CN115516665A - 电化学装置和电子装置 - Google Patents

电化学装置和电子装置 Download PDF

Info

Publication number
CN115516665A
CN115516665A CN202180031196.9A CN202180031196A CN115516665A CN 115516665 A CN115516665 A CN 115516665A CN 202180031196 A CN202180031196 A CN 202180031196A CN 115516665 A CN115516665 A CN 115516665A
Authority
CN
China
Prior art keywords
silicon
electrochemical device
pole piece
active material
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180031196.9A
Other languages
English (en)
Inventor
廖群超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningde Amperex Technology Ltd
Original Assignee
Ningde Amperex Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningde Amperex Technology Ltd filed Critical Ningde Amperex Technology Ltd
Publication of CN115516665A publication Critical patent/CN115516665A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本申请提供了电化学装置和电子装置。电化学装置包括负极极片,负极极片包括负极活性材料层,负极活性材料层包括硅基材料颗粒和粘结剂,负极极片满足:(B+C)/7<A<(B+C)/1.8,其中,A表示负极极片的负极活性材料层在Ar气氛下加热至480℃时以质量百分比为单位的失重率;B表示硅基材料颗粒内的硅元素的相对百分比含量波动值;C表示负极极片中的硅元素的以质量百分比为单位的含量。通过使负极极片满足(B+C)/7<A<(B+C)/1.8,能够显著改善电化学装置的循环性能、倍率性能和膨胀性能。

Description

电化学装置和电子装置
技术领域
本申请涉及电化学储能领域,尤其涉及电化学装置和电子装置。
背景技术
随着电化学装置(例如,锂离子电池)的发展和进步,对其循环性能和能量密度提出了越来越高的要求。目前,在改善电化学装置的能量密度方面,在负极极片中采用硅基材料是当前的趋势。然而,在硅基材料脱嵌锂过程中,存在较大的体积膨胀和收缩,形成大量新的固体电解质界相膜(SEI),消耗电化学装置中有限的锂离子和电解液,显著增加电化学装置的阻抗,阻碍硅基材料的工业化大规模应用。
发明内容
本申请的一些实施例提供了一种电化学装置,电化学装置包括负极极片,负极极片包括负极活性材料层,负极活性材料层包括硅基材料颗粒和粘结剂,负极极片满足:(B+C)/7<A<(B+C)/1.8,其中,A表示负极极片的负极活性材料层在Ar气氛下加热至480℃时以质量百分比为单位的失重率;B表示硅基材料颗粒内的硅元素的相对百分比含量波动值;C表示负极极片中的硅元素的以质量百分比为单位的含量。通过使负极极片满足(B+C)/7<A<(B+C)/1.8,能够显著改善电化学装置的循环性能、倍率性能和膨胀性能。
在一些实施例中,负极极片的负极活性材料层在Ar气氛下加热至480℃时的失重率A满足:1.5%≤A≤18%。如果A的值太大,则表明负极活性材料层中的粘结剂太多,如此会抑制锂离子传输,增加电化学装置的极化作用,恶化电化学装置的倍率性能;如果A的值太小,则表明负极活性材料层中的粘结剂太少,不利于缓解硅基材料在循环过程中的体积膨胀,恶化电化学装置的循环性能。
在一些实施例中,硅基材料颗粒内的硅元素的相对百分比含量波动值B满足:B<16%。如果B太大,则表明硅元素的均一性较差,不利于电化学装置的循环性能和膨胀性能的改善。
在一些实施例中,负极极片中的硅元素的以质量百分比为单位的含量C满足:1%≤C≤20%。如果C的值太大,则硅基材料在循环过程中的膨胀过大,不利于电化学装置的循环性能的改善;如果C的值太小,则不利于电化学装置的能量密度的提升。
在一些实施例中,负极极片的孔隙率P和负极极片中的硅元素的质量百分含量C满足:P≥15×C1/4。当负极极片中的硅元素的以质量百分比为单位的含量C越大时,则需要更多的孔隙来缓解硅基材料的膨胀。当满足P≥15×C1/4时,能够有效缓解硅基材料的体积膨胀。
在一些实施例中,负极极片的孔隙率P满足:18%≤P≤40%。当负极极片的孔隙率过低时,电解液难以充分浸润,增加锂离子的传输距离,恶化电化学装置的动力学性能,并且也不利于缓解硅基材料在循环过程中的膨胀。当负极极片的孔隙率过大时,则不利于电化学装置的能量密度的提升。
在一些实施例中,电化学装置还包括电解液,电解液中包括氟代碳酸乙烯酯,并且氟代碳酸乙烯酯的以质量百分比为单位的含量X和负极极片中的硅元素的以质量百分比为单位的含量C满足:X≥C。当电解液中的FEC含量大于或等于负极极片中的硅元素的含量时,电化学装置的循环性能、膨胀性能和倍率性能较好。
在一些实施例中,氟代碳酸乙烯酯的以质量百分比为单位的含量X满足:2%≤X≤20%。当X的值太小时,氟代碳酸乙烯酯对电化学装置的循环性能的改善作用相对有限;当X的值太大时,表明FEC含量过高,过多的FEC会降低电解液中的锂离子的迁移率,影响电化学装置的倍率性能。
在一些实施例中,硅基材料颗粒包括硅元素和碳元素。通过将硅基颗粒嵌入碳基体中,避免硅基颗粒和电解液直接接触,减少循环过程中SEI的反复生成,从而减少可逆锂的损失。
本申请的实施例还提供了一种电子装置,包括上述电化学装置。
本申请的实施例通过使负极极片满足(B+C)/7<A<(B+C)/1.8,从极片层面看,能够将硅基材料的膨胀限制在极片可承受的范围内,显著改善电化学装置的膨胀变形性能;从材料层面看,减少硅基材料的嵌锂膨胀,减少硅基颗粒表面的SEI反复生成与破坏,显著改善电化学装置的循环性能和倍率性能。
具体实施方式
下面的实施例可以使本领域技术人员更全面地理解本申请,但不以任何方式限制本申请。
本申请的一些实施例提供了一种电化学装置,电化学装置包括负极极片。在一些实施例中,负极极片包括负极活性材料层,负极活性材料层包括硅基材料颗粒和粘结剂。在一些实施例中,粘结剂可以将硅基材料颗粒粘结在一起,减小硅基材料颗粒在循环过程中的膨胀和收缩程度。
在一些实施例中,负极极片满足:(B+C)/7<A<(B+C)/1.8,其中,A表示负极极片的负极活性材料层在Ar气氛下加热至480℃时以质量百分比为单位的失重率;B表示硅基材料颗粒内的硅元素的相对百分比含量波动值;C表示负极极片中的硅元素的以质量百分比为单位的含量。在一些实施例中,A的值可以在一定程度上反映粘结剂的含量,A越大,负极活性材料层中的粘结剂的量越多,A越小,负极活性材料层中的粘结剂的量越少。为了减小电化学装置在循环过程中的变形,负极极片中可以存在足够的粘结剂,但是粘结剂过多会抑制锂离子传输,增加电化学装置的极化作用,恶化电化学装置的倍率性能。在一些实施例中,硅基材料颗粒内的硅元素的相对百分比含量波动值表示硅元素分布的均一性,波动值越大,均一性越差。硅元素的分布均一性对电化学装置的循环性能和膨胀性能有着显著的关联,均一性越高,越有利于降低锂离子电池膨胀产生的应力,电化学装置的循环性能和膨胀性能越好。在一些实施例中,通常地,负极极片中的硅元素的以质量百分比为单位的含量增大,电化学装置的能量密度能够相应地得到提高。通过使负极极片满足(B+C)/7<A<(B+C)/1.8,能够显著改善电化学装置的循环性能、倍率性能和膨胀性能。
在一些实施例中,负极极片的负极活性材料层在Ar气氛下加热至480℃时的失重率A满足:1.5%≤A≤18%。如果A的值太大,则表明负极活性材料层中的粘结剂太多,如此会抑制锂离子传输,增加电化学装置的极化作用,恶化电化学装置的倍率性能;如果A的值太小,则表明负极活性材料层中的粘结剂太少,不利于缓解硅基材料在循环过程中的体积膨胀,恶化电化学装置的循环性能。在一些实施例中,A可以为1.5%、5%、8%、12%、15%、18%或任何其他合适的值。
在一些实施例中,硅基材料颗粒内的硅元素的相对百分比含量波动值B满足:B<16%。如果B太大,则表明硅元素的均一性较差,不利于电化学装置的循环性能和膨胀性能的改善。在一些实施例中,B可以为15%、10%、8%、5%或更小的值。
在一些实施例中,负极极片中的硅元素的以质量百分比为单位的含量C满足:1%≤C≤20%。在一些实施例中,如果C的值太大,则硅基材料在循环过程中的膨胀过大,不利于电化学装置的循环性能的改善;如果C的值太小,则不利于电化学装置的能量密度的提升。在一些实施例中,C可以为1%、5%、10%、15%、20%或任何其他合适的值。
在一些实施例中,负极极片的孔隙率P和负极极片中的硅元素的质量百分含量C满足:P≥15×C1/4。硅基材料颗粒常温下嵌锂后体积膨胀约300%,巨大的体积膨胀效应容易导致负极极片脱模、掉粉等问题,在负极极片中预留一定的孔隙可有效缓解硅基材料的体积膨胀。当负极极片中的硅元素的以质量百分比为单位的含量C越大时,则需要更多的孔隙来缓解硅基材料的膨胀。当满足P≥15×C1/4时,能够有效缓解硅基材料的体积膨胀。
在一些实施例中,负极极片的孔隙率P满足:18%≤P≤40%。当负极极片的孔隙率过低时,电解液难以充分浸润,增加锂离子的传输距离,恶化电化学装置的动力学性能,并且也不利于缓解硅基材料在循环过程中的膨胀。当负极极片的孔隙率过大时,则不利于电化学装置的能量密度和动力学性能的提升。
在一些实施例中,电化学装置还包括电解液,电解液在负极极片处会还原,在负极活性材料表面生成SEI层,稳定界面,延缓可逆锂的持续消耗。SEI过薄,容易在负极活性材料颗粒膨胀的过程中破裂,产生新的界面,恶化电化学装置的循环性能;SEI过厚会降低电荷转移的速率,恶化电化学装置的倍率性能。在一些实施例中,电解液中包括氟代碳酸乙烯酯,并且氟代碳酸乙烯酯的以质量百分比为单位的含量X和负极极片中的硅元素的以质量百分比为单位的含量C满足:X≥C。氟代碳酸乙烯酯(FEC)是电解液中重要的成膜添加剂,循环过程中分解产生的SEI隔绝负极活性材料和电解液的进一步接触,减少锂离子的消耗,对于循环性能具有改善作用。当电解液中的FEC含量大于或等于负极极片中的硅元素的含量时,电化学装置的循环性能、膨胀性能和倍率性能更好。
在一些实施例中,氟代碳酸乙烯酯的以质量百分比为单位的含量X满足:2%≤X≤20%。当X的值太小时,氟代碳酸乙烯酯对电化学装置的循环性能的改善作用相对有限;当X的值太大时,表明FEC含量过高,过多的FEC会降低电解液中的锂离子的迁移率,影响电化学装置的倍率性能。在一些实施例中,X可以为2%、5%、10%、12%、15%、20%或其他合适的值。
在一些实施例中,硅基材料颗粒包括硅元素和碳元素,例如、硅碳化合物或复合物,例如,SiC。通过将硅基颗粒嵌入碳基体中,避免硅基颗粒和电解液直接接触,减少循环过程中SEI的反复生成,从而减少可逆锂的损失。
在一些实施例中,硅基材料的制备方法可以采用如下制备方法:将多孔碳基体置于回转炉中,在室温下用氮气将炉管吹扫20至40分钟,然后将多孔碳基体样品的温度提高到450℃至500℃。调节氮气流速以使气体在回转炉中的停留时间至少为90秒,并以该流速维持30分钟左右。然后将气体供应从氮气切换为含硅气体和氮气的混合气体(混合气体中含硅气体的体积分数为5%至30%)。在200sccm至400sccm的气体流速下沉积8小时至16小时后,向回转炉中持续通氮气从炉中吹出含硅气体,再在氮气条件下将回转炉吹扫30分钟,然后在5小时至10小时内将回转炉冷却到室温。然后通过将气流从氮气转换为来自压缩空气源的空气,在1小时至2小时内将回转炉内的氮气逐渐转换为空气,得到硅基材料。
在一些实施例中,多孔碳基体可以选自硬碳、软碳、石墨中的至少一种。例如,上述硬碳可以包括树脂碳、碳黑、有机聚合物热解碳及其组合。上述软碳可以包括碳纤维、碳微球及其组合。多孔碳基体的粒径没有限制,只要能实现本申请目的即可。例如,多孔碳基体的粒径范围为3μm<Dv50<15μm。
负极极片的负极活性材料层在Ar气氛下加热至480℃时的失重率A与负极活性材料层中的粘结剂的含量相关,例如,负极活性材料层中的粘结剂的用量越多,A越大,负极活性材料层中的粘结剂的用量越少,A越小。基于此,可以通过调节粘结剂的用量,从而调整A。
硅基材料颗粒内的硅元素的相对百分比含量波动值B与碳基体内部孔隙分布的均一性以及孔径大小相关,例如,碳基体内部孔隙分布越均一则B越小。基于此,可以通过调节孔隙分布和孔径大小,从而调整B。
负极极片中的硅元素的质量百分含量C与负极活性材料层中硅基材料的添加量相关,其中,硅基材料内部沉积的硅含量可通过调节沉积温度、沉积时间以及使用含硅气体的浓度来进行调整,例如,C通常随沉积温度的升高而增大、C通常随沉积时间的增加而增大、C通常随含硅气体的浓度升高而增加。基于此,可进行负极材料层中硅元素的质量含量C的调整。
负极极片的孔隙率通常随负极极片的压实密度增大而降低,基于此,可以通过调整负极极片的冷压压力,调节负极极片的压实密度,从而调整负极极片的孔隙率。
在一些实施例中,负极活性材料层中的粘结剂可以包括羧甲基纤维素(CMC)、聚丙烯酸、聚乙烯基吡咯烷酮、聚苯胺、聚酰亚胺、聚酰胺酰亚胺、聚硅氧烷、丁苯橡胶、环氧树脂、聚酯树脂、聚氨酯树脂或聚芴中的至少一种。
在一些实施例中,电化学装置可以包括电极组件,电极组件包括正极极片、负极极片、设置在正极极片和负极极片之间的隔离膜。在一些实施例中,负极极片还包括负极集流体。在一些实施例中,负极活性材料层可以位于负极集流体的一侧或两侧上。在一些实施例中,负极活性材料层中还可以包括导电剂。在一些实施例中,负极活性材料层中的导电剂可以包括纳米导电炭黑、碳纳米管、碳纤维、鳞片石墨、石墨烯或科琴黑中的至少一种。在一些实施例中,负极活性材料层还可以包括负极活性材料石墨,即负极活性材料层中可以包括作为负极活性材料的硅基材料和石墨。在一些实施例中,负极活性材料层中的负极活性材料、导电剂和粘结剂的质量比可以为(78至98.5):(0.1至10):(0.1至10)。应该理解,以上所述仅是示例,可以采用任何其他合适的材料和质量比。在一些实施例中,负极集流体可以采用铜箔、镍箔或碳基集流体中的至少一种。
在一些实施例中,正极极片包括正极集流体和设置在正极集流体上的正极活性材料层,正极活性材料层可以包括正极活性材料。在一些实施例中,正极活性材料包括钴酸锂、磷酸铁锂、磷酸锰铁锂、磷酸铁钠、磷酸钒锂、磷酸钒钠、磷酸钒氧锂、磷酸钒氧钠、钒酸锂、锰酸锂、镍酸锂、镍钴锰酸锂、富锂锰基材料或镍钴铝酸锂中的至少一种。在一些实施例中,正极活性材料层还可以包括导电剂。在一些实施例中,正极活性材料层中的导电剂可以包括导电炭黑、科琴黑、片层石墨、石墨烯、碳纳米管或碳纤维中的至少一种。在一些实施例中,正极活性材料层还可以包括粘结剂,正极活性材料层中的粘结剂可以包括羧甲基纤维素(CMC)、聚丙烯酸、聚乙烯基吡咯烷酮、聚苯胺、聚酰亚胺、聚酰胺酰亚胺、聚硅氧烷、丁苯橡胶、环氧树脂、聚酯树脂、聚氨酯树脂或聚芴中的至少一种。在一些实施例中,正极活性材料层中的正极活性材料、导电剂和粘结剂的质量比可以为(80至99):(0.1至10):(0.1至10)。在一些实施例中,正极活性材料层的厚度可以为10μm至500μm。应该理解,以上所述仅是示例,正极活性材料层可以采用任何其他合适的材料、厚度和质量比。
在一些实施例中,正极集流体可以采用Al箔,当然,也可以采用本领域常用的其他集流体。在一些实施例中,正极集流体的厚度可以为1μm至50μm。在一些实施例中,正极活性材料层可以仅涂覆在正极的集流体的部分区域上。
在一些实施例中,隔离膜包括聚乙烯、聚丙烯、聚偏氟乙烯、聚对苯二甲酸乙二醇酯、聚酰亚胺或芳纶中的至少一种。例如,聚乙烯包括选自高密度聚乙烯、低密度聚乙烯或超高分子量聚乙烯中的至少一种。尤其是聚乙烯和聚丙烯,它们对防止短路具有良好的作用,并可以通过关断效应改善电池的稳定性。在一些实施例中,隔离膜的厚度在约3μm至20μm的范围内。
在一些实施例中,隔离膜表面还可以包括多孔层,多孔层设置在隔离膜的至少一个表面上,多孔层包括无机颗粒和粘结剂,无机颗粒选自氧化铝(Al2O3)、氧化硅(SiO2)、氧化镁(MgO)、氧化钛(TiO2)、二氧化铪(HfO2)、氧化锡(SnO2)、二氧化铈(CeO2)、氧化镍(NiO)、氧化锌(ZnO)、氧化钙(CaO)、氧化锆(ZrO2)、氧化钇(Y2O3)、碳化硅(SiC)、勃姆石、氢氧化铝、氢氧化镁、氢氧化钙或硫酸钡中的至少一种。在一些实施例中,隔离膜的孔具有在约0.01μm至1μm的范围的直径。多孔层的粘结剂选自聚偏氟乙烯、偏氟乙烯-六氟丙烯的共聚物、聚酰胺、聚丙烯腈、聚丙烯酸酯、聚丙烯酸、聚丙烯酸盐、羧甲基纤维素钠、聚乙烯呲咯烷酮、聚乙烯醚、聚甲基丙烯酸甲酯、聚四氟乙烯或聚六氟丙烯中的至少一种。隔离膜表面的多孔层可以提升隔离膜的耐热性能、抗氧化性能和电解质浸润性能,增强隔离膜与极片之间的粘结性。
在一些实施例中,电解液还包括锂盐,锂盐可以包括LiPF6、LiBF4、LiAsF6、LiClO4、LiB(C6 H5)4、LiCH3SO3、LiCF3SO3、LiN(SO2CF3)2、LiC(SO2CF3)3、LiSiF6、LiBOB或者二氟硼酸锂中的至少一种。优选地,锂盐包括LiPF6
在一些实施例中,电解液还可以包括非水溶剂。非水溶剂可为碳酸酯化合物、羧酸酯化合物、醚化合物、其它有机溶剂或它们的组合。碳酸酯化合物可为链状碳酸酯化合物、环状碳酸酯化合物、氟代碳酸酯化合物或其组合。链状碳酸酯化合物的实例为碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸二丙酯(DPC)、碳酸甲丙酯(MPC)、碳酸乙丙酯(EPC)、碳酸甲乙酯(MEC)及其组合。所述环状碳酸酯化合物的实例为碳酸亚乙酯(EC)、碳酸亚丙酯(PC)、碳酸亚丁酯(BC)、碳酸乙烯基亚乙酯(VEC)或者其组合。所述氟代碳酸酯化合物的实例为碳酸1,2-二氟亚乙酯、碳酸1,1-二氟亚乙酯、碳酸1,1,2-三氟亚乙酯、碳酸1,1,2,2-四氟亚乙酯、碳酸1-氟-2-甲基亚乙酯、碳酸1-氟-1-甲基亚乙酯、碳酸1,2-二氟-1-甲基亚乙酯、碳酸1,1,2-三氟-2-甲基亚乙酯、碳酸三氟甲基亚乙酯或者其组合。羧酸酯化合物的实例为乙酸甲酯、乙酸乙酯、乙酸正丙酯、乙酸叔丁酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、γ-丁内酯、癸内酯、戊内酯、甲瓦龙酸内酯、己内酯、甲酸甲酯或者其组合。醚化合物的实例为二丁醚、四甘醇二甲醚、二甘醇二甲醚、1,2-二甲氧基乙烷、1,2-二乙氧基乙烷、乙氧基甲氧基乙烷、2-甲基四氢呋喃、四氢呋喃或者其组合。其它有机溶剂的实例为二甲亚砜、1,2-二氧戊环、环丁砜、甲基环丁砜、1,3-二甲基-2-咪唑烷酮、N-甲基-2-吡咯烷酮、甲酰胺、二甲基甲酰胺、乙腈、磷酸三甲酯、磷酸三乙酯、磷酸三辛酯或者其组合。所述非水溶剂的含量没有特别限制,只要能实现本申请的目的即可,例如,上述其它非水溶剂的质量百分含量为67%至86%,例如可以67%、67.5%、70%、75%、80%、83%、85%、85.5%、86%或为其间的任意范围。
在一些实施例中,电化学装置包括锂离子电池,但是本申请不限于此。
在本申请的一些实施例中,电化学装置的电极组件为卷绕式电极组件、堆叠式电极组件或折叠式电极组件。在一些实施例中,电化学装置的正极极片和/或负极极片可以是卷绕或堆叠式形成的多层结构,也可以是单层正极、隔离膜、单层负极叠加的单层结构。
在本申请的一些实施例中,以锂离子电池为例,将正极极片、隔离膜、负极极片按顺序卷绕或堆叠成电极组件,之后装入例如铝塑膜中进行封装,注入电解液,化成、封装,即制成锂离子电池。然后,对制备的锂离子电池进行性能测试。
本领域的技术人员将理解,以上描述的电化学装置(例如,锂离子电池)的制备方法仅是实施例。在不背离本申请公开的内容的基础上,可以采用本领域常用的其他方法。
本申请的实施例还提供了包括上述电化学装置的电子装置。本申请实施例的电子装置没有特别限定,其可以是用于现有技术中已知的任何电子装置。在一些实施例中,电子装置可以包括,但不限于,笔记本电脑、笔输入型计算机、移动电脑、电子书播放器、便携式电话、便携式传真机、便携式复印机、便携式打印机、头戴式立体声耳机、录像机、液晶电视、手提式清洁器、便携CD机、迷你光盘、收发机、电子记事本、计算器、存储卡、便携式录音机、收音机、备用电源、电机、汽车、摩托车、助力自行车、自行车、照明器具、玩具、游戏机、钟表、电动工具、闪光灯、照相机、家庭用大型蓄电池和锂离子电容器等。
下面列举了一些具体实施例和对比例以更好地对本申请进行说明,其中,采用锂离子电池作为示例。
对比例1-1
正极极片的制备:将正极活性材料钴酸锂、导电炭黑(Super P)、聚偏二氟乙烯(PVDF)按照重量比97:1.4:1.6进行混合,加入N-甲基吡咯烷酮(NMP)作为溶剂,搅拌均匀。将浆料(固含量为72wt%)均匀涂覆在正极集流体铝箔上,涂覆厚度为80μm,在85℃下烘干,然后经过冷压、裁片、分切后,在85℃的真空条件下干燥4小时,得到正极极片。
硅基复合材料的制备:将Dv50为10μm的多孔碳基体置于回转炉中,在室温下用氮气将炉管吹扫30分钟,然后将多孔碳样品的加热温度提高到450℃。调节氮气流速以使气体在回转炉中的停留时间至少为90秒,并以该流速维持30分钟。然后将气体供应从氮气切换为含硅气体(例如硅烷)和氮气的混合气体,其中混合气体中含硅气体和氮气的体积比为5︰95。在200sccm的气体流速下沉积8小时后,向回转炉中持续通氮气从炉中吹出含硅气体,再在氮气条件下将回转炉吹扫30分钟,然后在数小时(例如8小时)内将回转炉冷却到室温。然后通过将气流从氮气转换为来自压缩空气源的空气,在2小时内将回转炉内的氮气逐渐转换为空气,得到硅基复合材料,即硅基颗粒。经测定,该硅基材料颗粒内的硅元素的相对百分比含量波动值B为10%。
负极极片的制备:将上述制备得到的硅基材料、人造石墨、粘结剂聚丙烯酸和羧甲基纤维素钠(CMC)按重量:5.7:91.8:1:1.5的比例溶于去离子水中,形成负极浆料(固含量为40wt%)。采用10μm厚度铜箔作为负极集流体,将负极浆料涂覆于负极的集流体上,涂覆厚度为50μm,在85℃下烘干,然后经过冷压、裁片、分切后,在120℃的真空条件下干燥12小时,得到负极极片。
隔离膜的制备:隔离膜为7μm厚的聚乙烯(PE)。
电解液的制备:在干燥的氩气气氛手套箱中,将碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二乙酯(DEC)按照质量比为EC:PC:DEC=1:1:1进行混合,溶解并充分搅拌后加入锂盐LiPF6,混合均匀后获得电解液,其中LiPF6的质量百分含量为12.5%。
锂离子电池的制备:将正极极片、隔离膜、负极极片按顺序依次叠好,使隔离膜处于正极和负极中间,起到隔离的作用,并卷绕得到电极组件。将电极组件置于外包装铝塑膜中,在80℃下脱去水分后,注入上述电解液并封装,经过化成,脱气,切边等工艺流程得到锂离子电池。
其他实施例和对比例是在对比例1-1的步骤的基础上进行参数变更,具体变更的参数如下表所述。
下面描述本申请的各个参数的测试方法。
1.负极极片的孔隙率测试:采用气体置换法测试负极极片的孔隙率:采用同一模具冲切大于50片半径为d极片,分别测量每片极片的厚度h,并装入真密度测试仪(AccuPycⅡ1340)样品杯中,在密闭的样品仓中采用He对极片进行填充,由此测得极片的真体积V,最后通过如下公式获得极片的孔隙率P:P=(1-V/πd2×50×h)×100%。
2.负极极片中硅元素含量的测试:将负极极片置于真空烘箱中100℃干燥24h,用刀片刮下负极极片上的部分活性材料层称量得质量M1,再将刮下的活性材料层置于持续的空气气氛中800℃热处理,去除碳质材料,剩余的材料称量得质量M2,最后通过如下公式获得极片中硅元素的含量C:C=0.467×M2/M1。
3.硅基材料颗粒内的硅元素的相对百分比含量波动值测试:将极片置于真空烘箱中100℃干燥24h,在保护性气氛下,采用聚焦离子束(FIB)将极片中的硅基材料颗粒加工成50-100nm的薄片,然后采用投射电子显微镜(TEM)设备中的X射线能谱仪(EDS)线扫测试硅基颗粒内硅原子相对百分比含量,线扫位置选取在硅基颗粒的内部的任意位置,硅元素的波动值为整个线扫中硅原子相对百分比含量最高值和最低值的差值。
4.电解液中的氟代碳酸乙烯酯(FEC)含量测试:将电化学装置放电至0%的荷电状态(SOC)后离心,离心后得到的液体进行GC-MS测试,检测出FEC组分百分比。
5.负极活性材料层在Ar气氛下加热至480℃时以质量百分比为单位的失重率测试:用刀片刮下负极极片上的部分活性材料层称量得质量A1,再将刮下的活性材料层置于Ar气氛下加热至480℃,量得质量A2,失重率A=(A1-A2)/A1。
6.循环性能测试:测试温度分别为25℃和-10℃,以0.7C恒流充电到4.4V,恒压充电到0.025C,静置5分钟后以0.5C放电到3.0V。以此时得到的容量为初始容量,进行0.7C充电/0.5C放电进行循环测试,以25℃/-10℃循环400圈时的容量为实际容量,容量保持率=实际容量/初始容量。
7.倍率性能测试:在25℃下,以0.2C放电到3.0V,静置5min,以0.5C充电到4.45V,恒压充电到0.05C后静置5分钟,调整放电倍率,以0.2C和2.0C进行放电测试,分别得到放电容量,以2C倍率下得到的容量除以0.2C得到的容量,得到倍率性能。
8.变形率测试:用螺旋千分尺测试半充时新鲜锂离子电池的厚度h1,循环至400圈时,锂离子电池处于满充状态下,再用螺旋千分尺测试此时锂离子电池的厚度h2,锂离子电池的变形率=(h2-h1)/h1。
应该理解,锂离子电池的上述参数的测试属于本领域技术人员公知的技术,在此不展开描述,并且测试方法不限于本申请描述的方法,还可以采用其他合适的测试方法。
对比例1-1至1-10和实施例1-1至1-15:
对比例1-2至1-10和实施例1-1至1-15的制备方法与对比例1-1的制备方法相同,区别仅在于调整相应参数使A、B和/或C的值不同。
表1:
Figure BDA0003910104350000111
Figure BDA0003910104350000121
通过比较实施例1-1至1-3和对比例1-1至1-2可以看出,当负极极片中的硅元素含量C和硅元素在硅基材料颗粒内的分布均一度B一定时,随着失重率A的提高,锂离子电池的循环容量保持率先增大后减小,锂离子电池的变形率先减小后增大,锂离子电池的倍率性能先增大后减小。这是由于A值越高,负极极片的粘结力越强,硅基材料颗粒的表面SEI的稳定性越高,对硅基材料在循环过程中的保护越好;但当A过高时,锂离子电池的循环容量保持率、变形率和倍率性能受到影响,这是由于粘结剂和SEI的含量过多,会抑制锂离子传输,增加锂离子电池的极化作用。通过比较对比例1-3至1-4和实施例1-4至1-6、或比较对比例1-5至1-6和实施例1-7至1-9、或比较对比例1-7至1-8和实施例1-10至1-12、或比较对比例1-9至1-10和实施例1-13至1-15可以得到同样的结论。
此外,负极极片中的硅元素含量越高,硅元素在硅基材料内的分布均匀度越低,需要使用的粘结剂和SEI越多,当其满足不等式:(B+C)/7<A<(B+C)/1.8时,锂离子电池的容量保持率、变形率以及倍率性能提升。
实施例2-1至2-10:
实施例2-1至2-10的制备方法与实施例1-2的制备方法相同,区别仅在于调整相应参数使负极极片的孔隙率P和/或负极极片中的硅元素含量C的值不同。
表2:
Figure BDA0003910104350000131
硅基材料颗粒常温下嵌锂后体积膨胀约300%,巨大的体积效应容易导致负极活性材料层脱模、掉粉等问题,在负极极片中预留一定的孔隙可有效缓解硅基材料的体积膨胀。当负极极片的孔隙率过低时,电解液难以充分浸润负极极片,增加锂离子的传输距离,恶化锂离子电池的动力学性能。通过比较实施例1-2和实施例2-1至2-10可知,负极极片的孔隙率P和负极极片中的硅元素的含量C满足如下关系式:P>15×C1/4时,锂离子电池的常温和低温下的循环容量保持率和变形率均得到改善。
实施例3-1至3-5:
实施例3-1至3-5的制备方法与实施例2-6的制备方法相同,但向电解液中再加入一定含量的氟代碳酸乙烯酯,区别仅在于电解液中的氟代碳酸乙烯酯的含量X的值不同。
表3:
Figure BDA0003910104350000141
表3中,“/”表示不存在相应制备参数。
氟代碳酸乙烯酯(FEC)是电解液中重要的成膜添加剂,循环过程中分解产生的SEI隔绝负极活性材料和电解液的进一步接触,减少锂离子的消耗,对于锂离子电池的循环性能有着重要的作用。通过比较实施例1-1、实施例3-1至实施例3-5可知,电解液中添加FEC后,当电解液中的FEC含量大于或等于负极极片中的硅元素含量时,锂离子电池的常温和低温下的循环容量保持率和变形率均得到改善。然而,FEC含量也不能过高,这是由于过多FEC的添加会降低电解液中锂离子的迁移率,影响倍率性能,并且锂离子电池的变形率增大,低温下的容量保持率也降低。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的公开范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (10)

1.一种电化学装置,其包括:
负极极片,所述负极极片包括负极活性材料层,所述负极活性材料层包括硅基材料颗粒和粘结剂,所述负极极片满足:
(B+C)/7<A<(B+C)/1.8,
其中,A表示所述负极极片的所述负极活性材料层在Ar气氛下加热至480℃时以质量百分比为单位的失重率;B表示所述硅基材料颗粒内的硅元素的相对百分比含量波动值;C表示所述负极极片中的硅元素的以质量百分比为单位的含量。
2.根据权利要求1所述的电化学装置,其中,所述负极极片的所述负极活性材料层在Ar气氛下加热至480℃时的失重率A满足:1.5%≤A≤18%。
3.根据权利要求1所述的电化学装置,其中,所述硅基材料颗粒内的硅元素的相对百分比含量波动值B满足:B<16%。
4.根据权利要求1所述的电化学装置,其中,所述负极极片中的硅元素的以质量百分比为单位的含量C满足:1%≤C≤20%。
5.根据权利要求1所述的电化学装置,其中,所述负极极片的孔隙率P和所述负极极片中的硅元素的质量百分含量C满足:P>15×C1/4
6.根据权利要求5所述的电化学装置,其中,所述负极极片的孔隙率P满足:18%≤P≤40%。
7.根据权利要求1所述的电化学装置,其中,所述电化学装置还包括电解液,所述电解液中包括氟代碳酸乙烯酯,并且所述氟代碳酸乙烯酯的以质量百分比为单位的含量X和所述负极极片中的硅元素的以质量百分比为单位的含量C满足:X≥C。
8.根据权利要求7所述的电解液,其中,所述氟代碳酸乙烯酯的以质量百分比为单位的含量X满足:2%≤X≤20%。
9.根据权利要求1所述的电化学装置,其中,所述硅基材料颗粒包括硅元素和碳元素。
10.一种电子装置,包括根据权利要求1至9中任一项所述的电化学装置。
CN202180031196.9A 2021-12-24 2021-12-24 电化学装置和电子装置 Pending CN115516665A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/141317 WO2023115563A1 (zh) 2021-12-24 2021-12-24 电化学装置和电子装置

Publications (1)

Publication Number Publication Date
CN115516665A true CN115516665A (zh) 2022-12-23

Family

ID=84500973

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180031196.9A Pending CN115516665A (zh) 2021-12-24 2021-12-24 电化学装置和电子装置

Country Status (2)

Country Link
CN (1) CN115516665A (zh)
WO (1) WO2023115563A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111525194A (zh) * 2020-04-28 2020-08-11 宁德新能源科技有限公司 电化学装置以及包括所述电化学装置的电子装置
CN112310360A (zh) * 2019-07-29 2021-02-02 宁德时代新能源科技股份有限公司 负极活性材料及电池
CN112753116A (zh) * 2020-03-04 2021-05-04 宁德新能源科技有限公司 电化学装置和包含其的电子装置
WO2021174442A1 (zh) * 2020-03-04 2021-09-10 宁德新能源科技有限公司 电化学装置和包含其的电子装置
WO2021226841A1 (zh) * 2020-05-12 2021-11-18 宁德新能源科技有限公司 负极材料、负极极片、电化学装置和电子装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107785541B (zh) * 2016-08-29 2021-06-01 安普瑞斯(南京)有限公司 一种锂离子电池用硅碳复合材料及其制备方法
CN108550837A (zh) * 2018-06-04 2018-09-18 深圳市比克动力电池有限公司 锂离子电池复合硅负极材料及其制备方法
KR102374350B1 (ko) * 2019-06-19 2022-03-16 대주전자재료 주식회사 리튬 이차전지 음극재용 탄소-규소복합산화물 복합체 및 이의 제조방법
CN112563476A (zh) * 2019-09-26 2021-03-26 贝特瑞新材料集团股份有限公司 一种硅复合物负极材料及其制备方法和锂离子电池
JP2024501526A (ja) * 2020-12-28 2024-01-12 寧徳新能源科技有限公司 負極片、電気化学装置及び電子装置
CN113258052A (zh) * 2021-05-13 2021-08-13 溧阳天目先导电池材料科技有限公司 均匀改性的硅基锂离子电池负极材料及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112310360A (zh) * 2019-07-29 2021-02-02 宁德时代新能源科技股份有限公司 负极活性材料及电池
CN112753116A (zh) * 2020-03-04 2021-05-04 宁德新能源科技有限公司 电化学装置和包含其的电子装置
WO2021174444A1 (zh) * 2020-03-04 2021-09-10 宁德新能源科技有限公司 电化学装置和包含其的电子装置
WO2021174442A1 (zh) * 2020-03-04 2021-09-10 宁德新能源科技有限公司 电化学装置和包含其的电子装置
CN111525194A (zh) * 2020-04-28 2020-08-11 宁德新能源科技有限公司 电化学装置以及包括所述电化学装置的电子装置
WO2021226841A1 (zh) * 2020-05-12 2021-11-18 宁德新能源科技有限公司 负极材料、负极极片、电化学装置和电子装置

Also Published As

Publication number Publication date
WO2023115563A1 (zh) 2023-06-29

Similar Documents

Publication Publication Date Title
WO2020187106A1 (en) Anode material, anode and electrochemical device comprising anode material
CN111029543B (zh) 负极材料及包含其的电化学装置和电子装置
CN111370695B (zh) 负极活性材料及使用其的电化学装置和电子装置
JP2023534339A (ja) 電気化学装置及び電子装置
CN113366673B (zh) 电化学装置和电子装置
CN113066961B (zh) 负极极片、电化学装置和电子装置
CN113728469A (zh) 电化学装置和电子装置
WO2022140973A1 (zh) 负极极片、电化学装置和电子装置
CN113422063A (zh) 电化学装置和电子装置
CN116504923B (zh) 电化学装置、电子装置和负极极片的制备方法
CN113228342A (zh) 一种负极极片、包含该负极极片的电化学装置及电子装置
CN115398667A (zh) 电极及其制备方法、电化学装置和电子装置
CN114730883A (zh) 一种负极复合材料及其应用
WO2023122855A1 (zh) 一种电化学装置和电子装置
CN113097474B (zh) 电化学装置和电子装置
CN114026713B (zh) 硅碳复合颗粒、负极活性材料及包含它的负极、电化学装置和电子装置
CN112421031B (zh) 电化学装置和电子装置
CN114503301A (zh) 负极极片、电化学装置和电子装置
CN115516665A (zh) 电化学装置和电子装置
CN113024568B (zh) 正极材料、电化学装置和电子装置
WO2023082248A1 (zh) 电极及其制备方法、电化学装置和电子装置
CN114586213A (zh) 电化学装置和电子装置
CN117613355A (zh) 一种电化学装置和电子装置
CN115298854A (zh) 负极材料、负极极片、电化学装置和电子装置
CN117525415A (zh) 负极极片、电化学装置和电子装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination