CN115534471A - 一种含植物多糖的可生物降解快递袋及其制备方法 - Google Patents

一种含植物多糖的可生物降解快递袋及其制备方法 Download PDF

Info

Publication number
CN115534471A
CN115534471A CN202211237601.5A CN202211237601A CN115534471A CN 115534471 A CN115534471 A CN 115534471A CN 202211237601 A CN202211237601 A CN 202211237601A CN 115534471 A CN115534471 A CN 115534471A
Authority
CN
China
Prior art keywords
layer film
polysaccharide
polylactic acid
starch
bag containing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211237601.5A
Other languages
English (en)
Other versions
CN115534471B (zh
Inventor
张振博
徐翠翠
金少瑾
张友源
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Tongxin Clothing Material And New Material Technology Co ltd
Original Assignee
Shanghai Tongxin Clothing Material And New Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Tongxin Clothing Material And New Material Technology Co ltd filed Critical Shanghai Tongxin Clothing Material And New Material Technology Co ltd
Priority to CN202211237601.5A priority Critical patent/CN115534471B/zh
Publication of CN115534471A publication Critical patent/CN115534471A/zh
Application granted granted Critical
Publication of CN115534471B publication Critical patent/CN115534471B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/46Applications of disintegrable, dissolvable or edible materials
    • B65D65/466Bio- or photodegradable packaging materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0003General processes for their isolation or fractionation, e.g. purification or extraction from biomass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • B32B2307/7145Rot proof, resistant to bacteria, mildew, mould, fungi
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/716Degradable
    • B32B2307/7163Biodegradable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/02Open containers
    • B32B2439/06Bags, sacks, sachets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2403/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2403/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Mechanical Engineering (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

本发明公开了一种含植物多糖的可生物降解快递袋及其制备方法,属于快递包装领域,该快递袋包括内层膜、外层膜和中层膜,内层膜和外层膜的组份包括聚乳酸、聚己二酸‑对苯二甲酸丁二醇酯、植物多糖纳米微球、相容剂,中层膜的组份包括聚乳酸、聚己二酸‑对苯二甲酸丁二醇酯、改性淀粉、相容剂、纳米二氧化硅、二氧化钛,使用含植物多糖的可生物降解快递袋的制备方法包括植物多糖纳米微球的制备、改性淀粉的制备以及三层共挤吹膜,该方法制备的快递袋可生物降解,阻隔性好,有良好韧性和抗菌性。

Description

一种含植物多糖的可生物降解快递袋及其制备方法
技术领域
本发明涉及快递包装领域,尤其涉及一种含植物多糖的可生物降解快递袋及其制备方法。
背景技术
传统快递袋多为聚乙烯材质,使用量大且不可降解,直接排放到环境中,容易造成严重的白色污染,焚烧处理会产生剧毒二噁英,污染大气、损害动植物的生长,海洋中白色垃圾也在逐年增长,已经对海洋生物造成很大的危害,更有甚者,目前有的快递袋是用回收料进行加工生产的,由于添加了过量的有毒添加剂等成分,质量很差,会还发出刺激性气味,对人和环境带来不可逆的影响,不可降解制品终被可降解的制品替代势在必行。
聚乳酸作为一种来源于玉米淀粉的生物高分子材料,具有优良的机械性能、生物相容性和可降解性,易加工成型,透明度高,安全卫生,在土壤中可被完全降解为水和二氧化碳,为环境友好型原料,但是聚乳酸价格较高,并且具有高脆性、韧性差等缺点,影响了聚乳酸大规模的推广和使用。
植物多糖具有很好的抗菌效果,但是其稳定性较差,尤其是和聚酯类成分进行共挤吹膜时,很容易造成分散不均匀,易吸潮等现象。
申请人针对上述目前的快递袋存在的问题,做了进一步的深入研究。
发明内容
本发明所要解决的第一个技术问题是:提供一种含植物多糖的可生物降解快递袋,解决了现有快递袋存在的高脆性、韧性差、难以降解、易吸潮以及抑菌效果差的问题。
本发明所要解决的第二个技术问题是:提供一种含植物多糖的可生物降解快递袋的制备方法,该方法步骤简单,可以大范围推广,制备的含植物多糖的可生物降解快递袋可生物降解,阻隔性好,有良好韧性和抗菌性,解决了现有快递袋存在的韧性差、难以降解、易吸潮以及抑菌效果差的问题。
为解决上述第一个技术问题,本发明的技术方案是:一种含植物多糖的可生物降解快递袋,包括内层膜、外层膜和中层膜,内层膜和外层膜的组份包括聚乳酸、聚己二酸-对苯二甲酸丁二醇酯、植物多糖纳米微球、相容剂,中层膜的组份包括聚乳酸、聚己二酸-对苯二甲酸丁二醇酯、改性淀粉、相容剂、纳米二氧化硅、二氧化钛,其中,内层膜和外层膜中的聚乳酸、聚己二酸-对苯二甲酸丁二醇酯、植物多糖纳米微球、相容剂之间的质量比为(30~60):(20~45):(10~25):(2~5),中层膜中的聚乳酸、聚己二酸-对苯二甲酸丁二醇酯、改性淀粉、相容剂、纳米二氧化硅、二氧化钛之间的质量比为(30~65):(15~30):(5~20):(1~5):(1~5):(0.5~2)。
优选的,植物为大葱、枸杞、金银花、杜仲等的一种或几种具有抗菌效果的植物。
优选的,内层膜、外层膜和中层膜中的相容剂为环氧大豆油、硬脂酸中的一种。
优选的,改性淀粉由淀粉与塑化剂处理制成,淀粉与塑化剂质量比为100:(20~30)。
优选的,塑化剂包括甘油、环氧大豆油、环氧菜籽油、柠檬酸酯等其中的一种。
优选的,淀粉为玉米淀粉、红薯淀粉、小麦淀粉等其中的一种。
采用了上述第一种技术方案后,本发明的效果是:由于一种含植物多糖的可生物降解快递袋,包括三层膜,内层膜、外层膜和中层膜,内层膜和外层膜的组份包括聚乳酸、聚己二酸-对苯二甲酸丁二醇酯、植物多糖纳米微球、相容剂,中层膜的组份包括聚乳酸、聚己二酸-对苯二甲酸丁二醇酯、改性淀粉、相容剂、纳米二氧化硅、二氧化钛,因为该快递袋是包括三层膜结构,内层膜和外层膜均含有植物多糖纳米微球,均具有良好的抗菌性,内层膜可有效抑制内容物表面细菌,外层膜可以有效抑制在快递流转过程中接触的细菌,而三层膜结构的设置则可有效阻止水蒸气进入,从而可以防止快递内容物吸潮,避免腐烂变质等问题的出现。
另外,本发明申请的快递袋使用原料均为可生物降解材料,最终制备的成品快递袋也是可完全生物降解的,并且本专利申请快递袋的组份中添加了聚己二酸-对苯二甲酸丁二醇酯和改性淀粉,可替代部分聚乳酸,从而降低了生产成本,能够降低生产成本对生产企业是极其重要的。
为解决上述第二个技术问题,本发明的技术方案是:一种含植物多糖的可生物降解快递袋的制备方法,包括以下步骤:
1)植物多糖纳米微球的制备:将所选植物经过10倍量水煎煮提取2h后,80℃旋转蒸发减压浓缩至1倍水量时,用终浓度为75%的乙醇进行沉淀,得粗多糖Ⅰ;取一定量粗多糖Ⅰ,加入0.5倍量水溶解后,得粗多糖Ⅰ水溶液,上D101大孔吸树脂柱,用5%乙醇进行洗脱,收集洗脱液,75℃旋转蒸发减压浓缩并蒸干,得粗多糖Ⅱ;取一定量粗多糖Ⅱ,加入1倍量水溶解,得粗多糖Ⅱ水溶液;将聚乳酸用1倍量有机溶剂溶解,搅拌粗多糖Ⅱ水溶液的同时逐渐加入等量的有机溶剂溶解后的聚乳酸,进行乳化分散,55℃减压蒸发去除有机溶剂,得到植物多糖纳米微球,包封率为68~82%;
2)改性淀粉制备:将淀粉与塑化剂按照质量比为100:(20~30)放入高速混合机中,80~90℃加热处理10~20min,即得改性淀粉;
3)三层共挤吹膜:将三层膜的原料按照配比分别投入双螺杆中进行造粒,内层膜和外层膜的原料聚乳酸、聚己二酸-对苯二甲酸丁二醇酯、植物多糖纳米微球、相容剂之间的质量比为(30~60):(20~45):(10~25):(2~5),中层膜的原料聚乳酸、聚己二酸-对苯二甲酸丁二醇酯、改性淀粉、相容剂、纳米二氧化硅、二氧化钛之间的质量比为(30~65):(15~30):(5~20):(1~5):(1~5):(0.5~2),内层膜和外层膜的造粒温度为165~190℃,中层膜的造粒温度为160~180℃,造粒后采用三层共挤吹膜机进行吹膜,最终制得含植物多糖的可生物降解快递袋,吹膜温度为165~180℃。
优选的,有机溶剂为二氯甲烷、三氯甲烷、丙酮等其中的一种。
优选的,内层膜和外层膜的造粒温度为185,℃中层膜造粒温度为180℃,吹膜温度为175℃。
优选的,步骤2)中,改性淀粉由玉米淀粉与甘油处理制成,玉米淀粉与甘油质量比100:20。
采用了上述第二种技术方案后,本发明的效果是:该方法步骤简单,可以大范围推广,制备的含植物多糖的可生物降解快递袋韧性好、可降解、阻隔性好、抑菌效果好。
具体实施方式
下面通过具体实施例对本发明作进一步的详细描述。
一种含植物多糖的可生物降解快递袋,包括内层膜、外层膜和中层膜,内层膜和外层膜的组份包括聚乳酸、聚己二酸-对苯二甲酸丁二醇酯、植物多糖纳米微球、相容剂,中层膜的组份包括聚乳酸、聚己二酸-对苯二甲酸丁二醇酯、改性淀粉、相容剂、纳米二氧化硅、二氧化钛,其中,内层膜和外层膜中的聚乳酸、聚己二酸-对苯二甲酸丁二醇酯、植物多糖纳米微球、相容剂之间的质量比为(30~60):(20~45):(10~25):(2~5),中层膜中的聚乳酸、聚己二酸-对苯二甲酸丁二醇酯、改性淀粉、相容剂、纳米二氧化硅、二氧化钛之间的质量比为(30~65):(15~30):(5~20):(1~5):(1~5):(0.5~2)。
植物为大葱、枸杞、金银花、杜仲等的一种或几种,内层膜、外层膜和中层膜中的相容剂为环氧大豆油、硬脂酸中的一种,改性淀粉由淀粉与塑化剂处理制成,淀粉与塑化剂质量比为100:(20~30),塑化剂包括甘油、环氧大豆油、环氧菜籽油、柠檬酸酯等其中的一种,淀粉为玉米淀粉、红薯淀粉、小麦淀粉等其中的一种。
上述的含植物多糖的可生物降解快递袋的制备方法,包括以下步骤:
1)植物多糖纳米微球的制备:将所选植物经过10倍量水煎煮提取2h后,80℃旋转蒸发减压浓缩至1倍水量时,用终浓度为75%的乙醇进行沉淀,得粗多糖Ⅰ;取一定量粗多糖Ⅰ,加入0.5倍量水溶解后,得粗多糖Ⅰ水溶液,上D101大孔吸附树脂柱,用5%乙醇进行洗脱,收集洗脱液,75℃旋转蒸发减压浓缩并蒸干,得粗多糖Ⅱ;取一定量粗多糖Ⅱ,加入1倍量水溶解,得粗多糖Ⅱ水溶液;将聚乳酸用1倍量有机溶剂溶解,搅拌粗多糖Ⅱ水溶液的同时逐渐加入等量的有机溶剂溶解后的聚乳酸,进行乳化分散,55℃减压蒸发去除有机溶剂,得到植物多糖纳米微球,包封率为68~82%,有机溶剂为二氯甲烷、三氯甲烷、丙酮等其中的一种,包封率(%)=纳米微球中植物多糖/(纳米微球中植物多糖+未包封的植物多糖)×100%;
2)改性淀粉制备:将淀粉与塑化剂按照质量比为100:(20~30)放入高速混合机中,80~90℃加热处理10~20min,即得改性淀粉;
3)三层共挤吹膜:将三层膜的原料按照配比分别投入双螺杆中进行造粒,内层膜和外层膜的原料聚乳酸、聚己二酸-对苯二甲酸丁二醇酯、植物多糖纳米微球、相容剂之间的质量比为(30~60):(20~45):(10~25):(2~5),中层膜的原料聚乳酸、聚己二酸-对苯二甲酸丁二醇酯、改性淀粉、相容剂、纳米二氧化硅、二氧化钛之间的质量比为(30~65):(15~30):(5~20):(1~5):(1~5):(0.5~2),内层膜和外层膜的造粒温度为165~190℃,中层膜的造粒温度为160~180℃,造粒后采用三层共挤吹膜机进行吹膜,最终制得含植物多糖的可生物降解快递袋,吹膜温度为165~180℃。
实施例1
一种含植物多糖的可生物降解快递袋的制备方法,包括以下步骤:
1)植物多糖纳米微球的制备:将大葱经过10倍量水煎煮提取2h后,80℃旋转蒸发减压浓缩至1倍水量,用终浓度为75%的乙醇进行沉淀,得粗多糖Ⅰ;取一定量粗多糖Ⅰ,加入0.5倍量水溶解后,得粗多糖Ⅰ水溶液,上D101大孔吸附树脂柱,用5%乙醇进行洗脱,收集洗脱液,75℃旋转蒸发减压浓缩并蒸干,得粗多糖Ⅱ;取一定量粗多糖Ⅱ,加入1倍量水溶解,得粗多糖Ⅱ水溶液;将聚乳酸用1倍量三氯甲烷溶解,搅拌粗多糖Ⅱ水溶液的同时逐渐加入等量的三氯甲烷溶解后的聚乳酸,进行乳化分散,55℃减压蒸发去除三氯甲烷,得到植物多糖纳米微球,包封率为73%;
2)改性淀粉制备:将玉米淀粉与甘油按照质量比为100:20放入高速混合机中,90℃加热处理10min,即得改性淀粉;
3)三层共挤吹膜:将三层膜的原料按照配比分别投入双螺杆中进行造粒,内层膜和外层膜的原料聚乳酸、聚己二酸-对苯二甲酸丁二醇酯、植物多糖纳米微球、硬脂酸之间的质量比为60:20:10:2,中层膜的原料聚乳酸、聚己二酸-对苯二甲酸丁二醇酯、改性淀粉、硬脂酸、纳米二氧化硅、二氧化钛之间的质量比为60:20:10:1:1:0.5,内层膜和外层膜的造粒温度为180℃,中层膜的造粒温度为175℃,造粒后采用三层共挤吹膜机进行吹膜,吹膜温度为170℃,最终制得本发明申请含植物多糖的可生物降解快递袋。
实施例2
一种含植物多糖的可生物降解快递袋的制备方法,包括以下步骤:
1)植物多糖纳米微球的制备:将枸杞经过10倍量水煎煮提取2h后,80℃旋转蒸发减压浓缩至1倍水量,用终浓度为75%的乙醇进行沉淀,得粗多糖Ⅰ;取一定量粗多糖Ⅰ,加入0.5倍量水溶解后,得粗多糖Ⅰ水溶液,上D101大孔吸附树脂柱,用5%乙醇进行洗脱,收集洗脱液,75℃旋转蒸发减压浓缩并蒸干,得粗多糖Ⅱ;取一定量粗多糖Ⅱ,加入1倍量水溶解,得粗多糖Ⅱ水溶液;将聚乳酸用1倍量丙酮溶解,搅拌粗多糖Ⅱ水溶液的同时逐渐加入等量的丙酮溶解后的聚乳酸,进行乳化分散,55℃减压蒸发去除丙酮,得到植物多糖纳米微球,包封率为68%;
2)改性淀粉制备:将玉米淀粉与甘油按照质量比为100:30放入高速混合机中,80℃加热处理20min,即得改性淀粉;
3)三层共挤吹膜:将三层膜的原料按照配比分别投入双螺杆中进行造粒,内层膜和外层膜的原料聚乳酸、聚己二酸-对苯二甲酸丁二醇酯、植物多糖纳米微球、环氧大豆油之间的质量比为50:30:15:4,中层膜的原料聚乳酸、聚己二酸-对苯二甲酸丁二醇酯、改性淀粉、环氧大豆油、纳米二氧化硅、二氧化钛之间的质量比为65:20:20:3:2:1,内层膜和外层膜的造粒温度为185℃,中层膜的造粒温度为170℃,造粒后采用三层共挤吹膜机进行吹膜,吹膜温度为175℃,最终制得本发明申请含植物多糖的可生物降解快递袋。
实施例3
一种含植物多糖的可生物降解快递袋的制备方法,包括以下步骤:
1)植物多糖纳米微球的制备:将杜仲经过10倍量水煎煮提取2h后,80℃旋转蒸发减压浓缩至1倍水量,用终浓度为75%的乙醇进行沉淀,得粗多糖Ⅰ;取一定量粗多糖Ⅰ,加入0.5倍量水溶解后,得粗多糖Ⅰ水溶液,上D101大孔吸附树脂柱,用5%乙醇进行洗脱,收集洗脱液,75℃旋转蒸发减压浓缩并蒸干,得粗多糖Ⅱ;取一定量粗多糖Ⅱ,加入1倍量水溶解,得粗多糖Ⅱ水溶液;将聚乳酸用1倍量三氯甲烷溶解,搅拌粗多糖Ⅱ水溶液的同时逐渐加入等量的三氯甲烷溶解后的聚乳酸,进行乳化分散,55℃减压蒸发去除三氯甲烷,得到杜仲植物多糖纳米微球,包封率为79%;
2)改性淀粉制备:将红薯淀粉与环氧菜籽油按照质量比为100:25放入高速混合机中,90℃加热处理10min,即得改性淀粉;
3)三层共挤吹膜:将三层膜的原料按照配比分别投入双螺杆中进行造粒,内层膜和外层膜的原料聚乳酸、聚己二酸-对苯二甲酸丁二醇酯、植物多糖纳米微球、硬脂酸之间的质量比为55:30:15:3,中层膜的原料聚乳酸、聚己二酸-对苯二甲酸丁二醇酯、改性淀粉、硬脂酸、纳米二氧化硅、二氧化钛之间的质量比为55:15:15:2:5:1,内层膜和外层膜的造粒温度为190℃,中层膜的造粒温度为160℃,造粒后采用三层共挤吹膜机进行吹膜,吹膜温度为180℃,最终制得本发明申请含植物多糖的可生物降解快递袋。
实施例4
一种含植物多糖的可生物降解快递袋的制备方法,包括以下步骤:
1)植物多糖纳米微球的制备:将金银花经过10倍量水煎煮提取2h后,80℃旋转蒸发减压浓缩至1倍水量,用终浓度为75%的乙醇进行沉淀,得粗多糖Ⅰ;取一定量粗多糖Ⅰ,加入0.5倍量水溶解后,得粗多糖Ⅰ水溶液,上D101大孔吸附树脂柱,用5%乙醇进行洗脱,收集洗脱液,75℃旋转蒸发减压浓缩并蒸干,得粗多糖Ⅱ;取一定量粗多糖Ⅱ,加入1倍量水溶解,得粗多糖Ⅱ水溶液;将聚乳酸用1倍量二氯甲烷溶解,搅拌粗多糖Ⅱ水溶液的同时逐渐加入等量的二氯甲烷溶解后的聚乳酸,进行乳化分散,55℃减压蒸发去除二氯甲烷,得到金银花植物多糖纳米微球,包封率为80%;
2)改性淀粉制备:将玉米淀粉与甘油按照质量比为100:20放入高速混合机中,90℃加热处理10min,即得改性淀粉;
3)三层共挤吹膜:将三层膜的原料按照配比分别投入双螺杆中进行造粒,内层膜和外层膜的原料聚乳酸、聚己二酸-对苯二甲酸丁二醇酯、金银花植物多糖纳米微球、环氧大豆油之间的质量比为45:25:15:5,中层膜的原料聚乳酸、聚己二酸-对苯二甲酸丁二醇酯、改性淀粉、环氧大豆油、纳米二氧化硅、二氧化钛之间的质量比为45:20:12:2:3:2,内层膜和外层膜的造粒温度为165℃,中层膜的造粒温度为165℃,造粒后采用三层共挤吹膜机进行吹膜,吹膜温度为165℃,最终制得本发明申请含植物多糖的可生物降解快递袋。
实施例5
一种含植物多糖的可生物降解快递袋的制备方法,包括以下步骤:
1)植物多糖纳米微球的制备:将金银花经过10倍量水煎煮提取2h后,80℃旋转蒸发减压浓缩至1倍水量,用终浓度为75%的乙醇进行沉淀,得粗多糖Ⅰ;取一定量粗多糖Ⅰ,加入0.5倍量水溶解后,得粗多糖Ⅰ水溶液,上D101大孔吸附树脂柱,用5%乙醇进行洗脱,收集洗脱液,75℃旋转蒸发减压浓缩并蒸干,得粗多糖Ⅱ;取一定量粗多糖Ⅱ,加入1倍量水溶解,得粗多糖Ⅱ水溶液;将聚乳酸用1倍量二氯甲烷溶解,搅拌粗多糖Ⅱ水溶液的同时逐渐加入等量的二氯甲烷溶解后的聚乳酸,进行乳化分散,55℃减压蒸发去除二氯甲烷,得到金银花植物多糖纳米微球,包封率为82%;
2)改性淀粉制备:将玉米淀粉与甘油按照质量比为100:20放入高速混合机中,90℃加热处理10min,即得改性淀粉;
3)三层共挤吹膜:将三层膜的原料按照配比分别投入双螺杆中进行造粒,内层膜和外层膜的原料聚乳酸、聚己二酸-对苯二甲酸丁二醇酯、植物多糖纳米微球、环氧大豆油之间的质量比为30:45:25:4,中层膜的原料聚乳酸、聚己二酸-对苯二甲酸丁二醇酯、改性淀粉、环氧大豆油、纳米二氧化硅、二氧化钛之间的质量比为30:30:5:5:2:2,内层膜和外层膜的造粒温度为175℃,中层膜的造粒温度为180℃,造粒后采用三层共挤吹膜机进行吹膜,吹膜温度为170℃,最终制得本发明申请含植物多糖的可生物降解快递袋。
对比例1
一种可生物降解快递袋包括内、外层膜和中层膜,内、外层膜的原料由聚乳酸、聚己二酸-对苯二甲酸丁二醇酯、环氧大豆油制成,中层膜的原料是由聚乳酸、聚己二酸-对苯二甲酸丁二醇酯、改性淀粉、环氧大豆油、纳米二氧化硅、二氧化钛制成,其中,内、外层膜中的聚乳酸、聚己二酸-对苯二甲酸丁二醇酯、环氧大豆油之间的质量比为50:35:4,中层膜中的聚乳酸、聚己二酸-对苯二甲酸丁二醇酯、改性淀粉、环氧大豆油、纳米二氧化硅、二氧化钛之间的质量比为50:25:15:4:2:2。
本对比例1可生物降解快递袋制备方法主要包括以下步骤:
(1)改性淀粉制备:取玉米淀粉与甘油质量比为100:20,于高速混合机中90℃加热处理10min,即得改性淀粉;
(2)三层共挤吹膜:内、外层膜原料为聚乳酸、聚己二酸-对苯二甲酸丁二醇酯、环氧大豆油;中层膜原料为聚乳酸、聚己二酸-对苯二甲酸丁二醇酯、改性淀粉、环氧大豆油、纳米二氧化硅、二氧化钛,分别进行造粒后,其中,内、外层膜的造粒温度为175℃,中层膜造粒温度为180℃,然后采用三层共挤吹膜机进行吹膜,吹膜温度为170℃,最终制得可生物降解快递袋。
对比例2
一种含植物多糖的可生物降解快递袋包括内、外层膜和中层膜,内、外层膜的原料由聚乳酸、聚己二酸-对苯二甲酸丁二醇酯、金银花植物多糖、环氧大豆油制成,中层膜的原料是由聚乳酸、聚己二酸-对苯二甲酸丁二醇酯、改性淀粉、环氧大豆油、纳米二氧化硅、二氧化钛制成,其中,内、外层膜中的聚乳酸、聚己二酸-对苯二甲酸丁二醇酯、金银花植物多糖、环氧大豆油之间的质量比为50:35:15:4,中层膜中的聚乳酸、聚己二酸-对苯二甲酸丁二醇酯、改性淀粉、环氧大豆油、纳米二氧化硅、二氧化钛之间的质量比为50:25:15:4:2:2。
本对比例2可生物降解快递袋制备方法主要包括以下步骤:
(1)植物多糖:所选植物为金银花,经过10倍量水煎煮提取2h后,80℃减压浓缩至1倍水量时,用终浓度为75%的乙醇进行沉淀,得粗多糖I。取粗多糖I,加入0.5倍量水溶解后,上D101大孔吸附树脂柱,用5%乙醇进行洗脱,收集洗脱液,75℃减压浓缩并蒸干,得粗多糖II,即为金银花植物多糖;
(2)改性淀粉制备:取玉米淀粉与甘油质量比为100:20,于高速混合机中90℃加热处理10min,即得改性淀粉;
(3)三层共挤吹膜:内、外层膜原料为聚乳酸、聚己二酸-对苯二甲酸丁二醇酯、金银花植物多糖、环氧大豆油;中层膜原料为聚乳酸、聚己二酸-对苯二甲酸丁二醇酯、改性淀粉、环氧大豆油、纳米二氧化硅、二氧化钛,分别进行造粒后,其中,内、外层膜的造粒温度为175℃,中层膜造粒温度为180℃,然后采用三层共挤吹膜机进行吹膜,吹膜温度为170℃,最终制得可生物降解快递袋。
1、力学性能试验效果
分别将各个实施例1~5和对比例1和2制成的样品裁制成15mm*150mm的长方形样条,用万能试验机进行测试,试验速度为200mm/min。对实施例1~5以及对比例1和2制备的可生物降解快递袋进行力学性能检测,结果见下表1。
表1力学性能检测结果
组别 拉伸强度/Mpa 断裂伸长率/%
实施例1 36 379
实施例2 34 418
实施例3 31 361
实施例4 30 385
实施例5 35 390
对比例1 30 368
对比例2 31 375
由表1可知,本实施例1~5制备的一种可生物降解快递袋与对比例1和2制备的可生物降解快递袋相比较,拉伸强度及断裂伸长率均有提高,其中实施例1中拉伸强度比对比例1提高20%,实施例2中断裂伸长率比对比例1提高14%。说明本发明申请的可生物降解快递袋力学性能较优,韧性强。
2、抗菌效果
以金黄色葡萄球菌和大肠埃希菌为受试菌,测试实施例1~5和对比例1和2制备的可生物降解快递袋对受试菌的抑菌效果。分别将1ml浓度为106CFU/ml的金黄色葡萄球菌和大肠杆菌用无菌玻璃棒均匀涂膜于琼脂培养基上,当菌液完全扩散后,用灭菌后的打孔器切下直径为0.5cm的薄膜放于培养基的中心位置,将培养皿倒置培养于37℃恒温培养24h后,测定抑菌圈的直径。结果见表2。
表2抑菌效果试验
Figure BDA0003881607760000131
从表2中抑菌圈直径可以看出,实施例1~5中抑菌圈直径明显大于对比例1,对比例1抑菌效果几乎为0,说明实施例1~5中加入植物多糖纳米微球后,可以明显增强抑菌效果。对比例2抑菌效果与实施例1~5抑菌效果相近,说明植物多糖具有明显抑菌效果。
3、阻隔效果
剪取直径为74mm的试样,置于水蒸气透过率测试仪透湿杯中,使试样平整,测试温度为30,℃相对湿度为90%。对实施例1~5和对比例1和2制备的一种可生物降解快递袋进行水蒸气透过率测试,并对实施例1~5和对比例1和2制备的一种可生物降解快递袋进行吸水率对比试验,内容物为空纸箱(m0),试验条件为将恒温恒湿箱设置为温度40℃,湿度90%,放置5天,称量纸箱重量(m1),计算内容物的吸水率。
吸水率公式为:吸水率(%)=(m1-m0)/m0×100%,结果见下表3。
表3水蒸气透过率测试结果
组别 水蒸气透过率/g·(m<sup>2</sup>·24h)<sup>-1</sup> 吸水率/%
实施例1 290 21
实施例2 310 24
实施例3 306 23
实施例4 299 21
实施例5 305 22
对比例1 415 39
对比例2 478 45
由表3可知,本发明中实施例1~5制备的一种可生物降解的快递袋,水蒸气透过率明显低于对比例1和2,且实施例1比对比例2水蒸气透过率低39%左右,说明本实施例1~5能够更有效地阻隔水蒸气透过,且植物多糖纳米微球能够减弱植物多糖的吸湿性,实施例1比对比例2吸水率降低53%,可有效阻隔水蒸气透过,可见,本发明申请的快递袋阻隔性好。
4、生物降解性能
根据GB/T 19277.1受控堆肥条件下材料最终需氧生物分解能力的测定方法,在模拟的强烈需氧堆肥条件下,在黑暗或弱光下并没有任何影响微生物生长的蒸汽,保持恒温58℃±2℃,连续监测、定期测量试验容器和空白容器产生的二氧化碳量,参比材料是粒度小于20μm的纤维素。
测定其生物降解性能,相对生物降解率(%)=试验材料降解率/参比材料降解率*100%。3个月和4个月时相对生物降解率见下表4。
表4相对生物降解率结果
Figure BDA0003881607760000141
Figure BDA0003881607760000151
由表4可知,本发明中实施例1~5、对比例1和2制备的含植物多糖的可生物降解快递袋,相对生物分解率在3个月时可达到80%,大部分降解,4个月时达到97%,本发明申请的快递袋是可全生物降解的。
以上所述实施例仅是对本发明的优选实施方式的描述,不作为对本发明范围的限定,在不脱离本发明设计精神的基础上,对本发明技术方案作出的各种变形和改造,均应落入本发明的权利要求书确定的保护范围内。

Claims (10)

1.一种含植物多糖的可生物降解快递袋,其特征在于:包括内层膜、外层膜和中层膜,内层膜和外层膜的组份包括聚乳酸、聚己二酸-对苯二甲酸丁二醇酯、植物多糖纳米微球、相容剂,中层膜的组份包括聚乳酸、聚己二酸-对苯二甲酸丁二醇酯、改性淀粉、相容剂、纳米二氧化硅、二氧化钛,其中,内层膜和外层膜中的聚乳酸、聚己二酸-对苯二甲酸丁二醇酯、植物多糖纳米微球、相容剂之间的质量比为(30~60):(20~45):(10~25):(2~5),中层膜中的聚乳酸、聚己二酸-对苯二甲酸丁二醇酯、改性淀粉、相容剂、纳米二氧化硅、二氧化钛之间的质量比为(30~65):(15~30):(5~20):(1~5):(1~5):(0.5~2)。
2.如权利要求1所述的含植物多糖的可生物降解快递袋,其特征在于:所述植物为大葱、枸杞、金银花、杜仲等的一种或几种。
3.如权利要求1所述的含植物多糖的可生物降解快递袋,其特征在于:所述内层膜、外层膜和中层膜中的相容剂为环氧大豆油、硬脂酸中的一种。
4.如权利要求1所述的含植物多糖的可生物降解快递袋,其特征在于:所述改性淀粉由淀粉与塑化剂处理制成,淀粉与塑化剂质量比为100:(20~30)。
5.如权利要求4所述的含植物多糖的可生物降解快递袋,其特征在于:所述塑化剂包括甘油、环氧大豆油、环氧菜籽油、柠檬酸酯等其中的一种。
6.如权利要求1所述的含植物多糖的可生物降解快递袋,其特征在于:所述淀粉为玉米淀粉、红薯淀粉、小麦淀粉等其中的一种。
7.一种如权利要求1所述的含植物多糖的可生物降解快递袋的制备方法,其特征在于:包括以下步骤:
1)植物多糖纳米微球的制备:将所选植物经过10倍量水煎煮提取2h后,80℃旋转蒸发减压浓缩至1倍水量时,用终浓度为75%的乙醇进行沉淀,得粗多糖Ⅰ;取一定量粗多糖Ⅰ,加入0.5倍量水溶解后,得粗多糖Ⅰ水溶液,上D101大孔吸附树脂柱,用5%乙醇进行洗脱,收集洗脱液,75℃旋转蒸发减压浓缩并蒸干,得粗多糖Ⅱ;取一定量粗多糖Ⅱ,加入1倍量水溶解,得粗多糖Ⅱ水溶液;将聚乳酸用1倍量有机溶剂溶解,搅拌粗多糖Ⅱ水溶液的同时逐渐加入等量的有机溶剂溶解后的聚乳酸,进行乳化分散,55℃减压蒸发去除有机溶剂,得到植物多糖纳米微球,包封率为68~82%;
2)改性淀粉制备:将淀粉与塑化剂按照质量比为100:(20~30)放入高速混合机中,80~90℃加热处理10~20min,即得改性淀粉;
3)三层共挤吹膜:将三层膜的原料按照配比分别投入双螺杆中进行造粒,内层膜和外层膜的原料聚乳酸、聚己二酸-对苯二甲酸丁二醇酯、植物多糖纳米微球、相容剂之间的质量比为(30~60):(20~45):(10~25):(2~5),中层膜的原料聚乳酸、聚己二酸-对苯二甲酸丁二醇酯、改性淀粉、相容剂、纳米二氧化硅、二氧化钛之间的质量比为(30~65):(15~30):(5~20):(1~5):(1~5):(0.5~2),内层膜和外层膜的造粒温度为165~190℃,中层膜的造粒温度为160~180℃,造粒后采用三层共挤吹膜机进行吹膜,吹膜温度为165~180℃,最终制得含植物多糖的可生物降解快递袋。
8.如权利要求7所述的含植物多糖的可生物降解快递袋的制备方法,其特征在于:所述有机溶剂为二氯甲烷、三氯甲烷、丙酮等的一种或几种。
9.如权利要求7所述的含植物多糖的可生物降解快递袋的制备方法,其特征在于:所述内层膜和外层膜的造粒温度为185℃,中层膜造粒温度为180℃,吹膜温度为175℃。
10.如权利要求7所述的含植物多糖的可生物降解快递袋的制备方法,其特征在于:所述步骤2)中,改性淀粉由玉米淀粉与甘油处理制成,玉米淀粉与甘油质量比100:20。
CN202211237601.5A 2022-10-10 2022-10-10 一种含植物多糖的可生物降解快递袋及其制备方法 Active CN115534471B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211237601.5A CN115534471B (zh) 2022-10-10 2022-10-10 一种含植物多糖的可生物降解快递袋及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211237601.5A CN115534471B (zh) 2022-10-10 2022-10-10 一种含植物多糖的可生物降解快递袋及其制备方法

Publications (2)

Publication Number Publication Date
CN115534471A true CN115534471A (zh) 2022-12-30
CN115534471B CN115534471B (zh) 2024-05-10

Family

ID=84733410

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211237601.5A Active CN115534471B (zh) 2022-10-10 2022-10-10 一种含植物多糖的可生物降解快递袋及其制备方法

Country Status (1)

Country Link
CN (1) CN115534471B (zh)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5700848A (en) * 1991-10-29 1997-12-23 Vivorx Inc. Gel compositions prepared from crosslinkable polysaccharides, polycations and/or lipids and uses therefor
US20060013886A1 (en) * 2004-06-28 2006-01-19 Daqing Wu Injectable microspheres
CN1980640A (zh) * 2004-05-12 2007-06-13 巴克斯特国际公司 核酸微球体,其制备和递送
CN101461786A (zh) * 2009-01-08 2009-06-24 上海交通大学 用水包油-油包固体制备的pla/plga壳-核微球及其制备方法
CN101889985A (zh) * 2010-07-08 2010-11-24 东华大学 一种载药纳米微球及其制备方法
US20110318420A1 (en) * 2009-08-31 2011-12-29 Xi'an Libang Pharmaceutical Technology Co., Ltd. Fulvestrant nanosphere/microsphere and preparative method and use thereof
CN103319733A (zh) * 2013-06-13 2013-09-25 广东药学院 一种微乳液制备聚糖-阴离子多糖复合物纳米微球的方法
CN103784410A (zh) * 2014-01-27 2014-05-14 河南农业大学 一种板蓝根多糖mpeg-pla聚合物微球制备方法
CN104231246A (zh) * 2014-06-17 2014-12-24 沈阳药科大学 普鲁兰多糖为主链的梳状两亲性聚合物、合成工艺及其应用
US20170007626A1 (en) * 2015-07-10 2017-01-12 Warsaw Orthopedic, Inc. Slow release oxysterols and methods of use
CN107362392A (zh) * 2017-07-18 2017-11-21 福州大学 一种纳米羟基磷灰石/羧甲基壳聚糖/聚乳酸羟基乙酸微纳杂化载药支架及其仿生制备方法
CN108002923A (zh) * 2017-12-28 2018-05-08 北京亿纳夫科技有限公司 一种植物生态肥料预混剂及其制备方法
JP2019163310A (ja) * 2017-03-29 2019-09-26 バルネバ オーストリア ジーエムビーエイチ C.ディフィシルの毒素aおよび毒素bタンパク質の単離ポリペプチドならびにその使用
CN113561590A (zh) * 2020-04-29 2021-10-29 广州市同源塑料制品有限公司 一种厌氧发酵共挤降解袋及制备方法
CN114393901A (zh) * 2021-12-14 2022-04-26 山东哈工生物科技有限公司 一种可降解果蔬保鲜膜及其制备方法
US20220274386A1 (en) * 2021-02-26 2022-09-01 Ehsan Behzadfar Additive free fabrication of polymeric composites with delayed and reduced dripping
CN116813942A (zh) * 2023-07-20 2023-09-29 湖南伊西斯生物科技有限公司 一种微流控技术制备聚乳酸微球的方法

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5700848A (en) * 1991-10-29 1997-12-23 Vivorx Inc. Gel compositions prepared from crosslinkable polysaccharides, polycations and/or lipids and uses therefor
CN1980640A (zh) * 2004-05-12 2007-06-13 巴克斯特国际公司 核酸微球体,其制备和递送
US20060013886A1 (en) * 2004-06-28 2006-01-19 Daqing Wu Injectable microspheres
CN101461786A (zh) * 2009-01-08 2009-06-24 上海交通大学 用水包油-油包固体制备的pla/plga壳-核微球及其制备方法
US20110318420A1 (en) * 2009-08-31 2011-12-29 Xi'an Libang Pharmaceutical Technology Co., Ltd. Fulvestrant nanosphere/microsphere and preparative method and use thereof
CN101889985A (zh) * 2010-07-08 2010-11-24 东华大学 一种载药纳米微球及其制备方法
CN103319733A (zh) * 2013-06-13 2013-09-25 广东药学院 一种微乳液制备聚糖-阴离子多糖复合物纳米微球的方法
CN103784410A (zh) * 2014-01-27 2014-05-14 河南农业大学 一种板蓝根多糖mpeg-pla聚合物微球制备方法
CN104231246A (zh) * 2014-06-17 2014-12-24 沈阳药科大学 普鲁兰多糖为主链的梳状两亲性聚合物、合成工艺及其应用
US20170007626A1 (en) * 2015-07-10 2017-01-12 Warsaw Orthopedic, Inc. Slow release oxysterols and methods of use
JP2019163310A (ja) * 2017-03-29 2019-09-26 バルネバ オーストリア ジーエムビーエイチ C.ディフィシルの毒素aおよび毒素bタンパク質の単離ポリペプチドならびにその使用
CN107362392A (zh) * 2017-07-18 2017-11-21 福州大学 一种纳米羟基磷灰石/羧甲基壳聚糖/聚乳酸羟基乙酸微纳杂化载药支架及其仿生制备方法
CN108002923A (zh) * 2017-12-28 2018-05-08 北京亿纳夫科技有限公司 一种植物生态肥料预混剂及其制备方法
CN113561590A (zh) * 2020-04-29 2021-10-29 广州市同源塑料制品有限公司 一种厌氧发酵共挤降解袋及制备方法
US20220274386A1 (en) * 2021-02-26 2022-09-01 Ehsan Behzadfar Additive free fabrication of polymeric composites with delayed and reduced dripping
CN114393901A (zh) * 2021-12-14 2022-04-26 山东哈工生物科技有限公司 一种可降解果蔬保鲜膜及其制备方法
CN116813942A (zh) * 2023-07-20 2023-09-29 湖南伊西斯生物科技有限公司 一种微流控技术制备聚乳酸微球的方法

Also Published As

Publication number Publication date
CN115534471B (zh) 2024-05-10

Similar Documents

Publication Publication Date Title
Krishnamurthy et al. Synthesis and characterization of eco-friendly bioplastic from low-cost plant resources
CN1036140C (zh) 植物纤维素薄膜制品及其制备工艺
Yun et al. Preparation of chitosan/polyvinyl alcohol blended films containing sulfosuccinic acid as the crosslinking agent using UV curing process
Nigam et al. Synthesis, characterization and biodegradation of bioplastic films produced from Parthenium hysterophorus by incorporating a plasticizer (PEG600)
KR101184750B1 (ko) 폴리비닐알코올 및 셀룰로오스계 고분자를 혼합한 분해도가 조절된 혼합 생분해성 고분자 필름 및 이의 제조방법
Singha et al. Effects of plasticizer/cross-linker on the mechanical and thermal properties of starch/PVA blends
Hindi et al. Synthesis, characterization and biodegradation of gum arabic-based bioplastic membranes
CN115651376B (zh) 一种用于可循环使用包装产品的可堆肥抗菌材料及其制备方法
CN114393901A (zh) 一种可降解果蔬保鲜膜及其制备方法
Carofiglio et al. Novel PHB/Olive mill wastewater residue composite based film: Thermal, mechanical and degradation properties
CN112442262A (zh) 二氧化钛改性可生物降解复合材料及其制备方法和应用
CN113185819A (zh) 绿色可生物降解的塑料薄膜及其节能加工工艺
Olonisakin et al. The development of biodegradable PBAT-lignin-tannic acid composite film: Properties, biodegradability, and potential barrier application in food packaging
Ao et al. Preparation, properties and field application of biodegradable and phosphorus-release films based on fermentation residue
CN105646922A (zh) 一种可得然胶季铵盐/聚乙烯醇凝胶薄膜及其抑菌应用
CN108276792A (zh) 一种含牛粪的可降解保温地膜及其制造方法
Baite et al. Synthesis of lignin from waste leaves and its potential application for bread packaging: A waste valorization approach
Tang et al. Preparation and characterization of eco-friendly polysaccharide-based liquid mulch with soil amendment function
Pooja et al. An insight on sources and biodegradation of bioplastics: a review
CN115534471B (zh) 一种含植物多糖的可生物降解快递袋及其制备方法
CN113278262A (zh) 一种银黑双色生物降解农膜及其制备方法
CN113292865A (zh) 一种植物纤维基复合材料及其制备方法和应用
AbdulRasheed-Adeleke et al. Effect of acetic anhydride and citric acid modification on biodegradability of cassava starch nanocomposite films
Nasution et al. The role of betel (Piper betle) leaf extract and glycerol on physical properties of bioplastic based on sago starch
Afolabi et al. Mechanical and biodegradability properties of hydroxypropyl and cross-linked starch-Low density polyethylene (LDPE) Composite

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant