚乙烯氧化物与第一溶剂混合均匀,得到中间层铸膜液,涂于支撑层表面,热处理;
步骤2,将聚醚嵌段聚酰胺溶解于第二溶剂中,涂于步骤1中得到的中间层的表面,热处理,得到复合气体分离膜。
步骤1中获得的膜需要经过等离子体处理;等离子体处理时间1-20s,电流0.1-5A,电压20-150V。
步骤1和/或步骤2中,热处理条件是30-80℃下2-20h。
端羟基聚二甲基硅氧烷、交联剂、催化剂、聚二甲基硅氧烷嵌段聚乙烯氧化物的重量比100:5-15:0.1-2:50-150。
所述的第一溶剂是烃类溶剂;所述的第二溶剂是醇-水混合物。
聚醚嵌段聚酰胺/聚二甲基硅氧烷复合气体分离膜在气体分离中的应用。
一种提高膜层表面的PEO链段富集程度的方法,所述的膜层是包含端羟基聚二甲基硅氧烷和聚二甲基硅氧烷嵌段聚乙烯氧化物的膜层,所述的方法通过对膜的表面进行等离子体处理,使膜层中的PEO段向膜表面迁移并聚集。
所述的膜层中的端羟基聚二甲基硅氧烷和聚二甲基硅氧烷嵌段聚乙烯氧化物的质量比范围1:0.5-1.5。
等离子体处理时间1-20s,电流0.1-5A,电压20-150V。
一种缓解气体分离膜的气体渗透速率下降的方法,所述的气体分离膜包括支撑层、中间层以及选择分离层,所述的方法中是在制备中间层时还加入包含端羟基聚二甲基硅氧烷和聚二甲基硅氧烷嵌段聚乙烯氧化物。
附图说明
图1:PDMS-b-PEO分子结构示意图和Pebax/PDMS-PEO/PAN超薄复合膜的制备工艺,其中等离子体处理直接在空气中进行。
图2:水接触角与等离子体处理时间的关系:(a)PDMS/PAN膜,(b)PDMS-PEO/PAN膜(mPDMS:mPDMS-b-PEO=1:1)。(c)4s等离子体处理膜的疏水恢复行为。
图3:不同中间层表面涂覆的Pebax溶液的照片:(a)未引入PDMS-b-PEO的PDMS和(b)PDMS-PEO。所有样品均经4s空气等离子体处理。(c)不同类型膜(mPDMS:mPDMS-b-PEO=1:1;Pebax溶液浓度:0.5wt%)的ATR-FTIR光谱。
图4:(a)不同等离子体处理时间(从0秒到20秒)后PDMS样品的C1sXPS光谱。(b)PDMS/PAN膜和PDMS-PEO/PAN膜的Si2p-XPS光谱。(c)等离子体处理后PEO段从聚合物基质到表面的迁移行为示意图。
图5:共聚物共混量对PDMS-PEO/PAN膜CO2透过率(a)和理想选择性(b)的影响。(c)空气等离子体处理后PDMS-PEO/PAN膜的表面组成示意图。(d)共聚物共混量对Pebax/PDMS-PEO/PAN膜分离性能的影响(Pebax溶液浓度:0.5wt%;空气等离子体处理时间:4s;试验条件:纯气体,30℃,0.3MPa)。
图6:(a)等离子体处理时间对PDMS-PEO/PAN膜分离性能的影响(mPDMS:mPDMS-b-PEO=1:1,试验条件:纯气体,30℃,0.3MPa)。不同等离子体处理时间(0s-20s)后PDMS-PEO/PAN膜的断面(b-h)和表面(i-j)SEM图像。
图7:(a)等离子体处理时间对Pebax/PDMS-PEO/PAN膜分离性能的影响(mPDMS:mPDMS-b-PEO=1:1,Pebax溶液浓度:0.5wt%,测试条件:纯气体,30℃,0.3MPa)。(b)-(d)不同等离子体处理时间后PDMS-PEO/PAN膜的AFM图像和表面粗糙度值。
图8:(a)Pebax浓度对膜分离性能的影响(mPDMS:mPDMS-b-PEO=1:1,空气等离子体处理时间:4s,试验条件:纯气体,30℃,0.3MPa)。不同浓度Pebax铸膜液制备的Pebax/PDMS-PEO/PAN膜的断面(b-f)和表面(g)SEM图像。
图9:操作条件对Pebax/PDMS-PEO/PAN复合膜分离性能的影响,(a)操作温度,(b)CO2和N2的Arrhenius图,(c)操作压力和(d)操作时间。(膜制备条件:mPDMS:mPDMS-b-PEO=1:1,空气等离子体处理时间:4s,Pebax铸膜液浓度:0.5wt%;原料气:15vol%CO2:85vol%N2)。
具体实施方式
为实现优良的气体渗透速率,超薄的膜厚度一直是复合膜技术的追求,其中控制多层的界面相容性仍然是一个很大的挑战。本专利的技术路线如图1所示,将两性共聚物聚二甲基硅氧烷(PDMS)-聚环氧乙烯(PEO)(PDMS-b-PEO)引入到中间层以调整界面结合性,从而促进了超薄Pebax复合膜的制备。研究表明,PEO段的表面富集不仅抑制了由于PDMS中间层的等离子体处理而形成的致密的SiOx层,而且还为随后的Pebax选择层提供了额外的亲水位点和界面相容性。随着PDMS-b-PEO在中间层的出现,成功制备出厚度约为50纳米的Pebax选择性层。所得的超薄Pebax复合膜表现出卓越的性能,其二氧化碳渗透速率为2142GPU,二氧化碳/氮气选择性为36。使用两性共聚物作为中间层的策略增强了复合膜的完整性,并简化了等离子体预处理,显示了开发高效CO2捕集的高渗透速率膜的巨大潜力。
主要原料:
端羟基聚二甲基硅氧烷(PDMS,Mw=60000);
聚二甲基硅氧烷嵌段聚乙烯氧化物(50-55%,Mw=5000),缩写为PDMS-b-PEO;
聚醚嵌段聚酰胺(Pebax-1657,Arkema,法国)。
复合膜的制备
在150mL正庚烷中,以100:10:1的质量比,混合羟基端PDMS单体、交联剂正硅酸四乙酯TEOS和催化剂二月桂酸二丁基锡DBTDL,制备PDMS铸膜液。然后,将一定量的PDMS-b-PEO加入到PDMS铸膜液中,充分搅拌后得到均匀的溶液,直到没有明显的絮状物。在达到合适的粘度后,将PDMS溶液旋涂在PAN支撑体的表面。在60℃下热处理12小时后,得到了PDMS-PEO/PAN膜。PDMS/PAN膜的制备过程与没有引入PDMS-b-PEO共聚物的PDMS-PEO/PAN膜一致。
将Pebax-1657聚合物颗粒溶解在80℃的乙醇(70wt%)-水混合溶剂中12小时。在制备Pebax-1657复合膜之前,在空气中进行了等离子体处理,以改善PDMS-PEO膜的表面润湿性。电流和电压分别为1A和55V。Pebax-1657铸膜液通过刮涂法沉积在PDMS-PEO表面。在60℃下进行12小时的后热处理后,得到了Pebax/PDMS-PEO/PAN膜。
中间层表面亲水改性的结果
选择性层Pebax含有亲水性的PEO链段,抑制了其在PDMS中间层疏水表面的均匀沉积和粘附。因此,对PDMS的表面进行了亲水改性。一般来说,物理方法,如紫外线照射和等离子体可以提供足够的能量来打破坚固的Si-O和Si-C键,进一步形成羟基以改善水的润湿性。在这个过程中,往往需要纯氧气氛来提高羟基的生成效率。为了在空气中实现亲水改性,本发明采用了PDMS-b-PEO共聚物来在中间层的表面提供额外的亲水位。该共聚物中PDMS链段的存在增强了亲水的PEO链段与PDMS之间的相容性。如图2的a所示,经过长时间的等离子体处理(20秒),PDMS表面的水接触角(WCA)从110°下降到80°。此外,如图2的c所示,由于PDMS低聚物的迁移和极性基团的重新定向,PDMS表面的疏水性在5分钟内逐渐恢复到初始状态。值得注意的是,PDMS-PEO表面可以在3小时内保持亲水性(WCA<90°),稳定的WCA为92°,明显低于初始值(110°)。因此,PDMS-b-PEO共聚物的引入确保了有足够的时间将Pebax溶液沉积在PDMS中间层表面。
进一步研究了Pebax铸膜液在不同种类的中间层上的沉积行为。如图3的a所示,Pebax溶液在原始的PDMS表面(没有引入PDMS-b-PEO共聚物)聚集成分散的液滴,证实了疏水性PDMS的粘附能力很差。此外,从Pebax/PDMS/PAN的样品中没有观察到明显的Pebax的特征峰。相比之下,Pebax铸膜液在PDMS-PEO中间层表面沉积良好(图3的b),这一点从3298cm-1的N-H拉伸振动峰和1640cm-1的C=O拉伸振动峰的出现得到了验证(图3的c)。Si-CH3吸附峰的存在表明Pebax层的厚度足够薄,允许红外线的穿透。然而,在短时间空气等离子体激活后,很难区分PDMS-PEO膜表面的化学键的差异,由于ATR-FTIR的结果不足以反映化学键的变化。为了进一步解释,应用XPS技术来分析中间层的化学键。如图4的a所示,基于PDMS的样品的C1s光谱在结合能288.6、286.5、284.8、284.6eV处表现出四个峰值,分别对应于C=O、C-O-C、C-Si和C-C。在这些化学键中,醚键的含量可以反映出PEO链段在中间层表面的富集程度。以纯PDMS为参考,部分PEO链段无需等离子体处理即可暴露在表面,随着空气等离子体处理时间延长到4秒,C-O-C的含量从10.2%增加到22.6%。这表明更多的PEO链段从内部迁移到中间层的表面,暴露出丰富的亲水位点。这一结果与水接触角测试一致。C=O键的存在表明PEO链段的部分分解。当等离子体处理时间达到20秒时,醚键的含量下降到10.1%。另一方面,较长的预处理时间可以产生更多的羟基,导致WCA值降低。图4的c比较了原始PDMS和PDMS-PEO中间层的Si 2p XPS光谱,它们都经过了20s空气等离子体处理。PDMS样品在102.1eV处表现出单个特征峰,对应于硅原子与两个氧原子结合。在等离子体处理后,PDMS-PEO样品的Si 2p峰转移到更高的成键能量区域,复杂的成分可以被分解成三个部分。Si-(O)2在102.1eV,Si-(O)3在102.8eV和Si-(O)4在103.4eV。Si-(O)4峰的出现表明PDMS上的SiO2经过等离子体处理后形成。
聚合物链段的迁移和重新排列是由热运动和表面极性驱动的。氟化链自发地迁移到膜表面并降低了表面能量。在本专利中,表现出较高极性和亲水性的PEO链段倾向于在疏水环境中聚集和链段纠缠,进一步导致PDMS链段的覆盖(图4的c)。在空气等离子体处理过程中,产生的羟基增加了表面极性。同时,它促使PEO段向膜表面迁移并聚集,最终诱发了亲水性的优化。此外,线状结构和低分子量的PDMS-b-PEO共聚物表现出更高的流动性。相反,PDMS段的运动被交联网络所限制。
不同PDMS-b-PEO掺杂量制备的PDMS中间层的CO2渗透速率如图5的a所示。当PDMS与PDMS-b-PEO的质量比达到1:0.5时,CO2渗透速率从11174GPU(纯膜)到13030GPU的增强是由于PEO链段对CO2分子的亲和力。此外,少量的PEO链段对聚合物的堆积结构和渗透性没有抑制作用。通过增加PDMS-b-PEO的含量,PEO链段的结晶行为和链段迁移导致CO2渗透速率明显下降,尽管CO2/N2选择性从10.5增加到15.8(图5的b)。值得注意的是,经过4秒空气等离子体处理后,纯PDMS中间层的CO2渗透速率降低了42.8%。相比之下,PDMS-b-PEO的引入有效缓解了气体渗透速率的降低。如图5的a所示,等离子体处理后PDMS-PEO中间层的气体渗透速率下降率被限制在27%以内。为了进一步解释这种现象,我们提出了表面结构的分布模型(图5的c)。如前所述,在PDMS上进行等离子体处理后不可避免地会形成SiOx层,这会增加气体传输阻力。如果在空气等离子体处理过程中聚合物链发生迁移和重排,更多的PEO链段暴露在膜表面,部分聚合物链可能以二氧化碳和水的形式解离。因此,致密的SiOx区域被气体传输阻力低得多的区域所取代,从而导致更高的气体渗透速率。等离子体处理后中间层的选择性如图6中所示讨论。
共聚物掺杂量的增加也丰富了等离子体处理后的亲水部位,进一步产生了对Pebax溶液更高的亲和力。它带来了更多沉积在中间层表面的Pebax和更高的选择性层厚度。因此,二氧化碳的渗透速率从2554GPU明显下降到312GPU。选择性的增强(从23.6到59.6)是由于选择性层的结构更加完善(图5的d)。通过平衡气体渗透速率和选择性,选择1:1作为PDMS和PDMS-b-PEO的最佳质量比。
空气等离子体处理时间的影响
空气等离子体处理时间不仅影响表面润湿性,也影响Pebax选择性层的形成。为了提高Pebax层的界面附着力,需要更长的等离子体来获得更多的中间层的亲水表面。然而,氧等离子体可以打破Si-CH3键,导致硅离子与氧原子的结合,形成类似硅的层。SiOx层拥有高的传输阻力,其厚度与等离子体处理时间呈正相关。随着等离子体处理时间延长到10秒,PDMS-PEO/PAN膜的二氧化碳渗透速率从11538GPU下降到1913GPU(图6的a)。根据文献,SiOx层的高交联结构可能会改善筛分能力,从而提高气体选择性,而本工作中PDMS-PEO中间层的CO2/N2选择性从12.95下降到8.54。针对高能量的等离子体对PDMS-PEO/PAN膜可能造成的损伤,比较了不同等离子体处理时间后的膜微观结构。如图6的b-j所示,PAN支撑体的孔隙在20秒等离子体处理后发生了明显的塌陷。同时,在PDMS-PEO中间层的表面观察到几十微米的大缺陷。
在不同的等离子体处理时间下,Pebax铸膜液被沉积在PDMS-PEO中间层上。二氧化碳渗透速率的变化可以分为两个不同的过程(图7的a)。从4秒到10秒的下降是由于较大的SiOx层厚度和支撑体孔的塌陷的组合效应。尽管铸膜液的浓度相同,Pebax-4s的二氧化碳渗透速率比Pebax-2s高得多。AFM图像(图7的b-d)显示,等离子体处理时间的延长降低了表面粗糙度(Ra值从15.6nm降至5.1nm)。粗糙的表面增强了与铸膜液的相互作用,促使更多的铸膜液留下和更高的选择层厚度。同时,越来越多的缺陷与较薄的Pebax层厚度相结合,导致CO2/N2的选择性从51.4下降到33.3。因此,4秒的空气等离子体处理时间对于获得相对完整的结构和合适的PDMS-PEO中间层的表面粗糙度是最佳的。
Pebax/PDMS-PEO/PAN复合膜的分离性能
在优化了PDMS-PEO中间层的制备条件后,我们研究了Pebax铸膜液的浓度对Pebax/PDMS-PEO/PAN复合膜的分离性能的影响。如图8的a所示,随着Pebax浓度的增加,二氧化碳渗透速率从2141GPU下降到112GPU。同时,膜的厚度(中间层与选择层相结合)从156纳米到994纳米不等(图8的b)。一方面,较高的膜厚度势必会增加气体传输阻力,导致较低的渗透速率。另一方面,膜结构趋向于更加完整,导致更高的选择性。随着聚合物浓度从0.1wt%增加到1.5wt%,CO2/N2的选择性有近55%的提高(从35.8提高到55.5)。当聚合物浓度低于0.3wt%时,在SEM下很难区分Pebax选择层和PDMS-PEO中间层。通过使用更高的浓度0.5wt%,中间层和选择层之间的边界被清楚地观察到。选择性层和中间层的厚度分别为50纳米和200纳米左右。值得注意的是,从图8的d-f可以看出,两层牢固地固定在一起,没有任何界面缺陷。Pebax选择层和PDMS-PEO中间层之间的粘附可以由两种相互作用产生。首先,空气等离子体产生的羟基与Pebax的含氧官能团相互作用,产生氢键网络。第二,PDMS-PEO膜的暴露PEO段与Pebax的相同部分表现出强烈的亲和力。它加强了两种聚合物界面上的物理片段纠缠。
使用混合气体(CO2:N2=15vol%:85vol%)来研究操作条件对Pebax/PDMS-PEO/PAN复合膜分离性能的影响。如图9a所示,温度的增加提供了更高的驱动力,导致气体性能的提高。气体渗透速率的温度依赖关系遵循Arrhenius方程
Figure BDA0003894210240000081
其中Pi是组分i的渗透速率,Pi,0是指前因子,EP是活化能,R是气体常数,T是操作温度(单位:K)。如图9b所示,N2的活化能较高,表明随着温度的升高,N2的渗透速率比CO2的渗透速率增加得快。如图9c所示,随着操作压力的增加,渗透速率和选择性的下降是由于在混合气体渗透中经常观察到的吸附竞争。接下来,连续的混合气体渗透进行了120小时。在测试过程中,二氧化碳的渗透速率和选择性分别稳定在1339GPU和38.5(图9的d)。

Claims (6)

1.一种聚醚嵌段聚酰胺/聚二甲基硅氧烷复合气体分离膜,包括支撑层、中间层以及选择分离层,其特征在于,所述的中间层中包含端羟基聚二甲基硅氧烷和聚二甲基硅氧烷嵌段聚乙烯氧化物,所述的选择分离层的材质是聚醚嵌段聚酰胺;
所述的中间层中的端羟基聚二甲基硅氧烷和聚二甲基硅氧烷嵌段聚乙烯氧化物经过了交联处理;交联处理过程所采用的交联剂是正硅酸四乙酯;所述的端羟基聚二甲基硅氧烷分子量20000-200000;聚二甲基硅氧烷嵌段聚乙烯氧化物分子量2000-20000;
所述的复合气体分离膜的制备方法包括如下步骤:
步骤1,将端羟基聚二甲基硅氧烷、交联剂、催化剂、聚二甲基硅氧烷嵌段聚乙烯氧化物与第一溶剂混合均匀,得到中间层铸膜液,涂于支撑层表面,热处理;
步骤2,将聚醚嵌段聚酰胺溶解于第二溶剂中,涂于步骤1中得到的中间层的表面,热处理,得到复合气体分离膜;
步骤1中获得的膜需要经过等离子体处理;等离子体处理时间1-20s,电流0.1-5A,电压20-150V。
2.根据权利要求1所述的聚醚嵌段聚酰胺/聚二甲基硅氧烷复合气体分离膜,其特征在于,所述的中间层中的端羟基聚二甲基硅氧烷和聚二甲基硅氧烷嵌段聚乙烯氧化物的质量比范围1:0.5-1.5。
3.根据权利要求1所述的聚醚嵌段聚酰胺/聚二甲基硅氧烷复合气体分离膜,其特征在于,聚醚嵌段聚酰胺采用Pebax®
4.权利要求1所述的聚醚嵌段聚酰胺/聚二甲基硅氧烷复合气体分离膜,其特征在于,步骤1和/或步骤2中,热处理条件是30-80℃下2-20h。
5.权利要求1所述的聚醚嵌段聚酰胺/聚二甲基硅氧烷复合气体分离膜,其特征在于,端羟基聚二甲基硅氧烷、交联剂、催化剂、聚二甲基硅氧烷嵌段聚乙烯氧化物的重量比100:5-15:0.1-2:50-150;所述的第一溶剂是烃类溶剂;所述的第二溶剂是醇-水混合物。
6.权利要求1所述的聚醚嵌段聚酰胺/聚二甲基硅氧烷复合气体分离膜在气体分离中的应用。
CN202211267933.8A 2022-10-17 2022-10-17 一种聚醚嵌段聚酰胺/聚二甲基硅氧烷复合气体分离膜、制备方法及应用 Active CN115608177B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202211267933.8A CN115608177B (zh) 2022-10-17 2022-10-17 一种聚醚嵌段聚酰胺/聚二甲基硅氧烷复合气体分离膜、制备方法及应用
US18/337,452 US11944942B1 (en) 2022-10-17 2023-06-20 Polyether block polyamide/polydimethylsiloxane composite membrane for gas separation, and preparation method and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211267933.8A CN115608177B (zh) 2022-10-17 2022-10-17 一种聚醚嵌段聚酰胺/聚二甲基硅氧烷复合气体分离膜、制备方法及应用

Publications (2)

Publication Number Publication Date
CN115608177A CN115608177A (zh) 2023-01-17
CN115608177B true CN115608177B (zh) 2023-04-14

Family

ID=84862397

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211267933.8A Active CN115608177B (zh) 2022-10-17 2022-10-17 一种聚醚嵌段聚酰胺/聚二甲基硅氧烷复合气体分离膜、制备方法及应用

Country Status (2)

Country Link
US (1) US11944942B1 (zh)
CN (1) CN115608177B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116603403A (zh) * 2023-06-13 2023-08-18 中建安装集团有限公司 一种超薄聚氧化乙烯基碳捕集膜及其制备方法和应用

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060039958A1 (en) * 2003-05-28 2006-02-23 Monosolrx, Llc. Multi-layer films having uniform content
KR100631180B1 (ko) * 2004-05-31 2006-10-02 한국화학연구원 가솔린 분리용 고효율 다중활성층 복합막 및 이의 제조방법
US20070151447A1 (en) * 2005-12-30 2007-07-05 Membrane Technology And Research, Inc. Gas separation membranes and processes for controlled environmental management
JP2011502049A (ja) * 2007-11-05 2011-01-20 シーオー2 シーアールシー・テクノロジーズ・プロプライエタリー・リミテッド 気体分離膜及びその製造方法
CN102451621A (zh) * 2010-10-27 2012-05-16 中国科学院大连化学物理研究所 一种聚醚-b-聚酰胺多层复合膜及其制备方法
CN103100313A (zh) * 2011-11-15 2013-05-15 中国科学院大连化学物理研究所 一种peba与peg或peo的共混膜及其制备和应用
EP2909230B1 (en) * 2012-10-19 2019-05-22 Danisco US Inc. Stabilization of biomimetic membranes
JP2015073980A (ja) * 2013-10-11 2015-04-20 富士フイルム株式会社 ガス分離膜およびガス分離膜モジュール
CN103599708B (zh) * 2013-11-30 2016-06-08 大连欧科膜技术工程有限公司 一种复合膜及其制备方法
EP3180113B1 (en) * 2014-08-12 2020-05-06 DuPont Safety & Construction, Inc. Process for making membranes
EP3349886A1 (en) * 2015-09-17 2018-07-25 Basf Se Process for making membranes
EP3349887B1 (en) * 2015-09-17 2022-07-20 Basf Se Process for making membranes using lactamide based solvents
US10363546B2 (en) * 2016-05-02 2019-07-30 Liso Plastics LLC Multilayer polymeric membrane
US9694344B2 (en) * 2016-05-02 2017-07-04 LiSo Plastics, L.L.C. Multilayer polymeric membrane and process
CN110177613A (zh) * 2017-01-12 2019-08-27 巴斯夫欧洲公司 用活性层膜由含水体系移除金属离子
CN109701399A (zh) * 2017-10-26 2019-05-03 中国科学院大连化学物理研究所 一种等离子体处理多层气体复合膜及其制备方法和应用
US11154822B2 (en) * 2018-05-16 2021-10-26 The Penn State Research Foundation Method for biological or biomimetic channel-based membrane fabrications using layer-by-layer structure
US11471839B2 (en) * 2019-08-06 2022-10-18 Uop Llc High selectivity membranes for hydrogen sulfide and carbon dioxide removal from natural gas
US20230182086A1 (en) * 2020-05-18 2023-06-15 Ohio State Innovation Foundation High-performance composite membranes for gas separation

Also Published As

Publication number Publication date
US20240123412A1 (en) 2024-04-18
US11944942B1 (en) 2024-04-02
CN115608177A (zh) 2023-01-17

Similar Documents

Publication Publication Date Title
Khayet et al. Application of surface modifying macromolecules for the preparation of membranes for membrane distillation
Liu et al. Recent progress in the design of advanced PEO-containing membranes for CO2 removal
Khulbe et al. The art of surface modification of synthetic polymeric membranes
Zheng et al. Enhanced butanol selectivity of pervaporation membrane with fluorinated monolayer on polydimethylsiloxane surface
CN115608177B (zh) 一种聚醚嵌段聚酰胺/聚二甲基硅氧烷复合气体分离膜、制备方法及应用
Liu et al. Introducing amphipathic copolymer into intermediate layer to fabricate ultra-thin Pebax composite membrane for efficient CO2 capture
US5733663A (en) Composite membrane and process for its production
Zhou et al. Plasma modification of substrate with poly (methylhydrosiloxane) for enhancing the interfacial stability of PDMS/PAN composite membrane
CN109621754A (zh) 一种聚二甲基硅氧烷复合膜及其制备方法应用
Hu et al. In-situ grafting to improve polarity of polyacrylonitrile hollow fiber-supported polydimethylsiloxane membranes for CO2 separation
Martínez-Izquierdo et al. Phase inversion method for the preparation of Pebax® 3533 thin film membranes for CO2/N2 separation
CN110099734A (zh) 多膜分离方法
CN106807258B (zh) 一种硅橡胶复合膜及其制备方法和应用
Nie et al. Improving CO 2 separation performance of the polyethylene glycol (PEG)/polytrifluoropropylsiloxane (PTFPMS) blend composite membrane
Sun et al. Preparation and application of zinc oxide/poly (m‐phenylene isophthalamide) hybrid ultrafiltration membranes
CN113509845B (zh) 一种用于优先透醇的氧化石墨烯-笼型低聚倍半硅氧烷杂化膜、制备及应用
Rosli et al. Functionalization of silica nanoparticles to reduce membrane swelling in CO2 absorption process
CN114539917A (zh) 一种自修复防污闪rtv涂料及其制备方法
KR102032947B1 (ko) 공중합체, 이를 이용한 기체 분리막 및 그 제조방법
CN1289175C (zh) 环氧硅氧烷涂覆膜及其制备方法和用途
Jose et al. Tunable physicochemical properties of PVA nanocomposite membranes for enhanced pervaporation performance
Wang et al. Fabrication of green poly (L‐lactic acid) hybrid membrane through incorporation of functionalized natural halloysite nanotubes
Chen et al. Design of ultrathin cross-linked poly (ethylene oxide) selective layer for high-performance CO2 capture
Liu et al. A new PDMS-b-PPO block copolymer membrane with novel non-perforated structure towards high flux for alcohol permselective pervaporation.
Mansoori et al. CO 2 and H 2 selectivity properties of PDMS/PSf membrane prepared at different conditions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant