CN115536420B - 一种ZrB2-SiC-LaB6增强的碳/碳纳米复合材料及其制备方法 - Google Patents

一种ZrB2-SiC-LaB6增强的碳/碳纳米复合材料及其制备方法 Download PDF

Info

Publication number
CN115536420B
CN115536420B CN202211282238.9A CN202211282238A CN115536420B CN 115536420 B CN115536420 B CN 115536420B CN 202211282238 A CN202211282238 A CN 202211282238A CN 115536420 B CN115536420 B CN 115536420B
Authority
CN
China
Prior art keywords
carbon
zrb
sic
lab
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211282238.9A
Other languages
English (en)
Other versions
CN115536420A (zh
Inventor
易伟
徐刘进
郑璇
董凯
谭强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changsha Jingyou New Material Technology Co ltd
Original Assignee
Changsha Jingyou New Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changsha Jingyou New Material Technology Co ltd filed Critical Changsha Jingyou New Material Technology Co ltd
Priority to CN202211282238.9A priority Critical patent/CN115536420B/zh
Publication of CN115536420A publication Critical patent/CN115536420A/zh
Application granted granted Critical
Publication of CN115536420B publication Critical patent/CN115536420B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58078Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on zirconium or hafnium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5062Borides, Nitrides or Silicides
    • C04B41/507Borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9684Oxidation resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种ZrB2‑SiC‑LaB6增强的碳/碳纳米复合材料及其制备方法,由ZrB2‑SiC‑LaB6前驱体凝胶与碳纤维复合后,经热处理制得;所述ZrB2‑SiC‑LaB6的分子式为(ZrB2‑20vol.%SiC)‑(10‑40)wt.%LaB6,其中ZrB2‑20vol.%SiC和LaB6的质量百分比为60‑90%:10‑40%。本发明利用ZrB2‑SiC‑LaB6作为涂层材料,涂敷于碳纤维编织体,经过热处理获得具有高抗热冲刷且抗氧化能力强的碳/碳复合材料。

Description

一种ZrB2-SiC-LaB6增强的碳/碳纳米复合材料及其制备方法
技术领域
本发明属于碳/碳复合材料技术领域,具体涉及一种ZrB2-SiC-LaB6增强的碳/碳纳米复合材料及其制备方法。
背景技术
在超高音速飞行器设计应用中,碳纤维材料以其高轴向强度、低热膨胀系数、耐腐蚀性、耐疲劳性以及密度低等性能备受关注,然而受碳纤维性质所限,高温氧化环境中极易被破坏。C/C复合材料则是以碳纤维材料为增强体,以碳基化合物为涂层保护材料,兼备碳纤维材料高性能,与高抗烧蚀性能的特点,是碳纤维材料发展的趋势。然而它也拥有较为严苛的使用条件:只能在惰性气体氛围中保持其优秀性能。如果缺乏良好的保护措施,C/C复合材料的抗氧化烧蚀性能会变差,且其物理化学性能严重下降,这一特点限制了C/C复合材料的广泛应用,如何提高其抗氧化烧蚀性能成为研究的重中之重。
为克服C/C复合材料在抗氧化烧蚀性能方面存在的缺陷,在C/C复合材料的表面涂覆高熔点陶瓷材料并制备耐高温抗氧化涂层被国际上公认为是解决这一难题最有效的方法。目前由硼化物与碳化物复合而成的高温陶瓷涂层由于具有高稳定性,高抗烧蚀性能,优异的力学特性以及抗热震性能而在C/C复合材料高温抗氧化的研究中得到了广泛的应用。
ZrB2在高温环境下,氧化产物为液相氧化硼和晶态氧化锆,利用热失重法研究了材料的热稳定性能。热重分析结果表明:氧化温度100-700℃时ZrB2质量变化较小,因此该温度范围内氧化行为被忽略。氧化温度在800℃以上1100℃以下时,SiC氧化速率比ZrB2氧化速率低得多,故ZrB2表面会产生ZrO2及持续液态B2O3。氧化性能可从两方面解释:在此温度范围内,陶瓷质量提高,是因为虽然ZrB2被消耗,但是与氧结合产生了ZrO2和B2O3,产生的氧化膜包裹于陶瓷的表面,起到保护的作用,避免氧气进入物料内被氧化。B2O3开始蒸发的温度为1100-1400℃;B2O3在1200℃以下产生率显着高于其蒸发率,这时ZrB2陶瓷表面层中存在少量ZrO2且ZrO2产生率逐渐增大。由于多孔氧化锆的出现,与1000℃时抗氧化性相比,材料在这一温度时抗氧化性能开始降低。B2O3在1400℃条件下挥发速度加快,B2O3产生率约等于其挥发率。1600℃下,ZrB2陶瓷氧化速度高速上升,ZrO2块体暴露在陶瓷表面,裂纹生长,玻璃层几乎完全蒸发,氧化层的保护作用趋于零。研究表明加入20vol.%的SiC可提高ZrB2陶瓷的高温抗氧化性等,同时还有降低材料烧结温度的作用,这种材料即使在最高达2000℃的环境下也能长期服役。
然而,虽然添加SiC可以显着提高材料的抗氧化性,但不足之处是显而易见的,添加SiC后,产生的SiO2在极高温下粘性降低,会漂浮于基体表面使延缓氧化能力下降。
发明内容
为了解决现有技术存在的缺陷,本发明的目的是在于提供一种ZrB2-SiC-LaB6增强的碳/碳纳米复合材料及其制备方法,利用ZrB2-SiC-LaB6作为涂层材料,原位涂敷于碳纤维编织体,经过热处理获得具有高抗热冲刷且抗氧化能力强的碳/碳复合材料。
为了实现上述技术目的,本发明采用如下技术方案:
一种ZrB2-SiC-LaB6增强的碳/碳纳米复合材料,由ZrB2-SiC-LaB6前驱体凝胶与碳纤维复合后,经热处理制得。
进一步地,所述ZrB2-SiC-LaB6的分子式为(ZrB2-20vol.%SiC)-(10-40)wt.%LaB6,其中ZrB2-20vol.%SiC和LaB6的质量百分比为60-90%:10-40%。
本发明先采用溶胶凝胶法制备ZrB2-SiC-LaB6前驱体凝胶,再通过反复浸渍使ZrB2-SiC-LaB6前驱体凝胶填充、附着于碳纤维上,最后再采用碳热及硼热还原等烧结过程使ZrB2-SiC-LaB6复合涂层原位覆于C/C复合材料,得到ZrB2-SiC-LaB6增强的碳/碳纳米复合材料。ZrB2-SiC-LaB6涂层晶粒细小均匀,与C/C复合材料结合紧密,高温下可产生La-Si-O玻璃相,粘度更大,增强抗热冲刷能力;同时在烧蚀过程基体表面形成了致密的氧化层,ZrB-SiC-LaB6层也促进了(La0.1Zr0.9)O1.95的固溶体的形成,有利于鳞片相的稳定,显著提高C/C复合材料的高温抗氧化性。
本发明还提供了上述ZrB2-SiC-LaB6增强的碳/碳纳米复合材料的制备方法,先分别配制锆源溶液、硼源溶液、硅源溶液、镧源溶液和碳源溶液,然后将五种溶液混合搅拌,水解缩聚成溶胶,陈化后得到凝胶;再将碳纤维置于凝胶中进行循环浸渍,干燥后热处理得到ZrB2-SiC-LaB6增强的碳/碳纳米复合材料。
进一步地,所述ZrB2-SiC-LaB6增强的碳/碳超高温纳米复合材料的具体制备过程为:
(1)将氧氯化锆溶于无水乙醇中,再加入聚乙二醇和过氧化氢,搅拌至充分混匀,作为锆源;
(2)将硼酸溶于无水乙醇中,搅拌至充分混匀,作为硼源;
(3)将正硅酸乙酯溶于无水乙醇中,搅拌至充分混匀,作为硅源;
(4)将氯化镧溶于无水乙醇中,再加入聚乙二醇和过氧化氢,搅拌至充分混匀,作为镧源;
(5)将葡萄糖溶于去离子水中,再加入聚乙二醇,搅拌至充分混匀,作为碳源;
(6)将锆源、硼源、硅源和镧源加入至碳源中,搅拌至充分混匀,水解缩聚成溶胶,陈化后得到凝胶;
(7)将碳纤维置于凝胶中进行循环浸渍,干燥后,在氩气气氛下进行热处理,即得ZrB2-SiC-LaB6增强的碳/碳纳米复合材料。
进一步地,步骤(1)中,锆源中,氧氯化锆的摩尔浓度为0.2-1mol/L,氧氯化锆和过氧化氢的摩尔比为1:3-8,聚乙二醇的加入量占锆源总质量的0.5-2%,搅拌温度为50-80℃,搅拌时间为0.5-2h。
进一步地,步骤(2)中,硼源中,硼酸的摩尔浓度为1-2.5mol/L,搅拌温度为20-60℃,搅拌时间为10-60min。。
进一步地,步骤(3)中,硅源中,正硅酸乙酯的摩尔浓度为0.1-0.7mol/L。
进一步地,步骤(4)中,镧源中,氯化镧的摩尔浓度为0.5-1mol/L,氯化镧和过氧化氢的摩尔比为1:15-20,聚乙二醇的加入量占镧源总质量的0.5-2%,搅拌温度为20-60℃,搅拌时间为5-30min。
进一步地,步骤(5)中,碳源中,葡萄糖的摩尔浓度为0.2-0.5mol/L,聚乙二醇的加入量占硼源、硅源和碳源三者总质量的0.5-2%,搅拌温度为20-60℃。
进一步地,步骤(6)中,氧氯化锆、硼酸、正硅酸乙酯、氯化镧和葡萄糖的摩尔比为1:(2-5):(0.3-1):(0.1-0.5):(0.5-2);搅拌温度为50-80℃,搅拌时间为1-5h;陈化时间为1-3d。
进一步地,步骤(7)中,循环浸渍的次数至少为3次;热处理的工艺参数为:升温时,前1300℃升温速率不得超过10℃/min,1300-1550℃升温速率不得超过5℃/min,在1550℃保温1-3h。
相比于现有技术,本发明的优势在于:
本发明先采用溶胶凝胶法制备ZrB2-SiC-LaB6前驱体凝胶,通过反复浸渍使ZrB2-SiC-LaB6前驱体凝胶填充、附着于碳纤维上,再采用碳热及硼热还原等烧结过程使ZrB2-SiC-LaB6复合涂层原位覆于C/C复合材料,ZrB2-SiC-LaB6涂层晶粒细小均匀,无团聚现象,热膨胀系数统一,抗氧化烧蚀过程产生的热应力较为分散,且与C/C复合材料结合紧密,能显著提高C/C复合材料的高温抗氧化性。
附图说明
图1为实施例2制得的(ZrB2-20vol.%SiC)-30wt.%LaB6/(C/C)复合材料的微观图像及其能谱图;
如图1所示,白色组织为ZrB2-SiC-LaB6复合相,组织中各相均匀分布,复合相多为棒状结构,附着在碳纤维(灰色相)上。
图2为实施例1制得的(ZrB2-20vol.%SiC)-10wt.%LaB6/(C/C)复合材料(S-1)和实施例2制得的(ZrB2-20vol.%SiC)-30wt.%LaB6/(C/C)复合材料(S-2)的X射线衍射图。
如图2所示,通过本发明制得的ZrB2-SiC-LaB6增强的碳/碳纳米复合材料,主要相为ZrB2相、SiC相、LaB6相和碳纤维相,未检测到其他杂质相,复合材料纯度高。
具体实施方式
为了使本领域技术人员更好地理解本发明,下面结合附图和具体实施方式对本发明作进一步详细说明。
实施例1
一种(ZrB2-20vol.%SiC)-10wt.%LaB6/(C/C)纳米复合材料的制备工艺,具体步骤如下:
步骤一:前驱体凝胶的制备
将3.25g八水氧氯化锆和0.3g聚乙二醇6000(PEG)加入到30ml无水乙醇中,逐滴加入35wt.%过氧化氢5.2ml,在65℃的恒温水浴中搅拌1h,作为锆源;将1.7g硼酸加入到20ml无水乙醇溶解,在50℃的恒温水浴中搅拌0.5h,作为硼源;将2g正硅酸乙酯溶解在20ml无水乙醇中,搅拌10min,作为硅源;将0.39g水合氯化镧和0.2g聚乙二醇6000(PEG)加入到15ml无水乙醇中,逐滴加入35wt.%过氧化氢2.2ml,在65℃的恒温水浴中搅拌15min,作为镧源;将3.0g葡萄糖和0.6g聚乙二醇6000(PEG)溶解于20g去离子水中,作为碳源。把锆源、硼源、硅源和镧源加入到碳源溶液中,65℃下恒温搅拌3h得到得到均聚合物前驱体溶液。
自然环境下,将前驱体通风静置24h,充分凝胶化。
步骤二:复合材料制备
把碳纤维块进行喷砂处理后放在无水乙醇中,用超声波清洗干燥。处理过的碳纤维置于前驱体凝胶中,在超声波的环境里浸渍3min,取出带有没过碳纤维的凝胶,在80℃恒温箱中干燥3h;循环5次浸渍干燥的过程,直至碳纤维中充分填满凝胶。
将填满凝胶后的碳纤维置于氩气氛围下,在前1300℃时升温速率设置为10℃/min,1300-1550℃升温速率设置为5℃/min,在1550℃时保温2h,即得到(ZrB2-20vol.%SiC)-10wt.%LaB6/(C/C)超高温复合材料。
实施例2
一种(ZrB2-20vol.%SiC)-30wt.%LaB6/(C/C)纳米复合材料的制备工艺,具体步骤如下:
步骤一:前驱体凝胶的制备
将3.25g八水氧氯化锆和0.3g聚乙二醇6000(PEG)加入到30ml无水乙醇中,逐滴加入35wt.%过氧化氢5.2ml,在65℃的恒温水浴中搅拌1h,作为锆源;将2.5g硼酸加入到20ml无水乙醇溶解,在50℃的恒温水浴中搅拌0.5h,作为硼源;将2g正硅酸乙酯溶解在20ml无水乙醇中,搅拌10min,作为硅源;将1.5g水合氯化镧和0.2g聚乙二醇6000(PEG)加入到15ml无水乙醇中,逐滴加入35wt.%过氧化氢4.0ml,在65℃的恒温水浴中搅拌15min,作为镧源;将3.9g葡萄糖和0.6g聚乙二醇6000(PEG)溶解于20g去离子水中,作为碳源。把锆源、硼源、硅源和镧源加入到碳源溶液中,65℃下恒温搅拌3h得到得到均聚合物前驱体溶液。
自然环境下,将前驱体通风静置24h,充分凝胶化。
步骤二:复合材料制备
把碳纤维块进行喷砂处理后放在无水乙醇中,用超声波清洗干燥。处理过的碳纤维置于前驱体凝胶中,在超声波的环境里浸渍3min,取出带有没过碳纤维的凝胶,在80℃恒温箱中干燥3h;循环5次浸渍干燥的过程,直至碳纤维中充分填满凝胶。
将填满凝胶后的碳纤维置于氩气氛围下,在前1300℃时升温速率设置为10℃/min,1300-1550℃升温速率设置为5℃/min,在1550℃时保温2h,即得到(ZrB2-20vol.%SiC)-30wt.%LaB6/(C/C)超高温复合材料。
实施例3
一种(ZrB2-20vol.%SiC)-40wt.%LaB6/(C/C)纳米复合材料的制备工艺,具体步骤如下:
步骤一:前驱体凝胶的制备
将3.25g八水氧氯化锆和0.3g聚乙二醇6000(PEG)加入到30ml无水乙醇中,逐滴加入35wt.%过氧化氢5.2ml,在65℃的恒温水浴中搅拌1h,作为锆源;将3g硼酸加入到20ml无水乙醇溶解,在50℃的恒温水浴中搅拌0.5h,作为硼源;将2g正硅酸乙酯溶解在20ml无水乙醇中,搅拌10min,作为硅源;将2.34g水合氯化镧和0.2g聚乙二醇6000(PEG)加入到25ml无水乙醇中,逐滴加入35wt.%过氧化氢5.0ml,在65℃的恒温水浴中搅拌15min,作为镧源;将4.5g葡萄糖和0.7g聚乙二醇6000(PEG)溶解于25g去离子水中,作为碳源。把锆源、硼源、硅源和镧源加入到碳源溶液中,65℃下恒温搅拌3h得到得到均聚合物前驱体溶液。
自然环境下,将前驱体通风静置24h,充分凝胶化。
步骤二:复合材料制备
把碳纤维块进行喷砂处理后放在无水乙醇中,用超声波清洗干燥。处理过的碳纤维置于前驱体凝胶中,在超声波的环境里浸渍3min,取出带有没过碳纤维的凝胶,在80℃恒温箱中干燥3h;循环5次浸渍干燥的过程,直至碳纤维中充分填满凝胶。
将填满凝胶后的碳纤维置于氩气氛围下,在前1300℃时升温速率设置为10℃/min,1300-1550℃升温速率设置为5℃/min,在1550℃时保温2h,即得到(ZrB2-20vol.%SiC)-40wt.%LaB6/(C/C)超高温复合材料。
对比例1
一种(ZrB2-20vol.%SiC)-5wt.%LaB6/(C/C)纳米复合材料的制备工艺,具体步骤如下:
步骤一:前驱体凝胶的制备
将3.25g八水氧氯化锆和0.3g聚乙二醇6000(PEG)加入到30ml无水乙醇中,逐滴加入35wt.%过氧化氢5.2ml,在65℃的恒温水浴中搅拌1h,作为锆源;将1.5g硼酸加入到20ml无水乙醇溶解,在50℃的恒温水浴中搅拌0.5h,作为硼源;将2g正硅酸乙酯溶解在20ml无水乙醇中,搅拌10min,作为硅源;将0.184g水合氯化镧和0.1g聚乙二醇6000(PEG)加入到5ml无水乙醇中,逐滴加入35wt.%过氧化氢2.1ml,在65℃的恒温水浴中搅拌15min,作为镧源;将2.9g葡萄糖和0.5g聚乙二醇6000(PEG)溶解于20g去离子水中,作为碳源。把锆源、硼源、硅源和镧源加入到碳源溶液中,65℃下恒温搅拌3h得到得到均聚合物前驱体溶液。
自然环境下,将前驱体通风静置24h,充分凝胶化。
步骤二:复合材料制备
把碳纤维块进行喷砂处理后放在无水乙醇中,用超声波清洗干燥。处理过的碳纤维置于前驱体凝胶中,在超声波的环境里浸渍3min,取出带有没过碳纤维的凝胶,在80℃恒温箱中干燥3h;循环5次浸渍干燥的过程,直至碳纤维中充分填满凝胶。
将填满凝胶后的碳纤维置于氩气氛围下,在前1300℃时升温速率设置为10℃/min,1300-1550℃升温速率设置为5℃/min,在1550℃时保温2h,即得到(ZrB2-20vol.%SiC)-5wt.%LaB6/(C/C)超高温复合材料。
性能测试:
抗弯强度测试为三点弯曲法测试。
烧蚀性能采用氧乙炔焰烧蚀来测试,试验方法依据国家军用标准GJB323A-96进行,其中氧乙炔枪嘴直径为2mm,烧蚀角度为90°,喷距为40mm,红外测温仪测得烧蚀中心温度为2200℃左右,烧蚀时间为60s。
结果如表1所示:
表1实施例1-3和对比例1制得的样品的性能参数表

Claims (8)

1.一种ZrB2-SiC-LaB6增强的碳/碳纳米复合材料,其特征在于,由ZrB2-SiC-LaB6前驱体凝胶与碳纤维复合后,经热处理制得;
所述ZrB2-SiC-LaB6的分子式为(ZrB2-20vol.%SiC)-30wt.%LaB6,其中ZrB2-20vol.%SiC和LaB6的质量百分比为70%:30%;
其制备方法为:先分别配制锆源溶液、硼源溶液、硅源溶液、镧源溶液和碳源溶液,然后将五种溶液混合搅拌,水解缩聚成溶胶,陈化后得到凝胶;再将碳纤维置于凝胶中进行循环浸渍,干燥后热处理得到ZrB2-SiC-LaB6增强的碳/碳纳米复合材料。
2.根据权利要求1所述的ZrB2-SiC-LaB6增强的碳/碳纳米复合材料,其特征在于,所述ZrB2-SiC-LaB6增强的碳/碳纳米复合材料的具体制备过程为:
(1)将氧氯化锆溶于无水乙醇中,再加入聚乙二醇和过氧化氢,搅拌至充分混匀,作为锆源;
(2)将硼酸溶于无水乙醇中,搅拌至充分混匀,作为硼源;
(3)将正硅酸乙酯溶于无水乙醇中,搅拌至充分混匀,作为硅源;
(4)将氯化镧溶于无水乙醇中,再加入聚乙二醇和过氧化氢,搅拌至充分混匀,作为镧源;
(5)将葡萄糖溶于去离子水中,再加入聚乙二醇,搅拌至充分混匀,作为碳源;
(6)将锆源、硼源、硅源和镧源加入至碳源中,搅拌至充分混匀,水解缩聚成溶胶,陈化后得到凝胶;
(7)将碳纤维置于凝胶中进行循环浸渍,干燥后,在氩气气氛下进行热处理,即得ZrB2-SiC-LaB6增强的碳/碳纳米复合材料。
3.根据权利要求2所述的ZrB2-SiC-LaB6增强的碳/碳纳米复合材料,其特征在于,步骤(1)中,锆源中,氧氯化锆的摩尔浓度为0.2-1mol/L,氧氯化锆和过氧化氢的摩尔比为1:3-8,聚乙二醇的加入量占锆源总质量的0.5-2%,搅拌温度为50-80℃,搅拌时间为0.5-2h。
4.根据权利要求2所述的ZrB2-SiC-LaB6增强的碳/碳纳米复合材料,其特征在于,步骤(2)中,硼源中,硼酸的摩尔浓度为1-2.5mol/L,搅拌温度为20-60℃,搅拌时间为10-60min;
步骤(3)中,硅源中,正硅酸乙酯的摩尔浓度为0.1-0.7mol/L。
5.根据权利要求2所述的ZrB2-SiC-LaB6增强的碳/碳纳米复合材料,其特征在于,步骤(4)中,镧源中,氯化镧的摩尔浓度为0.5-1mol/L,氯化镧和过氧化氢的摩尔比为1:15-20,聚乙二醇的加入量占镧源总质量的0.5-2%,搅拌温度为20-60℃,搅拌时间为5-30min。
6.根据权利要求2所述的ZrB2-SiC-LaB6增强的碳/碳纳米复合材料,其特征在于,步骤(5)中,碳源中,葡萄糖的摩尔浓度为0.2-0.5mol/L,聚乙二醇的加入量占硼源、硅源和碳源三者总质量的0.5-2%,搅拌温度为20-60℃。
7.根据权利要求2所述的ZrB2-SiC-LaB6增强的碳/碳纳米复合材料,其特征在于,步骤(6)中,氧氯化锆、硼酸、正硅酸乙酯、氯化镧和葡萄糖的摩尔比为1:(2-5):(0.3-1):(0.1-0.5):(0.5-2);搅拌温度为50-80℃,搅拌时间为1-5h;陈化时间为1-3d。
8.根据权利要求2所述的ZrB2-SiC-LaB6增强的碳/碳纳米复合材料,其特征在于,步骤(7)中,循环浸渍的次数至少为3次;热处理的工艺参数为:升温时,前1300℃升温速率不得超过10℃/min,1300-1550℃升温速率不得超过5℃/min,在1550℃保温1-3h。
CN202211282238.9A 2022-10-19 2022-10-19 一种ZrB2-SiC-LaB6增强的碳/碳纳米复合材料及其制备方法 Active CN115536420B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211282238.9A CN115536420B (zh) 2022-10-19 2022-10-19 一种ZrB2-SiC-LaB6增强的碳/碳纳米复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211282238.9A CN115536420B (zh) 2022-10-19 2022-10-19 一种ZrB2-SiC-LaB6增强的碳/碳纳米复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN115536420A CN115536420A (zh) 2022-12-30
CN115536420B true CN115536420B (zh) 2023-11-03

Family

ID=84736283

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211282238.9A Active CN115536420B (zh) 2022-10-19 2022-10-19 一种ZrB2-SiC-LaB6增强的碳/碳纳米复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN115536420B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5254397A (en) * 1989-12-27 1993-10-19 Sumitomo Electric Industries, Ltd. Carbon fiber-reinforced composite material having a gradient carbide coating
KR20110077154A (ko) * 2009-12-30 2011-07-07 한국세라믹기술원 지르코늄디보라이드-실리콘카바이드 복합소재의 제조방법
CN106747487A (zh) * 2016-06-12 2017-05-31 北京航空航天大学 耐温1800℃热结构复合材料的制备方法
CN109704816A (zh) * 2019-03-08 2019-05-03 航天特种材料及工艺技术研究所 一种在基体材料上形成的高温自愈合复相涂层及其制备方法和应用
CN113860875A (zh) * 2021-09-27 2021-12-31 陕西科技大学 一种原位自生碳化硅纳米线网络改性碳/碳复合材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5254397A (en) * 1989-12-27 1993-10-19 Sumitomo Electric Industries, Ltd. Carbon fiber-reinforced composite material having a gradient carbide coating
KR20110077154A (ko) * 2009-12-30 2011-07-07 한국세라믹기술원 지르코늄디보라이드-실리콘카바이드 복합소재의 제조방법
CN106747487A (zh) * 2016-06-12 2017-05-31 北京航空航天大学 耐温1800℃热结构复合材料的制备方法
CN109704816A (zh) * 2019-03-08 2019-05-03 航天特种材料及工艺技术研究所 一种在基体材料上形成的高温自愈合复相涂层及其制备方法和应用
CN113860875A (zh) * 2021-09-27 2021-12-31 陕西科技大学 一种原位自生碳化硅纳米线网络改性碳/碳复合材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Cunqian Fang等.modifying effects of in-situ grown LaB6 on composition, microstructure and ablation property of C/C-SiC-ZrC composites.《Corrosion Science》.2022,第1-17页. *

Also Published As

Publication number Publication date
CN115536420A (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
Shane et al. Sol-gel synthesis of zirconia barrier coatings
CN107540400A (zh) 一种具有复合界面的SiCf/SiC陶瓷基复合材料
CN109553430A (zh) 一种具有复合界面的SiCf/SiC陶瓷基复合材料及其制备方法
CN113772723A (zh) 一种抗cmas腐蚀的多组分的高熵烧绿石结构热障涂层材料及其制备方法和应用
CN103980006B (zh) 构件表面具有自愈合能力的环境屏障涂层及制备方法
US20060147699A1 (en) Protective ceramic coating
CN109384475B (zh) 一种联合提高SiCf/SiC复合材料高温抗水氧腐蚀性能的方法
CN109851336A (zh) 一种高模量致密连续莫来石纳米陶瓷纤维及其制备方法
CN113845367B (zh) 高温抗氧化碳纤维增韧氧化锆陶瓷材料的制备方法及高温抗氧化碳纤维增韧氧化锆陶瓷材料
CN112374917B (zh) 一种高温陶瓷涂层及其制备方法
CN107176604A (zh) 一种碳素材料表面原位生成纳米碳化物涂层的方法
CN108774072B (zh) 一种刚性隔热瓦及其制备方法
CN103755352B (zh) 一种多孔BN/Si3N4复合陶瓷封孔层的制备方法
Chen et al. Thermal cycling behavior of La2Zr2O7/Yb2Si2O7/SiC coated PIP Cf/SiC composites under burner rig tests
CN102603344B (zh) 一种碳化硅晶须增韧二硼化锆陶瓷的制备工艺
CN114349502A (zh) 一种低热膨胀的热/环境障涂层用钛掺杂铪酸镧陶瓷及其制备方法
CN110304932B (zh) 一种具有HfB2界面的Cf/SiC复合材料的制备方法
CN106966763B (zh) 一种发动机环境下纤维增强的复合材料表面涂层及其制备方法
CN115536420B (zh) 一种ZrB2-SiC-LaB6增强的碳/碳纳米复合材料及其制备方法
CN108505320B (zh) 复合氧化物涂层及其制备方法和应用
Jiang et al. Cyclic ablation resistance at 2300° C of (Hf0. 4Zr0. 4Ta0. 2) B2-SiC-Si coating for C/SiC composites prepared by SiC-assisted reactive infiltration of silicon
CN114230379A (zh) SiC气凝胶/陶瓷涂层结构一体化防隔热复合材料的制备方法
CN106631161A (zh) 一种在碳基材料表面制备抗高温氧化复合涂层的方法
Raghunandan et al. Role of water in the sol-gel synthesis of yttrium monosilicate
CN114309583B (zh) 一种梯度莫来石搭接的梯度陶瓷涂层及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant