CN115594591A - 一种催化不对称氢化制备哌仑他韦中间体的方法 - Google Patents

一种催化不对称氢化制备哌仑他韦中间体的方法 Download PDF

Info

Publication number
CN115594591A
CN115594591A CN202110719115.6A CN202110719115A CN115594591A CN 115594591 A CN115594591 A CN 115594591A CN 202110719115 A CN202110719115 A CN 202110719115A CN 115594591 A CN115594591 A CN 115594591A
Authority
CN
China
Prior art keywords
cod
diphosphine
transition metal
asymmetric hydrogenation
acac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110719115.6A
Other languages
English (en)
Inventor
丁小兵
稂琪伟
肖阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Catalys Technology Co Ltd
Original Assignee
Shenzhen Catalys Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Catalys Technology Co Ltd filed Critical Shenzhen Catalys Technology Co Ltd
Priority to CN202110719115.6A priority Critical patent/CN115594591A/zh
Publication of CN115594591A publication Critical patent/CN115594591A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C201/00Preparation of esters of nitric or nitrous acid or of compounds containing nitro or nitroso groups bound to a carbon skeleton
    • C07C201/06Preparation of nitro compounds
    • C07C201/12Preparation of nitro compounds by reactions not involving the formation of nitro groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2295Cyclic compounds, e.g. cyclopentadienyls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • B01J2231/643Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of R2C=O or R2C=NR (R= C, H)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0225Complexes comprising pentahapto-cyclopentadienyl analogues
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0241Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0261Complexes comprising ligands with non-tetrahedral chirality
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/827Iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/842Iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers

Abstract

本发明公开了一种催化不对称氢化制备哌仑他韦中间体的方法,具体为通过过渡金属盐/手性膦配体催化体系,经过不对称氢化反应,实现哌仑他韦手性二醇中间体的不对称合成。该方法步骤简单,操作简便,条件温和,反应迅速,污染小,效率高,为高效绿色不对称氢化合成哌仑他韦提供了新的方法,具有巨大的工业应用价值。

Description

一种催化不对称氢化制备哌仑他韦中间体的方法
技术领域
本发明属于医药化学合成领域,具体涉及一种催化不对称氢化制备哌仑他韦中间体的方法。
背景技术
哌仑他韦(Pibrentasvir/ABT-530),CAS:1353900-92-1,分子式:C57H65F5N10O8,分子量: 1113.18,化学名称:{(2S,3R)-1-[(2S)-2-{5-[(2R,5R)-1-{3,5-二氟-4-[4-(4-氟苯基)哌啶-1- 基]苯基-5-(6-氟-2-(2S)-1-[N-(甲氧羰基)-O-甲基-L-苏氨酰基]吡咯烷-2-基}-1H-苯并咪唑-5-基)吡咯烷-2-基]6-氟-1H-苯并咪唑-2-基}吡咯烷-1-基]-3-甲氧基-1-氧代丁-2-基}氨基甲酸甲酯,结构式为:
Figure BDA0003136261520000011
哌仑他韦(Pibrentasvir/ABT-530)主要用于治疗无肝硬化或代偿性肝硬化的慢性HCV基因型感染,属于NS5A抑制剂,对来自基因型1至6含有NS5A的HCV复制子的EC50范围为1.4至5.0pM。HCV患者按疗程服用后,病毒学治愈率高达98%。哌仑他韦由美国艾伯维(AbbVie)公司研发,于2017年7月26日获欧洲药物管理局(EMA)批准上市,后于 2017年8月3日获美国食品药品管理局(FDA)批准上市,后又于2017年9月27日获得日本医药品医疗器械综合机构批准上市,又于2019年5月15日获得国家药品监督管理局 (NMPA)批准,商品名为
Figure BDA0003136261520000012
2018及2019两年取得3,438 百万美元及2,893百万美元的销售额,是全球最为畅销的DAA药物(即直接抗病毒小分子药物)之一。据最新国际权威丙肝治疗指南,包括2018年EASL和2018年AASLD,该方案是目前泛基因型方案中唯一可实现初治、无肝硬化患者8周短疗程治愈的方案。
目前文献报道(J.Med.Chem.2018,61,4052-4066)的合成哌仑他韦手性醇中间体的方法需要使用17%的手性辅剂(R)-(+)-α,α-二苯基脯氨醇控制羰基还原后的手性(见下式),大量手性辅基的使用使哌仑他韦的生产成本居高不下。
Figure BDA0003136261520000013
另有使用Co催化剂进行不对称催化氢化反应,可能可以手性还原哌仑他韦二酮中间体的文献报道(Synthesis2004,No.9,1434–1438),但手性催化剂的用量至少也大于1.5mol%,且产率和手性控制效率不高。
Figure BDA0003136261520000021
当前如何绿色高效合成单一构型的手性二醇中间体是更加有效合成哌仑他韦的关键所在。
发明内容
本发明为哌仑他韦(Pibrentasvir/ABT-530)的合成提供了一种新的高效绿色的合成方法。
本发明是通过以下技术方案实行的。
本发明提出了合成哌仑他韦关键中间体手性二醇的制备的新方案。
Figure BDA0003136261520000022
在氢气氛围下,由手性膦配体与过渡金属盐络合得到的催化剂的存在下,加入哌仑他韦二酮中间体1,发生不对称氢化反应,该方法能够一步将两个羰基不对称氢化还原,形成两个手性中心,可以很好地控制反应产率及手性,从而高效绿色地实现哌仑他韦手性二醇中间体2的不对称合成。
所述手性膦配体包括但不限于下述的化合物f-amphox、f-ampha、f-amphol、f-amphamide、 O-SpiroPAP:
Figure BDA0003136261520000023
上述结构式中R表示甲基、异丙基、叔丁基、苯基、苄基或其它任意的C1-C6的直链或支链或环状取代基,优选为甲基,异丙基,进一步优选为异丙基;Ar表示苯基、4-甲基苯基、4-甲氧基苯基、3,5-二甲基苯基、3,5-二甲基-4-甲氧基苯基、3,4,5-三甲基苯基、3,5-二叔丁基苯基、3,5-二叔丁基-4-甲氧基、3,5-二叔丁基-4-甲基,优选为苯基,3,5-二甲基苯基,进一步优选为苯基。
不对称氢化反应的反应温度为20~120℃,优选后为20~70℃,进一步优选为20~50℃。氢气压力为10~60大气压,优选后为10~50大气压,进一步优选为20~40大气压。反应时间为2~120小时,优选后为6~24小时,进一步优选为8~18小时。
不对称氢化反应所用溶剂优选二氯甲烷,甲醇,乙醇,异丙醇,四氢呋喃,乙酸乙酯,甲基叔丁基醚等,进一步优选为异丙醇。
所述催化剂由手性二茂铁膦配体与过渡金属盐在iPrOH中络合得到;所述过渡金属盐与手性二茂铁膦配体的摩尔比为0.5:1.0~1.2,络合反应温度为室温,络合时间为1~3小时。
所述络合得到的催化剂不进行分离,直接用于催化不对称氢化反应。
所述的过渡金属盐包括:
(Rh(NBD)2)+BF4 -;[Rh(NBD)Cl]2;[Rh(COD)Cl]2;[Rh(COD)2]X;Rh(acac)(CO)2; Rh(ethylene)2(acac);(Rh(ethylene)2Cl)2;RhCl(PPh3)3;Rh(CO)2Cl2;RuHX(L)2(diphosphine);RuX2(L)2(diphosphine),Ru(arene)X2(diphosphine);Ru(arylgroup)X2;Ru(RCOO)2(diphosphine); Ru(methallyl)2(diphosphine);Ru(arylgroup)X2(PPh3)3;Ru(COD)(COT);Ru(COD)(COT)X; RuX2(cymene);Ru(COD)n;Ru(arylgroup)X2(diphosphine);RuCl2(COD);(Ru(COD)2)X; RuX2(diphosphine);RuCl2(=CHR)(PR'3)2;Ru(ArH)Cl2;Ru(COD)(methallyl)2;(Ir(NBD)2Cl)2; (Ir(NBD)2)X;(Ir(COD)Cl)2;Ir(COD))X;Ni(acac)2;NiX2;(Ni(allyl)X)2;Ni(COD)2;MoO2(acac)2; Ti(O-iPr)4;VO(acac)2;MeReO3;MnX2;Mn(acac)2
在以上的过渡金属络合物中,R和R'可分别为烷基、烷氧基或取代烷基,aryl为芳基, Ar可为3,5-二三氟甲基苯或氟苯。X为平衡阴离子,如BF4 -,ClO4 -,SbF6 -,PF6 -,CF3SO3 -,RCOO-,B(C6H3(CF3)2)4 -,Cl-,Br-,I-。L为溶剂,如四氢呋喃等。
值得注意的是,氢化产物只需除去溶剂,即可直接进行后续的反应,再进行常规的后处理便可以高产率、高光学纯度得到哌仑他韦。
总之,上述技术方案具有操作简单、反应快速、成本低廉同时转化率和选择性都极高,以及原子经济性,环境友好的特点,具有极高的工业化价值。采用过渡金属盐/手性二茂铁膦配体的三齿配体催化剂体系,其高度的稳定性和反应活性,能够改善或克服因产物对催化剂金属中心配位导致的催化剂失活情况的发生。与目前的其他技术相比,工艺更为先进。另合成路线短,中间产物及废料产生明显减少,高效绿色,适宜工业化放大生产。
以下通过具体实施例对本发明的哌仑他韦二醇中间体化合物的合成方法的技术效果做进一步的说明。
具体实施方法
实施例:
Figure BDA0003136261520000031
催化剂金属络合物的合成:
在手套箱中,称取(R)-f-amphox(8.3mg,0.011mmol,2.2equiv),[Ir(COD)Cl]2(3.4mg,0.005 mmol,1equiv),加入1mL超干异丙醇,室温搅拌1小时,配制成浓度为0.01mol/L的催化剂金属络合物;
以底物和催化剂的摩尔比S/C=2000为例:
在手套箱中,称取底物433mg,1mmol),加入Cs2CO3(32.5mg,0.10mmol),10mL异丙醇(浓度0.1mol/L),室温搅拌1小时,使底物和碱充分溶解。在手套箱中,用微量注射器向底物溶液中加入上述催化剂金属络合物(50μL,5×10-4mmol),随后将该反应瓶转移到高压釜内,拧紧反应釜,将釜移出手套箱。用20atmH2置换釜体三次后向高压釜内充入60atmH2随即关紧进气阀,在室温搅拌12小时后,结束反应。在通风橱内,打开放气阀缓慢放尽釜体中的氢气。经过简单纯化即得到氟苯尼考中间体化合物产物433mg,收率99%,用液相色谱分析反应液,e.e.值>99%,d.r.值>100:1。
以上所述仅为本发明的优选而已,并不用于限制本发明,对于本领域的技术人员来说,本发明包括但不限于在反应温度、反应时间等具体实施条件上可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.催化不对称氢化制备哌仑他韦中间体的方法,其特征在于:
在氢气氛围下,在由手性膦配体与过渡金属盐在溶剂中络合得到的催化剂的作用下,哌仑他韦中间体1,通过不对称氢化反应,实现哌仑他韦手性醇中间体2的不对称合成;
Figure FDA0003136261510000011
所述手性膦配体包括但不限于下述的化合物f-amphox、f-ampha、f-amphol、f-amphamide、O-SpiroPAP:
Figure FDA0003136261510000012
上述结构式中R表示甲基、异丙基、叔丁基、苯基、苄基或其它任意的C1-C6的直链或支链或环状取代基;Ar表示苯基、4-甲基苯基、4-甲氧基苯基、3,5-二甲基苯基、3,5-二甲基-4-甲氧基苯基、3,4,5-三甲基苯基、3,5-二叔丁基苯基、3,5-二叔丁基-4-甲氧基、3,5-二叔丁基-4-甲基;
以及上式仅列举了膦配体的一种立体构型,包括且不限于该化合物的其他异构体也均应包含在本发明的保护范围之内。
2.根据权利要求1所述的方法,其特征在于,所述溶剂为甲醇、乙醇、异丙醇、二氯甲烷、四氢呋喃、甲苯、1,2-二氯乙烷中的一种或几种。
3.根据权利要求1所述的制备方法,其特征在于,所述不对称氢化反应的反应温度为20~120℃,氢气压力为10~60大气压,反应时间为1~120小时。
4.根据权利要求2所述的方法,其特征在于,所述催化剂由手性二茂铁膦配体与过渡金属盐在溶剂中络合得到;所述过渡金属盐与手性二茂铁膦配体的摩尔比为0.5:1.0~1.2,络合反应温度为室温,络合反应时间为1~3小时。
5.根据权利要求4所述的方法,其特征在于,络合得到的催化剂不进行分离,直接用于催化不对称氢化反应。
6.根据权利要求1至5任一所述的方法,其特征在于,所述的过渡金属包括:Ru,Ir,Fe,Co,Rh,Ti,V,Re和Mn;合适的过渡金属络合物包括:
(Rh(NBD)2)+BF4 -;[Rh(NBD)Cl]2;[Rh(COD)Cl]2;[Rh(COD)2]X;Rh(acac)(CO)2;Rh(ethylene)2(acac);(Rh(ethylene)2Cl)2;RhCl(PPh3)3;Rh(CO)2Cl2;RuHX(L)2(diphosphine);RuX2(L)2(diphosphine),Ru(arene)X2(diphosphine);Ru(arylgroup)X2;Ru(RCOO)2(diphosphine);Ru(methallyl)2(diphosphine);Ru(arylgroup)X2(PPh3)3;Ru(COD)(COT);Ru(COD)(COT)X;RuX2(cymene);Ru(COD)n;Ru(arylgroup)X2(diphosphine);RuCl2(COD);(Ru(COD)2)X;RuX2(diphosphine);RuCl2(=CHR)(PR'3)2;Ru(ArH)Cl2;Ru(COD)(methallyl)2;(Ir(NBD)2Cl)2;(Ir(NBD)2)X;(Ir(COD)Cl)2;Ir(COD))X;Ni(acac)2;NiX2;(Ni(allyl)X)2;Ni(COD)2;MoO2(acac)2;Ti(O-iPr)4;VO(acac)2;MeReO3;MnX2;Mn(acac)2
在以上的过渡金属络合物中,R和R'可分别为烷基、烷氧基或取代烷基,aryl为芳基,Ar可为3,5-二三氟甲基苯或氟苯;X为平衡阴离子,如BF4 -,ClO4 -,SbF6 -,PF6 -,CF3SO3 -,RCOO-,B(C6H3(CF3)2)4 -,Cl-,Br-,I-;L为溶剂,如四氢呋喃等。
CN202110719115.6A 2021-06-28 2021-06-28 一种催化不对称氢化制备哌仑他韦中间体的方法 Pending CN115594591A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110719115.6A CN115594591A (zh) 2021-06-28 2021-06-28 一种催化不对称氢化制备哌仑他韦中间体的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110719115.6A CN115594591A (zh) 2021-06-28 2021-06-28 一种催化不对称氢化制备哌仑他韦中间体的方法

Publications (1)

Publication Number Publication Date
CN115594591A true CN115594591A (zh) 2023-01-13

Family

ID=84841194

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110719115.6A Pending CN115594591A (zh) 2021-06-28 2021-06-28 一种催化不对称氢化制备哌仑他韦中间体的方法

Country Status (1)

Country Link
CN (1) CN115594591A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103153988A (zh) * 2010-10-13 2013-06-12 Abbvie公司 抗病毒化合物
CN103172620A (zh) * 2009-06-11 2013-06-26 雅培制药有限公司 抗病毒化合物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103172620A (zh) * 2009-06-11 2013-06-26 雅培制药有限公司 抗病毒化合物
CN103153988A (zh) * 2010-10-13 2013-06-12 Abbvie公司 抗病毒化合物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PAN-LIN SHAO等: "Facile Synthesis of Enantiopure Sugar Alcohols: Asymmetric Hydrogenation and Dynamic Kinetic Resolution Combined", ANGEW. CHEM. INT. ED., vol. 59, pages 18168 *

Similar Documents

Publication Publication Date Title
CN105153229B (zh) 一种手性三齿pnn配体及其在不对称氢化反应中的应用
CN108822160B (zh) 基于亚磷酸酯和不饱和氮杂环卡宾的混配型镍(ii)配合物的应用
Kim et al. Internal alkene hydroaminations catalyzed by zirconium (IV) complexes and asymmetric alkene hydroaminations catalyzed by yttrium (III) complexes
JP5479572B2 (ja) プロピオン酸誘導体の調製方法
CN103772445B (zh) 一种1,1’-二茂铁全氟烷基膦氮配体、其制备方法及应用
Jia et al. Synthesis of planar chiral ferrocenes via a Pd (0)-catalyzed syn-carbopalladation/asymmetric C–H alkenylation process
JPWO2009144906A1 (ja) アルミニウム錯体とその使用
US5491233A (en) Catalytic asymmetric reduction of trisubstituted olefins
CN112645909A (zh) 一种合成α-苄基苯并呋喃类化合物的方法
Schotes et al. Bicyclo [3.2. 0] heptane-Based Enamides by Ru/PNNP-Catalyzed Enantioselective Ficini Reactions: Scope and Application in Ligand Design
CN115594591A (zh) 一种催化不对称氢化制备哌仑他韦中间体的方法
Yamashita et al. Preparation of (2, 3-Dihydrobenzofuran-3-yl) acetic Acid via Rh-Catalyzed Asymmetric Hydrogenation
Hua et al. Bidentate N, O-aluminum complexes: Synthesis, characterization and catalytic study for MPV reduction reactions
Ramaraj et al. Hydrogenation of CO2, carbonyl and imine substrates catalyzed by [IrH3 (PhPNHP)] complex
Tanaka et al. Soft ruthenium and hard Brønsted acid combined catalyst for efficient cleavage of allyloxy bonds. Application to protecting group chemistry
WO2023077643A1 (zh) 一种手性多齿配体及其在不对称氢化的应用
WO2005016943A1 (ja) 新規な遷移金属錯体、及び該錯体を用いた光学活性アルコールの製造法
Hadzovic et al. Ketone H2-hydrogenation catalysts: Ruthenium complexes with the headphone-like ligand bis (phosphaadamantyl) propane
JPWO2014077323A1 (ja) 光学活性イソプレゴールおよび光学活性メントールの製造方法
JP4004547B2 (ja) 光学活性アミンの製造方法
CN114478372A (zh) 一种吡啶醇氮氧化物的不对称制备方法
CN110003283A (zh) 一种金属配合物催化剂及其制作方法和应用
JP2006089493A (ja) 光学活性コバルト(ii)錯体
JP2003277380A (ja) 光学活性3−キヌクリジノールの製造方法
Zhao et al. In situ NMR study of asymmetric borane reduction reaction—an abnormal factor in the temperature effect on the bis-oxazaborolidine catalyst and the relationship between the catalyst structure and selectivity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination