CN115518198B - 一种负载双向梯度ecm涂层的血管修复支架及其制备方法 - Google Patents

一种负载双向梯度ecm涂层的血管修复支架及其制备方法 Download PDF

Info

Publication number
CN115518198B
CN115518198B CN202211238883.0A CN202211238883A CN115518198B CN 115518198 B CN115518198 B CN 115518198B CN 202211238883 A CN202211238883 A CN 202211238883A CN 115518198 B CN115518198 B CN 115518198B
Authority
CN
China
Prior art keywords
ecm
gradient
coating
vascular repair
gelatin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211238883.0A
Other languages
English (en)
Other versions
CN115518198A (zh
Inventor
吴桐
王元非
周子艺
柴清东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University
Original Assignee
Qingdao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University filed Critical Qingdao University
Priority to CN202211238883.0A priority Critical patent/CN115518198B/zh
Publication of CN115518198A publication Critical patent/CN115518198A/zh
Application granted granted Critical
Publication of CN115518198B publication Critical patent/CN115518198B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/222Gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/34Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/507Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials for artificial blood vessels
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/76Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres otherwise than in a plane, e.g. in a tubular way
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0011Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using non-woven fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0015Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using fibres of specified chemical or physical nature, e.g. natural silk
    • D06N3/0036Polyester fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/12Nanosized materials, e.g. nanofibres, nanoparticles, nanowires, nanotubes; Nanostructured surfaces

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Dermatology (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Vascular Medicine (AREA)
  • Dispersion Chemistry (AREA)
  • Prostheses (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明属于血管修复支架技术领域,特别涉及一种负载双向梯度蛋白涂层的血管修复支架及其制备方法,将ECM/明胶喷雾液进行静电喷雾,以聚己内酯纤维支架作为接收装置,在接收装置下方更换不同宽度的条形磁铁来逐层制备梯度,即得负载双向梯度ECM涂层的血管修复支架;以取向聚己内酯的拓扑结构支架为接触线索,涂覆双向细胞外基质(ECM)生物活性蛋白涂层,通过将拓扑结构信号和生物信号结合到血管支架材料中,能够诱导内皮细胞的爬起和迁移,促进内皮细胞的取向排列和渗透生长;其具有优良的生物相容性及力学性能,尤其具有促进细胞长入的潜能,在创面修复再生组织工程中有重要的应用,为纳米纤维的功能化提供了新思路。

Description

一种负载双向梯度ECM涂层的血管修复支架及其制备方法
技术领域:
本发明属于血管修复支架技术领域,特别涉及一种负载双向梯度蛋白涂层的血管修复支架及其制备方法。
背景技术:
再生医学领域中最有趣的挑战之一是生产合成的血管移植物,以替代受创伤和/或疾病损伤的动脉或静脉。事实上,每年对血管移植都有很大的需求。心血管疾病对全世界人类造成了严重的健康问题和经济负担。自体血管移植是目前小口径血管重建的金标准治疗选择;然而,它们的使用受到具有足够质量、大小和长度的移植物的可用性的限制,在血管临床治疗过程中,该方法面临着各种局限性,特别是长度不匹配、大小不一致和发病率高等。
目前,由于人工血管支架的形状、大小、长度和成分可控,已逐渐成为修复受损血管的理学替代品。细胞增殖对于血管再生是非常重要的一个方面,因此理想的人工血管移植物首先应具有与体内血管相似的结构组成,通过支架拓扑结构可以诱导细胞迁移增殖。其次,它应具有良好的生物相容性,无血栓形成性和无免疫原性,能够促进新生血管层的快速形成。此外,还应具有促进细胞生长能力。然而,仅通过物理方式来调节细胞活动,不足以及时诱导组织再生,并且再生效果不明显,需将物理特征与生化线索结合,提供接触线索,尤其是通过支架拓扑结构的诱导和生物活性蛋白信号趋化性的协同作用。
据报道内皮祖细胞(EPCs)是一种主要来源于骨髓的细胞群,在外周血中循环,在病理条件下聚集到损伤部位,促进血管修复。EPCs通过旁分泌形式来触发一系列血管生成事件,从而促进新生血管的形成,这使得EPCs成为血管生成有吸引力的候选药物。
细胞外基质(ECM)是复杂的结构体,其围绕并支持在哺乳动物或人体组织中发现的细胞。哺乳动物或人体组织的ECM包括结构蛋白(胶原蛋白和弹性蛋白)、特异性(specialized)蛋白(原纤维蛋白、纤连蛋白和层粘连蛋白)以及蛋白多糖。主要的纤维结构蛋白胶原蛋白和弹性蛋白负责组织强度和弹性,并在促进细胞生长和分化中起显著的作用。因此,ECM在人体组织中有着重要的作用。
目前还未发现关于负载双向梯度蛋白涂层的血管修复支架的报道。
发明内容:
本发明的目的是为了克服现有技术存在的缺点,提供一种负载双向梯度蛋白涂层的血管修复支架的制备方法,该方法制备血管支架的生物材料具有多功能性和优良的生物相容性,在血管修复组织工程中将会有重要的应用。
为了实现上述目的,本发明提供一种负载双向梯度ECM涂层的血管修复支架,其主体结构为天然或合成聚合物纤维支架上负载双向梯度ECM涂层,双向梯度指的是涂层厚度从支架中间分别向两端递减;所述聚合物为聚己内酯或明胶。
本发明还提供一种负载双向梯度ECM涂层的血管修复支架的制备方法,具体步骤包括:
(1)收集ECM,将10×104个HUVECs内皮细胞接种于大皿中,添加条件培养基后于37°含5%CO2的培养箱进行孵育,于第三天收集培养内皮细胞的条件培养基,冻干成粉末状,即得ECM,于-80°保存;
(2)将天然或合成聚合物溶于溶剂中,得到聚合物纺丝液;所述聚合物为聚己内酯(PCL)或明胶;
(3)将ECM与明胶溶于溶剂中,得到细胞外基质/明胶喷雾液;
(4)将聚合物纺丝液作为血管支架的原材料,通过传统静电纺丝方式,高速滚筒作为接收装置,即得取向的聚合物纤维支架;将ECM/明胶喷雾液进行静电喷雾,纤维支架作为接收装置,在接收装置下方更换不同宽度的条形磁铁,即得负载双向梯度ECM涂层的血管修复支架。
所述步骤(2)中溶剂为六氟异丙醇,聚己内酯与六氟异丙醇的质量体积比为0.12g:1mL。
所述步骤(3)中溶剂为乙酸和去离子水的混合液,ECM和明胶的总质量与溶剂的体积比为0.02g:1mL;ECM与明胶的重量比为2:3。
所述步骤(2)中静电纺丝的电压为10kV,流速为1mL/h,持续时间为2小时,采用高速滚筒作为接收装置,转速为2500rmp。
所述步骤(3)中静电喷雾ECM喷雾液的电压为18kV,流速为0.3mL/h,每种梯度持续时间为30s,共5种梯度。
本发明还提供所述负载双向梯度ECM涂层的血管修复支架在血管修复中的应用,能促进细胞的增殖。
本发明设计了一款双向梯度蛋白涂层的生物血管支架,以取向聚己内酯(PCL)的拓扑结构支架为接触线索,涂覆双向细胞外基质(ECM)生物活性蛋白涂层,可通过物理和化学方式进一步诱导细胞的迁移,ECM还有加速内皮细胞增殖的作用,完成了破损血管的生理性修复。本发明提出的双向梯度涂层的生物血管支架概念模型,主要探究收集内皮细胞的有效旁分泌产物对生成血管及重建的作用,在组织工程修复中具有重要的研究意义和应用价值。
本发明与现有技术相比,有益效果如下:
(1)本发明首次选取类似于人体天然材料ECM和具有良好的生物相容性的聚合物材料PCL作为基础材料,制备具有梯度的生物活性蛋白的血管修复支架。通过将拓扑结构信号和生物信号结合到血管支架材料中,能够诱导内皮细胞的爬起和迁移,促进内皮细胞的取向排列和渗透生长。
(2)本发明设计的双向梯度活性蛋白涂层的生物血管支架具有优良的生物相容性及力学性能,尤其具有促进细胞长入的潜能,在创面修复再生组织工程中有重要的应用,为纳米纤维的功能化提供了新思路。
附图说明:
图1为本发明涉及的实施例1收集ECM的最优条件筛选实验结果示意图。
图2为本发明涉及的实施例1制备的PCL支架和负载双向梯度ECM涂层的支架电镜表征示意图。A为取向PCL支架电镜图,B为负载双向梯度ECM涂层的支架电镜图。
图3为本发明实施例1利用染料验证ECM涂层是否为双向梯度的荧光显微镜梯度量化实验结果示意图。
图4为本发明涉及的实施例4内皮细胞在负载双向梯度ECM涂层的血管修复支架表面生长1、3、5天的细胞增殖情况。
图5为本发明涉及的实施例5内皮细胞在负载双向梯度ECM涂层的取向纤维支架表面生长3天后细胞迁移情况实验结果示意图,其中A-D为细胞生长3天后细胞迁移状况的荧光显微镜照片(A图为Glass组;B图为Blank组;C图为Gradient组;D图Uniform组;E图为总细胞数;F图为三个区域细胞数的统计。
图6为本发明涉及的实施例5内皮细胞在双向梯度ECM涂层的取向纤维支架生长3天后细胞骨架荧光显微镜结果示意图,其中A图为Glass组;B图为Blank组;C图为Gradient组;D图为Uniform组。
图7为本发明涉及的实施例1制备好的负载双向梯度蛋白涂层的生物活性血管修复支架卷成管状的实物图。
具体实施方式:
下面结合具体实施例并结合附图对本发明作进一步说明。
实施例1:
本实施例涉及ECM的收集,用人脐静脉血管内皮细胞(HUVECs)旁分泌的营养物质作为原材料,主要用于血管重建,加速血管类细胞(血管内皮细胞、血管平滑肌细胞等)的快速迁移和增殖,修复血管。
ECM的收集方法为:在37°、5%CO2恒温细胞培养箱中,人脐静脉血管内皮细胞系在条件培养基(按体积比10%胎牛血清+90%高糖培养基+1%青霉素-链霉素)中分泌ECM,挑选最优参数(培养天数、细胞数量)来收集培养HUVECs的条件培养基,分别将20×104个HUVECs培养3天、10×104个HUVECs培养3、5、7天后收集培养HUVECs的4种条件培养基,此时HUVECs旁分泌的营养物质已在条件培养基中;将所收集的条件培养基冻干处理,即得细胞外基质(ECM),-80°保存。
将40mg冻干的ECM与20mg明胶溶解于400μL去离子水与1600μL乙酸混合液中,作为静电喷雾液,24孔板玻片作为接收装置,设置流速为0.4mL/h,电压为25kV,接受距离为15cm,进行静电喷雾;使用CCK-8试剂盒检测这四种不同参数的样品对内皮细胞增殖的情况(1、3、5天),通过吸光度数值的大小可以反映细胞的生长状况,结果如图1所示。由图1的数据结果可得,在1、3、5天中,10×104个内皮细胞培养3天所收集的条件培养基所制备的静电喷雾微粒对内皮细胞增殖效果最好,此参数所收集的ECM作为后续实验的原料。
实施例2:
本实施例涉及一种负载双向梯度ECM涂层的血管修复支架的制备方法,具体步骤包括:
(1)制备PCL纤维支架:
先用电子天平称取质量为0.6g的PCL,将0.6g的PCL溶于5mL六氟异丙醇中,磁力搅拌至完全溶解,得PCL纺丝液;
然后取5mL的PCL纺丝液,高速滚筒(2500rmp)作为接收装置,将PCL纺丝液吸入5mL注射器中,连接20号不锈钢针头并与10kV高压相连接,流速为1mL/h,持续时间为3h,得到高度取向的PCL纳米纤维支架;
(2)制备双向梯度ECM涂层:
先将0.06g的明胶和0.04g实施例1收集的内皮细胞细胞外基质(ECM)共同溶于1.4mL去离子水与600μL乙酸的混合液中,磁力搅拌至完全溶解,得明胶/细胞外基质混合液;
然后取2mL的明胶/细胞外基质混合液,通过静电喷雾方式,将混合液吸入2mL注射器中,连接18号不锈钢针头并与18kV高压相连接,控制微量注射泵调节混合液流速(mL/h)为0.3mL/h,将实施例1的PCL纳米纤维支架作为接收装置,在支架下方从中间向两边分别依次放置长度20mm×宽度分别为4/8/12/16mm的条形磁铁,最后一层不加磁铁,进行逐层静电喷雾,每层持续时间为30s,得到负载双向梯度ECM涂层的血管修复支架,即为生物活性血管修复支架。
本实施例对步骤(1)制得的PCL纳米纤维支架进行扫描电镜表征,结果如图2A所示。由图2A可以看出,PCL纳米纤维支架呈取向性,纤维直径在800nm左右。
本实施例对制得的负载双向梯度ECM涂层的血管修复支架进行电镜表征,如图2B所示。由图2B可见静电喷雾的ECM微粒分布在PCL纳米纤维支架表面。
为了检测ECM梯度是否为双向梯度,本实施例将步骤(2)的明胶/细胞外基质混合液中混入罗丹明B染料(染微粒为红色),用上述方法制备负载ECM涂层及染料的血管修复支架,在荧光显微镜下进行不同梯度位置的荧光强度表征,最后通过imageJ软件进行荧光强度表征,结果如图3所示。从图3可以看出,支架的荧光强度从中间向两端分别逐渐降低,说明ECM微粒在PCL支架上的厚度从中间向两端逐渐降低,ECM微粒呈双向梯度分布。
实施例3:
本实施例涉及一种负载双向梯度PLGA涂层接枝ECM微粒的血管修复支架的制备方法,具体步骤为:
(1)制备PCL纤维支架:
先用电子天平称取质量为0.6g的PCL,将0.6g的PCL溶于5mL六氟异丙醇中,磁力搅拌至完全溶解,得PCL纺丝液;
然后取5mL的PCL纺丝液,高速滚筒(2500rmp)作为接收装置,将PCL纺丝液吸入5mL注射器中,连接20号不锈钢针头并与10kV高压相连接,流速为1mL/h,持续时间为3h,得到高度取向的PCL纳米纤维支架;
(2)制备双向梯度PLGA微球涂层:
先将0.08g的聚乳酸-羟基乙酸共聚物(PLGA)溶于2mL的六氟异丙醇,磁力搅拌至完全溶解,得PLGA喷雾液;
然后取2mL的PLGA喷雾液,通过静电喷雾方式,将PLGA喷雾液吸入2mL注射器中,连接18号不锈钢针头并与18kV高压相连接,控制微量注射泵调节喷雾液流速(mL/h)为0.3mL/h,步骤(1)制得的PCL取向支架作为接收装置,在支架下方从中间向两边分别依次放置长度20mm×宽度分别为4/8/12/16mm的条形磁铁来逐层制备梯度,最后一层不加磁铁,每层持续时间为30s,得到负载双向梯度PLGA微球涂层的取向纳米纤维支架;
(3)制备ECM涂层:
先将0.06g的明胶和0.04g的ECM共同溶于1.4mL的去离子水及600μL乙酸混合,磁力搅拌至完全溶解,得明胶/ECM喷雾液;
然后通过静电喷雾方式,将明胶/ECM喷雾液吸入2mL注射器,连接18号不锈钢针头并与18kV电压相连接,控制注射泵调节混合液流速为0.3mL/h,将步骤(2)制得的支架通过等离子体处理3min后,作为接收装置,在支架下方从中间向两边分别依次放置长度20mm×宽度分别为4/8/12/16mm的条形磁铁来逐层制备梯度,最后一层不加磁铁,每层持续时间为30s,得负载双向梯度PLGA涂层接枝ECM微粒的血管修复支架,即为生物活性血管修复支架。
实施例4:
本实施例为实施例1制得的负载双向梯度ECM涂层的血管修复支架对细胞增殖的影响实验。使用CCK-8试剂盒检测HUVECs在不同样品上的增殖情况,在使用CCK-8试剂盒的检测中,通过吸光度数值的大小可以反映细胞的生长状况。具体为:首先将HUVECs细胞种植在以下几组样品上:实施例1的负载双向梯度ECM涂层的血管修复支架(Gradient)、具有均一ECM涂层的PCL纳米纤维支架(Uniform)以及无ECM涂层的PCL纳米纤维支架(Blank),并将空白玻璃(Glass)作为对照组,细胞种植浓度为1×104细胞/mL;分别培养1、3、5天检测细胞的增殖情况;每组加入含有10%CCK-8试剂的完全培养基400μL;4h后,每组100μL移至96孔板,用酶标仪检测450nm处的吸光度,结果如图4所示。
从图4可以看出,,无论培养时间如何,在负载双向梯度ECM涂层的血管修复支架或具有均一ECM涂层的PCL纳米纤维支架上,细胞增殖相对于无ECM涂层的PCL纳米纤维支架更好。当细胞增殖到3天和5天时,Gradient组的细胞增殖显著大于Blank组的细胞增殖。这些发现表明,包覆ECM蛋白的纳米纤维支架确实可以提高细胞的增殖和活力,这主要是由于ECM本身就是HUVECs旁分泌的营养物质。随着时间的延长,在覆盖ECM的梯度或均匀涂层的支架上,细胞增殖较Blank组更好,具有显著性差异。当细胞增殖到第5天时,Gradient组的细胞增殖量显著大于Uniform组的细胞,这是由于梯度ECM蛋白涂层给了一个生化信号,更能够促进细胞的增殖。
所述具有均一ECM涂层的PCL纳米纤维支架的制备方法与实施例1不同的是,静电喷雾是,在PCL取向支架的接收装置下不加磁铁,制成具有均一ECM涂层的PCL纳米纤维支架。
实施例5:
本实施例为负载双向梯度ECM涂层的血管修复支架对HUVECs迁移的影响实验,该实验使用实施例1制备的负载双向梯度ECM涂层的血管修复支架。实验过程为:实验分为以下几组:实施例1的负载双向梯度ECM涂层的血管修复支架(Gradient)、具有均一ECM涂层的PCL纳米纤维支架(Uniform)以及无ECM涂层的PCL纳米纤维支架(Blank),并将空白玻璃(Glass)作为对照组;将上述三种支架及对照组分别放入24孔板中,24孔板中每孔中的中心部位放置一个长20mm×宽12mm的聚二甲基硅氧烷(PDMS)方形体,将HUVECs细胞分别均匀种植到PDMS方形体的两侧空白区域,细胞种植浓度为5×104细胞/mL;加入含1%胎牛血清的完全培养基并确保PDMS不漂浮,粘附牢靠;待细胞粘附6h后,移除PDMS方形体,允许细胞开始迁移。细胞迁移3天后对各组进行荧光显微镜下拍摄(结果如图5A-D所示)并统计荧光图片中各组细胞总数量及三个区域的细胞数量,结果如图5E-F所示。
从图5A-D可以看出,在Gradient组涂有双向梯度ECM蛋白的PCL纳米纤维支架上,细胞均匀的分布于整个迁移区,由此可知,ECM蛋白梯度生化信号协同取向PCL纳米纤维支架提供的地形线索能够诱导细胞向蛋白含量高的地方迁移。从图5E-5F来看,全区域细胞计数中可见Gradient组的细胞数量明显高于其他几组且具有显著性差异;在分区域细胞计数中,区域一中Uniform组的细胞数量高于Gradient组,这可能是由于ECM涂层给予细胞生化诱导加速迁移,在区域二和三中,Gradient组的细胞数明显高于其他三组。
实施例6:
本实施例为内皮细胞在负载双向梯度ECM涂层的血管修复支架上生长3天后对细胞骨架的影响实验。将实验分为以下几组:实施例1的负载双向梯度ECM涂层的血管修复支架(Gradient组)、具有均一ECM涂层的PCL纳米纤维支架(Uniform组)以及无ECM涂层的PCL纳米纤维支架(Blank组),并将空白玻璃(Glass)作为对照组;HUVECs细胞分别接种于以上四组,培养3天后,不同组HUVECs进行细胞骨架与细胞核染色,细胞骨架用Alexa Fluor488phalloidin染料进行染色,细胞核用DAPI进行染色;具体染色步骤为:将四组不同的材料与HUVECs细胞浸润在4%的多聚甲醛中固定30min,0.1%的TritonX-100通透5min,含5%BSA的PBS溶液封闭1h。将Alexa Fluor 488phalloidin染料用含5%BSA的PBS溶液稀释1000倍,将样品及样品上的细胞浸润在染色液中30min;DAPI染样品细胞核5min;每个过程中均用PBS冲洗三遍。最后将样品放置Nikon正置显微镜下观察,结果如图6所示。
从6A-D可见Gradient组、Uniform组及Blank组的细胞骨架拉伸较对照组明显,且细胞形态好,肌动蛋白明显。说明Blank、Gradient、Uniform组的PCL纳米纤维对细胞骨架起到拉伸铺展,更好的利于细胞贴合。

Claims (3)

1.一种负载双向梯度ECM涂层的血管修复支架的制备方法,其特征在于,具体步骤包括:
(1)以天然或合成聚合物为原料,通过静电纺丝方法,制备取向的聚合物纳米纤维支架;
(2)将ECM/明胶喷雾液进行静电喷雾,以纤维支架作为接收装置,在接收装置下方更换不同宽度的条形磁铁来逐层制备梯度,即得负载双向梯度ECM涂层的血管修复支架;双向梯度指的是涂层厚度从支架中间分别向两端递减;所述聚合物为聚己内酯或明胶;
所述ECM的制备方法为:将10×104个HUVECs内皮细胞接种于大皿中,添加条件培养基后于37℃含5%CO2的培养箱进行孵育,于第三天收集培养内皮细胞旁分泌后的条件培养基,冻干成粉末状,即得ECM;所述ECM/明胶喷雾液的制备方法为:将ECM与明胶溶于溶剂中,溶剂为乙酸和去离子水的混合液,ECM和明胶的总质量与溶剂的体积比为0.02 g:1mL; ECM与明胶的重量比为2:3;
在ECM/明胶喷雾液进行静电喷雾前,以纤维支架为接收装置,静电喷雾制备双向梯度的聚乳酸-羟基乙酸共聚物微球涂层,然后在以负载双向梯度PLGA微球涂层的取向纳米纤维支架为接收装置,静电喷雾制备负载双向梯度ECM微粒的血管修复支架。
2.根据权利要求1所述的负载双向梯度ECM涂层的血管修复支架的制备方法,其特征在于,步骤(1)中静电纺丝的参数为:电压为10 kV,流速为1 mL/h,持续时间为2小时,采用高速滚筒作为接收装置,转速为2500 rmp。
3.根据权利要求1或2任一所述的负载双向梯度ECM涂层的血管修复支架的制备方法,其特征在于,步骤(2)中静电喷雾的参数为:电压为18 kV,流速为0.3 mL/h,每种梯度持续时间为30 s。
CN202211238883.0A 2022-10-11 2022-10-11 一种负载双向梯度ecm涂层的血管修复支架及其制备方法 Active CN115518198B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211238883.0A CN115518198B (zh) 2022-10-11 2022-10-11 一种负载双向梯度ecm涂层的血管修复支架及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211238883.0A CN115518198B (zh) 2022-10-11 2022-10-11 一种负载双向梯度ecm涂层的血管修复支架及其制备方法

Publications (2)

Publication Number Publication Date
CN115518198A CN115518198A (zh) 2022-12-27
CN115518198B true CN115518198B (zh) 2024-01-16

Family

ID=84701823

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211238883.0A Active CN115518198B (zh) 2022-10-11 2022-10-11 一种负载双向梯度ecm涂层的血管修复支架及其制备方法

Country Status (1)

Country Link
CN (1) CN115518198B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1376067A (zh) * 1999-05-14 2002-10-23 先进组织科学公司 条件细胞培养基组合物及其应用方法
WO2008003320A2 (en) * 2006-07-05 2008-01-10 Region Midtjylland Three-dimensional cell scaffolds
CN101548916A (zh) * 2009-05-08 2009-10-07 乐普(北京)医疗器械股份有限公司 一种携载细胞外基质的医疗器械及其制备方法
CN102482698A (zh) * 2009-07-10 2012-05-30 希斯托金公司 条件培养基和来自低氧含量条件下培养的细胞的胞外基质组合物
CN106730030A (zh) * 2017-03-13 2017-05-31 南开大学 以熔融纺丝纤维为骨架体内构建工程化动脉血管的方法
CN108210997A (zh) * 2016-12-13 2018-06-29 中国人民武装警察部队后勤学院 一种仿生骨支架及其制备方法
CN108310467A (zh) * 2018-04-17 2018-07-24 华中科技大学同济医学院附属协和医院 一种组装型细胞衍生细胞外基质膜复合骨修复材料及其制备方法和应用
CN110201223A (zh) * 2019-03-26 2019-09-06 南开大学 一种合成高分子与天然细胞外基质复合材料、人工血管及其制备方法
CN111714706A (zh) * 2020-05-08 2020-09-29 领博生物科技(杭州)有限公司 可促进血管细胞增殖和分泌细胞外基质的血管支架、血管支架的制备方法及活性人工血管
CN113797393A (zh) * 2021-09-26 2021-12-17 青岛大学附属医院 一种功能一体化的多层级皮肤创面修复支架及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2085057B1 (en) * 2006-11-20 2016-10-12 Lepu Medical Technology (Beijing) CO., LTD. Vessel stent with multi drug-coatings
US20090238853A1 (en) * 2008-03-21 2009-09-24 3D Biotek, Llc Hybrid Biomedical Device Fabricated From Biomaterials and Coated With a Natural Extra Cellular Matrix (ECM) Coating

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1376067A (zh) * 1999-05-14 2002-10-23 先进组织科学公司 条件细胞培养基组合物及其应用方法
WO2008003320A2 (en) * 2006-07-05 2008-01-10 Region Midtjylland Three-dimensional cell scaffolds
CN101548916A (zh) * 2009-05-08 2009-10-07 乐普(北京)医疗器械股份有限公司 一种携载细胞外基质的医疗器械及其制备方法
CN102482698A (zh) * 2009-07-10 2012-05-30 希斯托金公司 条件培养基和来自低氧含量条件下培养的细胞的胞外基质组合物
CN108210997A (zh) * 2016-12-13 2018-06-29 中国人民武装警察部队后勤学院 一种仿生骨支架及其制备方法
CN106730030A (zh) * 2017-03-13 2017-05-31 南开大学 以熔融纺丝纤维为骨架体内构建工程化动脉血管的方法
CN108310467A (zh) * 2018-04-17 2018-07-24 华中科技大学同济医学院附属协和医院 一种组装型细胞衍生细胞外基质膜复合骨修复材料及其制备方法和应用
CN110201223A (zh) * 2019-03-26 2019-09-06 南开大学 一种合成高分子与天然细胞外基质复合材料、人工血管及其制备方法
CN111714706A (zh) * 2020-05-08 2020-09-29 领博生物科技(杭州)有限公司 可促进血管细胞增殖和分泌细胞外基质的血管支架、血管支架的制备方法及活性人工血管
CN113797393A (zh) * 2021-09-26 2021-12-17 青岛大学附属医院 一种功能一体化的多层级皮肤创面修复支架及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
人脂肪间充质干细胞条件培养基冻干粉促进皮肤成纤维细胞迁移、细胞外基质合成和抑制巨噬细胞炎症;陈应炉;宋晓乐;雷继刚;任程洁;戴成祥;;中国医药生物技术(第05期);全文 *
蛛丝蛋白/聚己内酯/壳聚糖复合纳米纤维支架与内皮细胞的相容性;赵晋;周志华;李敏;;中国生物医学工程学报(第05期);全文 *
静电纺丝在生物医用材料领域的应用综述;刘鹏;;山东纺织经济(第04期);全文 *

Also Published As

Publication number Publication date
CN115518198A (zh) 2022-12-27

Similar Documents

Publication Publication Date Title
Wu et al. In vitro and in vivo biocompatibility evaluation of a 3D bioprinted gelatin-sodium alginate/rat Schwann-cell scaffold
Wang et al. Evaluation of the potential of rhTGF-β3 encapsulated P (LLA-CL)/collagen nanofibers for tracheal cartilage regeneration using mesenchymal stems cells derived from Wharton's jelly of human umbilical cord
Cipitria et al. Design, fabrication and characterization of PCL electrospun scaffolds—a review
Vaz et al. Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique
Guex et al. Plasma-functionalized electrospun matrix for biograft development and cardiac function stabilization
Willerth et al. Optimization of fibrin scaffolds for differentiation of murine embryonic stem cells into neural lineage cells
Milleret et al. Tuning electrospinning parameters for production of 3D-fiber-fleeces with increased porosity for soft tissue engineering applications
KarbalaeiMahdi et al. Neural differentiation of human induced pluripotent stem cells on polycaprolactone/gelatin bi-electrospun nanofibers
Liao et al. Stem cells and biomimetic materials strategies for tissue engineering
Jia et al. Stem cell differentiation on electrospun nanofibrous substrates for vascular tissue engineering
Xin et al. Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold
US9421305B2 (en) Aligned scaffolding system for skeletal muscle regeneration
Ishii et al. In vitro tissue engineering of a cardiac graft using a degradable scaffold with an extracellular matrix–like topography
Yang et al. The cardiomyogenic differentiation of rat mesenchymal stem cells on silk fibroin–polysaccharide cardiac patches in vitro
Kenar et al. A 3D aligned microfibrous myocardial tissue construct cultured under transient perfusion
US20150359619A1 (en) Small Diameter Vascular Graft Produced by a Hybrid Method
Pan et al. Electrospun polypyrrole-coated polycaprolactone nanoyarn nerve guidance conduits for nerve tissue engineering
Haslauer et al. Collagen–PCL sheath–core bicomponent electrospun scaffolds increase osteogenic differentiation and calcium accretion of human adipose-derived stem cells
KR20020059382A (ko) 공학처리된 근육
US20190142998A1 (en) Scaffolds fabricated from electrospun decellularized extracellular matrix
Xu et al. Fabrication of vascularized and scaffold-free bone tissue using endothelial and osteogenic cells differentiated from bone marrow derived mesenchymal stem cells
KR20130040748A (ko) 자기조립 세포외 기질 메트릭스 제조 방법 및 이것의 용도
CN113797393B (zh) 一种功能一体化的多层级皮肤创面修复支架及其制备方法
CN110755684A (zh) 负载外泌体和生长因子的微球/纳米纱复合支架及其制备方法
Li et al. Biofunctionalized silk fibroin nanofibers for directional and long neurite outgrowth

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant