CN115501875B - 一种Pickering微小乳液催化体系的构建方法及其应用 - Google Patents

一种Pickering微小乳液催化体系的构建方法及其应用 Download PDF

Info

Publication number
CN115501875B
CN115501875B CN202211218392.XA CN202211218392A CN115501875B CN 115501875 B CN115501875 B CN 115501875B CN 202211218392 A CN202211218392 A CN 202211218392A CN 115501875 B CN115501875 B CN 115501875B
Authority
CN
China
Prior art keywords
pickering
catalyst
emulsion
water
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211218392.XA
Other languages
English (en)
Other versions
CN115501875A (zh
Inventor
邱介山
倪林
于畅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN202211218392.XA priority Critical patent/CN115501875B/zh
Publication of CN115501875A publication Critical patent/CN115501875A/zh
Application granted granted Critical
Publication of CN115501875B publication Critical patent/CN115501875B/zh
Priority to US18/479,002 priority patent/US20240116040A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0221Coating of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/30Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds
    • C07C209/32Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups
    • C07C209/325Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups reduction by other means than indicated in C07C209/34 or C07C209/36
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/30Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds
    • C07C209/32Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups
    • C07C209/36Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups by reduction of nitro groups bound to carbon atoms of six-membered aromatic rings in presence of hydrogen-containing gases and a catalyst
    • C07C209/365Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups by reduction of nitro groups bound to carbon atoms of six-membered aromatic rings in presence of hydrogen-containing gases and a catalyst by reduction with preservation of halogen-atoms in compounds containing nitro groups and halogen atoms bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/29Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation of hydroxy groups
    • C07C45/294Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation of hydroxy groups with hydrogen peroxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/03Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of non-aromatic carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/10Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of aromatic six-membered rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/002Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/18Carbon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/42Platinum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/44Palladium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/46Ruthenium, rhodium, osmium or iridium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/46Doubly bound oxygen atoms, or two oxygen atoms singly bound to the same carbon atom
    • C07D307/48Furfural
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Dispersion Chemistry (AREA)

Abstract

本发明公开了一种Pickering微小乳液催化体系的构建方法及其应用,属于乳液催化技术领域,可解决现有乳液催化技术乳液尺寸大,催化剂难于循环利用等问题。主要包括以下步骤:首先,制备表面胺类化合物改性的碳量子点;其次,制备碳量子点基Pickering微小乳液催化剂;最后,构建pH响应的Pickering微小乳液催化体系,通过改变反应体系pH值即可实现纳米催化剂的简单分离和原位循环。该Pickering微小乳液催化体系构筑方法简单,催化活性高,能够实现体相自分离和催化剂原位循环,具有潜在的应用价值。

Description

一种Pickering微小乳液催化体系的构建方法及其应用
技术领域
本发明属于乳液催化技术领域,涉及一种Pickering微小乳液催化体系的构建方法及其应用。
背景技术
有机-水两相反应体系相比于传统单相有机体系可以增溶水溶性底物,因此作为绿色反应体系广泛应用于各种反应中,例如氧化、环氧化、加氢、Suzuki偶联和加氢甲酰化等。其反应特点是反应底物溶解在不同液相,反应发生在两相界面,同时在一些特殊的底物中,利用反应物与产物在不同液相中溶解性的差异,通过简单的相分离即可实现产物的分离。然而在不混溶的两相体系中,有限的反应界面积造成了反应底物之间/反应底物与催化剂之间接触困难,不利于催化反应的进行。通常可以通过添加共溶剂、表面活性剂等方法提高两相催化效率,但额外添加剂的加入会给产品的分离纯化带来新的困难。
本世纪以来兴起的Pickering乳液催化技术,利用固体颗粒直接乳化两相体系,形成动力学上稳定的Pickering乳液,可以在无需其他添加剂的情况下增大两相界面积,克服底物的扩散限制,提高催化反应速率。其中,固体乳化剂可以直接作为催化剂,迄今为止,研究人员已经发现并设计出多种可用作Pickering乳液催化剂的固体颗粒,如表面改性的二氧化硅、二氧化钛、钛硅酸盐、聚合物、碳纳米管、氧化石墨烯及其复合物等。然而,Pickering乳液尺寸通常为微米级别,液滴直径分布在10-1000μm之间,仅能创造103-105m2m-3的反应界面积,因此,迫切需要进一步减小液滴尺寸以促进传质,提高催化效率。Pickering微小乳液的乳滴尺寸为亚微米级(0.1-1μm),可将Pickering乳液提供的反应界面面积提高2-3个数量级,达到106-107m2 m-3,这将极大地提高双相催化反应速率,因此需要开发可回收的固体催化剂来稳定微小乳液,构建Pickering微小乳液催化体系。
发明内容
为了解决上述问题,本发明旨在提供一种Pickering微小乳液催化体系的构建方法,以及该催化体系在双相催化反应中的应用。同时,该Pickering微小乳液催化体系具备刺激响应性,可在pH等外部刺激下破乳并引发相分离从而实现催化剂的回收和原位循环利用。
为了实现上述发明目的,解决已有技术中所存在的问题,本发明采取的技术方案是:
一种Pickering微小乳液催化体系的构建方法,包括以下步骤:
第一步,制备Pickering微小乳液催化剂/乳化剂,具体步骤如下:
1.1)制备表面改性的碳量子点:
首先,以柠檬酸为碳源,使用胺类化合物改性剂对碳量子点进行修饰。将柠檬酸和胺类化合物添加到无水乙醇中,搅拌0.5-5小时,直到混合均匀。将沉淀物过滤并用乙醇洗涤数次;其中,胺类化合物为十二胺,十四胺,十六胺和十八胺中的一种;每25mL无水乙醇中,对应加入1.5-3g柠檬酸、0.1-4g胺类化合物。将得到的固体粉末在50-90℃下干燥,然后将干燥后的粉末在180-220℃下,空气气氛中加热0.5-2小时,直至白色粉末完全液化成橙色液体。
然后,将所得橙色液体逐滴分散到NaOH水溶液中,NaOH浓度为0.25M,并在35-50℃下搅拌24-48h,得到分散液。其中,NaOH水溶液与橙色液体的体积比为20:1。
最后,将得到的分散液在高速离心机中离心分离5-10min,转速为6000-9000rpm,得到离心后的上清液。使用500DA透析膜处理上清液24-48h,去除小分子杂质,得到黄色碳量子点溶液。将所得溶液置于-10℃以下环境中直到完全冻实,在冷冻干燥机中干燥2-5天,得到碳量子点固体粉末,其尺寸为8-12nm。
1.2)制备乳液催化剂:
将碳量子点、金属盐加入水和乙醇的混合溶液中,搅拌3-6h,其中,金属盐为氯化钌、氯化钯和氯铂酸中的一种,每50mL水和乙醇的混合溶液中对应加入20-1000mg碳量子点、1-50mg金属盐,水和乙醇的混合溶液中水与乙醇体积比为1:4。
静置6-18小时后,将NaBH4水溶液滴加到上述体系中还原0.5-2h,直到溶液变为黑色悬浊液,然后以18000-26000rpm转速于高速离心机中离心分离15-35min,得到固体乳液催化剂。其中,每50mL水和乙醇的混合溶液中对应加入10mL浓度为2mg mL-1的NaBH4水溶液。
第二步,构建Pickering微小乳液催化体系,具体步骤如下:
2.1)将所得的固体乳液催化剂分散于水中,配制浓度为0.05wt%-5wt%的分散液A。
2.2)将分散液A加入与水不互溶的有机溶剂加入小瓶中,其中分散液与有机溶剂的体积比为2:1,超声处理0.5-2min,然后搅拌10-20分钟使上述混合物乳化形成Pickering微小乳液,其液滴尺寸分布范围为0.1-1μm。其中有机溶剂为甲苯,环己烷,二氯甲烷,乙酸乙酯,十氢萘等与水不相溶的有机物。
一种Pickering微小乳液催化体系的应用,该催化体系应用于双相催化反应中,具体的:将反应物与水溶性氧化剂/还原剂加入Pickering微小乳液形成的催化体系中,在30-90℃油浴锅中搅拌均匀,并反应0.5-5h。其中,反应物与氧化剂/还原剂摩尔比为1:3,每10mL乳液中加入2-10mmol反应物。反应结束后向体系内添加数滴1M盐酸溶液直到破乳,实现油水分层,其中,产物溶解在有机相中,催化剂分散在水相中。有机相中的产物可经气相色谱检测得到产率,包含催化剂的水相可作为分散液A重复步骤2.2进行循环使用。其中反应物可以为醇、烯烃及硝基类化合物。氧化剂为H2O2,还原剂为NaBH4。盐酸溶液也可以换为硫酸,硝酸等无机酸。
与现有技术相比,本发明具有以下有益效果:
(1)本发明构建的Pickering微小乳液催化体系,液滴尺寸为0.1-1μm,远小于传Pickering乳液催化体系(液滴尺寸为10-1000μm),可以显著增大反应界面积,促进传质。
(2)本发明构建的Pickering微小乳液催化体系可以用于H2O2存在的醇类有机物的乳液催化氧化过程,以及NaBH4存在的不饱和烃类和硝基化合物的乳液催化还原过程。在相同温度下,相比于传统的Pickering乳液催化体系,乳液催化氧化反应速率在本发明构建的Pickering微小乳液体系可以提升5-20倍,乳液催化还原反应速率可以提升8-15倍。
(3)本发明构建的Pickering微小乳液催化体系具有pH响应特性,可以通过改变溶液的pH值实现乳液破乳和催化剂原位循环。
附图说明
图1是实施例1中制备的碳量子点透射电镜图。
图2是实施例1中制备的Pickering微小乳液光学显微镜图片。
具体实施方式
针对现有技术的诸多缺陷,本案发明人经长期研究和大量实践,提出本发明的技术方案,如下将对该技术方案、其实施过程及原理等作进一步的解释说明。但是,应当理解,在本发明范围内,本发明的上述各技术特征和在下文(实施例)中具体描述的各技术特征之间都可以相互结合,从而构成新的或者优选的技术方方案。下面结合实施例对本发明作进一步说明。下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1
将1.5g柠檬酸,0.1g十二胺加入到25mL无水乙醇中,搅拌0.5小时,直到混合均匀。将沉淀物过滤并用乙醇洗涤数次。将得到的固体粉末在50℃下干燥,然后将干燥后的粉末在180℃下,空气气氛中加热0.5小时,直至白色粉末完全液化成橙色液体。然后,将1mL上述所得橙色液体逐滴分散到20mL NaOH水溶液中,NaOH浓度为0.25M。并在35℃下搅拌24h,得到分散液。最后,将得到的分散液在高速离心机中离心分离5min,转速为6000rpm,得到离心后的上清液。使用500DA透析膜处理上清液24h,去除小分子杂质,得到黄色碳量子点溶液。将所得溶液置于-10℃环境中直到完全冻实,在冷冻干燥机中干燥2天,得到碳量子点固体粉末,其平均尺寸为10nm,如图1所示。
将1000mg碳量子点、50mg氯化钌加入10mL水和40mL乙醇的混合溶液中,搅拌6h。静置18小时后,将10mL浓度为2mg mL-1的NaBH4水溶液滴加到上述体系中还原2h,直到溶液变为黑色悬浊液,然后以26000rpm转速于高速离心机中离心分离35min,得到固体乳液催化剂。
将所得的固体乳液催化剂分散于水中,配制浓度为0.05wt%的分散液。将12mL分散液与6mL甲苯加入小瓶中超声处理0.5min,然后搅拌10分钟使上述混合物乳化形成Pickering微小乳液,其液滴尺寸分布范围为0.1-1μm,如图2所示。将2mmol苯甲醇与6mmolH2O2加入到10mL上述Pickering微小乳液形成的催化体系中,在90℃油浴锅中搅拌均匀,反应0.5h。反应结束后向体系内添加数滴1M盐酸溶液直到破乳,实现油水分层。其中,产物溶解在有机相中,催化剂分散在水相中。有机相中的产物苯甲醛可经气相色谱检测得到产率为99.9%。包含催化剂的水相可作为分散液A重复该反应步骤进行循环使用,循环反应10次催化剂活性未衰减。
实施例2
将3g柠檬酸与4g十四胺添加到25mL无水乙醇中,搅拌5小时,直到混合均匀。将沉淀物过滤并用乙醇洗涤数次。将得到的固体粉末在90℃下干燥,然后将干燥后的粉末在220℃下,空气气氛中加热2小时,直至白色粉末完全液化成橙色液体。然后,将2mL所得橙色液体逐滴分散到40mL,浓度为0.25M NaOH水溶液中,并在50℃下搅拌48h,得到分散液。最后,将得到的分散液在高速离心机中离心分离10min,转速为9000rpm,得到离心后的上清液。使用500DA透析膜处理上清液48h,去除小分子杂质,得到黄色碳量子点溶液。将所得溶液置于-30℃环境中直到完全冻实,在冷冻干燥机中干燥5天,得到碳量子点固体粉末,其平均尺寸为12nm。
将20mg碳量子点、1mg氯化钯加入到10mL水和40mL乙醇的混合溶液中,搅拌3h,静置6小时后,将10mL浓度为2mg mL-1的NaBH4水溶液滴加到上述体系中还原0.5h,直到溶液变为黑色悬浊液,然后以18000rpm转速于高速离心机中离心分离15min,得到固体乳液催化剂。
将所得的固体乳液催化剂分散于水中,配制浓度为5wt%的分散液A。将10mL分散液A与5mL环己烷加入小瓶中,超声处理2min,然后搅拌20分钟使上述混合物乳化形成Pickering微小乳液,其液滴尺寸分布范围为0.1-1μm。将10mmol苯乙烯与30mmol NaBH4加入到10mL Pickering微小乳液形成的催化体系中,在30℃油浴锅中搅拌均匀,并反应0.5h。反应结束后向体系内添加数滴1M硫酸溶液直到破乳,实现油水分层,其中,产物乙苯溶解在有机相中,催化剂分散在水相中。有机相中的乙苯产物可经气相色谱检测得到产率为100%,包含催化剂的水相可作为分散液A重复该反应步骤进行循环使用,循环使用4次活性未衰减。
实施例3
将2g柠檬酸和2g十六胺添加到25mL无水乙醇中,搅拌3小时,直到混合均匀。将沉淀物过滤并用乙醇洗涤数次。将得到的固体粉末在70℃下干燥,然后将干燥后的粉末在200℃下,空气气氛中加热1小时,直至白色粉末完全液化成橙色液体。然后,将所得1mL橙色液体逐滴分散到20mL浓度为0.25M的NaOH水溶液中,并在40℃下搅拌36h,得到分散液。最后,将得到的分散液在高速离心机中离心分离8min,转速为8000rpm,得到离心后的上清液。使用500DA透析膜处理上清液36h,去除小分子杂质,得到黄色碳量子点溶液。将所得溶液置于-20℃以下环境中直到完全冻实,在冷冻干燥机中干燥4天,得到碳量子点固体粉末,其尺寸为8nm。
将500mg碳量子点、25mg氯铂酸加入10mL水和40mL乙醇的混合溶液中,搅拌5h,静置12小时后,将10mL浓度为2mg mL-1的NaBH4水溶液滴加到上述体系中还原1h,直到溶液变为黑色悬浊液,然后以20000rpm转速于高速离心机中离心分离20min,得到固体乳液催化剂。将所得的固体乳液催化剂分散于水中,配制浓度为2wt%的分散液A。
将6mL分散液A与3mL二氯甲烷加入到小瓶中,超声处理1min,然后搅拌15分钟使上述混合物乳化形成Pickering微小乳液,其液滴尺寸分布范围为0.1-1μm。将5mmol硝基苯与15mmol NaBH4加入到10mL上述Pickering微小乳液形成的催化体系中,在60℃油浴锅中搅拌均匀,并反应1h。反应结束后向体系内添加数滴1M硝酸溶液直到破乳,实现油水分层,其中,产物苯胺溶解在有机相中,催化剂分散在水相中。有机相中的苯胺产物可经气相色谱检测得到产率为98.3%,包含催化剂的水相可作为分散液A重复该反应步骤进行循环使用,循环使用5次活性未衰减。
实施例4
将2g柠檬酸和1.5g十八胺类添加到25mL无水乙醇中,搅拌2小时,直到混合均匀。将沉淀物过滤并用乙醇洗涤数次。将得到的固体粉末在80℃下干燥,然后将干燥后的粉末在200℃下,空气气氛中加热1.5小时,直至白色粉末完全液化成橙色液体。然后,将1.5mL所得橙色液体逐滴分散到30mL浓度为0.25M NaOH水溶液中,并在45℃下搅拌36h,得到分散液。最后,将得到的分散液在高速离心机中离心分离8min,转速为9000rpm,得到离心后的上清液。使用500DA透析膜处理上清液48h,去除小分子杂质,得到黄色碳量子点溶液。将所得溶液置于-20℃以下环境中直到完全冻实,在冷冻干燥机中干燥5天,得到碳量子点固体粉末,其平均尺寸为9nm。
将300mg碳量子点、20mg氯化钯加入到10mL水和40mL乙醇的混合溶液中,搅拌6h。静置10小时后,将10mL浓度为2mg mL-1的NaBH4水溶液滴加到上述体系中还原1h,直到溶液变为黑色悬浊液,然后以18000rpm转速于高速离心机中离心分离20min,得到固体乳液催化剂。
将所得的固体乳液催化剂分散于水中,配制浓度为3wt%的分散液A。将10mL分散液A与5mL乙酸乙酯加入到小瓶中,超声处理1min,然后搅拌20分钟使上述混合物乳化形成Pickering微小乳液,其液滴尺寸分布范围为0.1-1μm。将8mmol苯乙醇与24mmol H2O2加入到10mL上述Pickering微小乳液形成的催化体系中,在80℃油浴锅中搅拌均匀,并反应5h。反应结束后向体系内添加数滴1M盐酸溶液直到破乳,实现油水分层,其中,产物苯乙醛溶解在有机相中,催化剂分散在水相中。有机相中的苯乙醛产物可经气相色谱检测得到产率为99.9%,包含催化剂的水相可作为分散液A重复该反应步骤进行循环使用。
实施例5
将1.5g柠檬酸和2g十四胺添加到25mL无水乙醇中,搅拌3小时,直到混合均匀。将沉淀物过滤并用乙醇洗涤数次。将得到的固体粉末在85℃下干燥,然后将干燥后的粉末在200℃下,空气气氛中加热1.5小时,直至白色粉末完全液化成橙色液体。然后,将所得1mL橙色液体逐滴分散到20mL浓度为0.25M的NaOH水溶液中,并在35℃下搅拌36h,得到分散液。最后,将得到的分散液在高速离心机中离心分离8min,转速为8000rpm,得到离心后的上清液。使用500DA透析膜处理上清液36h,去除小分子杂质,得到黄色碳量子点溶液。将所得溶液置于-20℃以下环境中直到完全冻实,在冷冻干燥机中干燥4天,得到碳量子点固体粉末,其尺寸为12nm。
将600mg碳量子点、30mg氯化钯加入到10mL水和40mL乙醇的混合溶液中,搅拌6h。静置10小时后,将10mL浓度为2mg mL-1的NaBH4水溶液滴加到上述体系中还原1h,直到溶液变为黑色悬浊液,然后以18000rpm转速于高速离心机中离心分离20min,得到固体乳液催化剂。
将所得的固体乳液催化剂分散于水中,配制浓度为3wt%的分散液A。将10mL分散液A与5mL十氢萘加入小瓶中,超声处理2min,然后搅拌20分钟使上述混合物乳化形成Pickering微小乳液,其液滴尺寸分布范围为0.1-1μm。将10mmol苯乙烯与30mmol NaBH4加入到10mL Pickering微小乳液形成的催化体系中,在40℃油浴锅中搅拌均匀,并反应0.5h。反应结束后向体系内添加数滴1M硫酸溶液直到破乳,实现油水分层,其中,产物乙苯溶解在有机相中,催化剂分散在水相中。有机相中的乙苯产物可经气相色谱检测得到产率为100%,包含催化剂的水相可作为分散液A重复该反应步骤进行循环使用,循环使用3次活性未衰减。
实施例6
将1g柠檬酸和4g十八胺类添加到25mL无水乙醇中,搅拌2小时,直到混合均匀。将沉淀物过滤并用乙醇洗涤数次。将得到的固体粉末在80℃下干燥,然后将干燥后的粉末在200℃下,空气气氛中加热1.5小时,直至白色粉末完全液化成橙色液体。然后,将3mL所得橙色液体逐滴分散到60mL浓度为0.25M NaOH水溶液中,并在45℃下搅拌36h,得到分散液。最后,将得到的分散液在高速离心机中离心分离8min,转速为9000rpm,得到离心后的上清液。使用500DA透析膜处理上清液48h,去除小分子杂质,得到黄色碳量子点溶液。将所得溶液置于-20℃以下环境中直到完全冻实,然后在冷冻干燥机中干燥5天,得到碳量子点固体粉末,其平均尺寸为11nm。
将300mg碳量子点、20mg氯化钌加入到10mL水和40mL乙醇的混合溶液中,搅拌6h。静置10小时后,将10mL浓度为2mg mL-1的NaBH4水溶液滴加到上述体系中还原1h,直到溶液变为黑色悬浊液,然后以18000rpm转速于高速离心机中离心分离20min,得到固体乳液催化剂。
将所得的固体乳液催化剂分散于水中,配制浓度为5wt%的分散液A。将10mL分散液A与5mL甲苯加入到小瓶中,超声处理1min,然后搅拌20分钟使上述混合物乳化形成Pickering微小乳液,其液滴尺寸分布范围为0.1-1μm。将8mmol糠醇与24mmol H2O2加入到10mL上述Pickering微小乳液形成的催化体系中,在80℃油浴锅中搅拌均匀,并反应3h。反应结束后向体系内添加数滴1M盐酸溶液直到破乳,实现油水分层,其中,产物糠醛溶解在有机相中,催化剂分散在水相中。有机相中的糠醛产物可经气相色谱检测得到产率为89%,包含催化剂的水相可作为分散液A重复该反应步骤进行循环使用,循环使用2次活性未衰减。
实施例7
将2g柠檬酸和2g十四胺添加到25mL无水乙醇中,搅拌1小时,将沉淀物过滤并用乙醇洗涤数次。将得到的固体粉末在40℃下干燥24小时,然后将干燥后的粉末在200℃下,空气气氛中加热1.5小时,直至白色粉末液化成橙色液体。然后,将5mL所得橙色液体逐滴分散到100mL的NaOH水溶液中,NaOH浓度为0.25M,并在35℃下搅拌48h。将得到的分散液在高速离心机中离心分离10min,转速为9000rpm,得到离心后的上清液。使用500DA透析膜处理上清液48h,去除小分子杂质,得到黄色碳量子点溶液。将所得溶液在-30℃下处理6h冻实,然后在冷冻干燥机中干燥5天,得到碳量子点固体粉末,平均尺寸为10nm。
称量碳量子点100mg、氯化钯20mg于10mL的水和40mL乙醇混合物中,搅拌4h。静置12小时后,将10mL NaBH4水溶液(浓度为2mg mL-1)滴加到上述体系中还原1h直到溶液变为黑色悬浊液,然后以20000rpm转速于高速离心机中离心分离20min,得到固体乳液催化剂。
将所得乳液催化剂分散于水中,配制浓度为1wt%的分散液A。将4mL上述分散液A和2mL甲苯加入小瓶中,超声处理0.5min,然后搅拌10分钟使上述混合物乳化形成Pickering微小乳液,其液滴尺寸在0.1-1μm范围内。将2mmol肉桂醇与6mmol H2O2加入到6mL上述微小乳液体系,在80℃油浴条件下反应60min,反应结束后添加数滴1M盐酸溶液直到破乳,实现油水分层,甲苯中产物肉桂醛经气相色谱检测其产率为98%,包含催化剂的水相可作为分散液A重复该反应步骤进行循环使用,循环使用3次活性未衰减。
实施例8
将2g柠檬酸和0.5g十八胺添加到25mL无水乙醇中,搅拌1小时,将沉淀物过滤并用乙醇洗涤数次。将得到的固体粉末在50℃下干燥24小时,然后将干燥后的粉末在200℃下,空气气氛中加热2小时,直至白色粉末液化成橙色液体。然后,将所得橙色液体逐滴分散到100mL的NaOH水溶液中,NaOH浓度为0.25M,并在40℃下搅拌48h。将得到的分散液在高速离心机中离心分离10min,转速为9000rpm,得到离心后的上清液。使用500DA透析膜处理上清液48h,去除小分子杂质,得到黄色碳量子点溶液。将所得溶液在-30℃下处理6h冻实,然后在冷冻干燥机中干燥5天,得到碳量子点固体粉末,其平均尺寸为11nm。
称量碳量子点200mg、氯化钌20mg于25mL的水和乙醇混合物(水与乙醇体积比为1:4)中,搅拌4h。静置12小时后,将10mL NaBH4水溶液(浓度为2mg mL-1)滴加到上述体系中还原1h直到溶液变为黑色悬浊液,然后以20000rpm转速于高速离心机中离心分离20min,得到固体乳液催化剂。
将所得乳液催化剂分散于水中,配制浓度为3wt%的分散液A。将4mL上述分散液A和2mL环己烷加入小瓶中,超声处理0.5min,然后搅拌10分钟使上述混合物乳化形成Pickering微小乳液,其液滴尺寸在0.1-1μm范围内。将2mmol对氯硝基苯与6mmol NaBH4加入到6mL上述微小乳液催化体系中,在50℃油浴条件下反应2h,反应结束后添加数滴1M硫酸溶液直到破乳,实现油水分层,环己烷中产物对氯苯胺经气相色谱检测其产率为88%,包含催化剂的水相可作为分散液A重复该反应步骤进行循环使用,循环使用5次活性未衰减。
应当理解的是,上述实施例仅为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (8)

1.一种Pickering微小乳液催化体系的构建方法,其特征在于,包括以下步骤:
第一步,制备Pickering微小乳液催化剂/乳化剂,具体步骤如下:
1.1)制备表面改性的碳量子点:
首先,将柠檬酸和胺类化合物添加到无水乙醇中,以柠檬酸为碳源,使用胺类化合物改性剂对碳量子点进行修饰,后处理得到橙色液体;其中每25 mL无水乙醇中,对应加入1.5-3g柠檬酸、0.1-4 g胺类化合物;
然后,将橙色液体逐滴分散到NaOH水溶液中,并在35-50 oC下搅拌24-48 h,得到分散液;其中,NaOH水溶液与橙色液体的体积比为20:1;
最后,将分散液高速离心分离后,得到上清液;使用500DA透析膜处理上清液24-48 h,去除小分子杂质,得到黄色碳量子点溶液;将所得溶液置于-10 oC以下环境中直到完全冻实,在冷冻干燥机中干燥得到碳量子点固体粉末,其尺寸为8-12 nm;
1.2)制备乳液催化剂:
将碳量子点、金属盐加入水和乙醇的混合溶液中,搅拌3-6 h,其中每50 mL水和乙醇的混合溶液中对应加入20-1000 mg碳量子点、1-50 mg金属盐,水和乙醇的混合溶液中水与乙醇体积比为1:4;静置6-18小时后,将NaBH4水溶液滴加到上述体系中还原0.5-2 h,直到溶液变为黑色悬浊液,然后高速离心分离后得到固体乳液催化剂;其中,每50 mL水和乙醇的混合溶液中对应加入10mL浓度为2mg mL-1的NaBH4水溶液;
第二步,构建Pickering微小乳液催化体系,具体步骤如下:
将所得的固体乳液催化剂分散于水中,配制浓度为0.05 wt%-5 wt%的分散液A;再将分散液A加入与水不互溶的有机溶剂加入小瓶中,其中分散液与有机溶剂的体积比为2:1,超声处理0.5 -2 min,然后搅拌10-20分钟使上述混合物乳化形成Pickering微小乳液,其液滴尺寸分布范围为0.1-1μm。
2.根据权利要求1所述的一种Pickering微小乳液催化体系的构建方法,其特征在于,所述步骤1.1)中,胺类化合物为十二胺,十四胺,十六胺和十八胺中的一种。
3.根据权利要求1所述的一种Pickering微小乳液催化体系的构建方法,其特征在于,所述步骤1.1)中,离心转速为6000-9000 rpm,离心时间为5-10 min;所述步骤1.2)中,离心转速为18000-26000 rpm,离心时间为15-35 min。
4.根据权利要求1所述的一种Pickering微小乳液催化体系的构建方法,其特征在于,所述步骤1.2)中,金属盐为氯化钌、氯化钯和氯铂酸中的一种。
5.根据权利要求1所述的一种Pickering微小乳液催化体系的构建方法,其特征在于,所述第二步中,有机溶剂为甲苯,环己烷,二氯甲烷,乙酸乙酯,十氢萘或其他与水不相溶的有机物。
6.一种权利要求1-5任一所述的构建方法得到的Pickering微小乳液催化体系的应用,其特征在于,该催化体系应用于双相催化反应中。
7.根据权利要求6所述的一种Pickering微小乳液催化体系的应用,其特征在于,将反应物与水溶性氧化剂/还原剂加入Pickering微小乳液形成的催化体系中,在30-90 oC油浴锅中搅拌均匀,并反应0.5-5 h;其中,反应物与氧化剂/还原剂摩尔比为1:3,每10 mL乳液中加入2 -10 mmol反应物;反应结束后向体系内添加数滴1 M 无机酸溶液直到破乳,实现油水分层,其中,产物溶解在有机相中,催化剂分散在水相中;有机相中的产物经气相色谱检测得到产率,包含催化剂的水相作为分散液A重复步骤二进行循环使用;所述的无机酸溶液为盐酸、硫酸、硝酸或其他无机酸。
8.根据权利要求7所述的一种Pickering微小乳液催化体系的应用,其特征在于,所述的反应物为醇、烯烃及硝基类化合物;所述的氧化剂为H2O2,所述的还原剂为NaBH4
CN202211218392.XA 2022-10-05 2022-10-05 一种Pickering微小乳液催化体系的构建方法及其应用 Active CN115501875B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202211218392.XA CN115501875B (zh) 2022-10-05 2022-10-05 一种Pickering微小乳液催化体系的构建方法及其应用
US18/479,002 US20240116040A1 (en) 2022-10-05 2023-09-30 Method for preparing pickering miniemulsion and its catalytic application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211218392.XA CN115501875B (zh) 2022-10-05 2022-10-05 一种Pickering微小乳液催化体系的构建方法及其应用

Publications (2)

Publication Number Publication Date
CN115501875A CN115501875A (zh) 2022-12-23
CN115501875B true CN115501875B (zh) 2023-08-18

Family

ID=84507522

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211218392.XA Active CN115501875B (zh) 2022-10-05 2022-10-05 一种Pickering微小乳液催化体系的构建方法及其应用

Country Status (2)

Country Link
US (1) US20240116040A1 (zh)
CN (1) CN115501875B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107934936A (zh) * 2018-01-04 2018-04-20 陕西科技大学 一种碳量子点的快速制备方法
CN108212159A (zh) * 2018-01-18 2018-06-29 云南健牛生物科技有限公司 铁掺杂碳量子点/二氧化钛复合光催化剂制备及降解甲醛的方法
CN110270373A (zh) * 2019-06-25 2019-09-24 华南协同创新研究院 一种pH响应型Pickering乳液界面催化剂及其制备方法
CN110368826A (zh) * 2019-07-14 2019-10-25 山东理工大学 一种磁场及氧化还原双重响应的皮克林乳液的制备方法
CN110624582A (zh) * 2019-08-27 2019-12-31 浙江工业大学 一种碳纳米管内沉积金属粒子催化剂及其制备和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210363408A1 (en) * 2020-05-20 2021-11-25 University Of Wyoming Quantum dot nanofluids

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107934936A (zh) * 2018-01-04 2018-04-20 陕西科技大学 一种碳量子点的快速制备方法
CN108212159A (zh) * 2018-01-18 2018-06-29 云南健牛生物科技有限公司 铁掺杂碳量子点/二氧化钛复合光催化剂制备及降解甲醛的方法
CN110270373A (zh) * 2019-06-25 2019-09-24 华南协同创新研究院 一种pH响应型Pickering乳液界面催化剂及其制备方法
CN110368826A (zh) * 2019-07-14 2019-10-25 山东理工大学 一种磁场及氧化还原双重响应的皮克林乳液的制备方法
CN110624582A (zh) * 2019-08-27 2019-12-31 浙江工业大学 一种碳纳米管内沉积金属粒子催化剂及其制备和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Inverse Pickering emulsions stabilized by carbon quantum dots: Influencing factors and their application as templates;Xiangang Zhai et al.;Chemical Engineering Journal(第345期);209-220 *

Also Published As

Publication number Publication date
US20240116040A1 (en) 2024-04-11
CN115501875A (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
Cho et al. Janus colloid surfactant catalysts for in situ organic reactions in Pickering emulsion microreactors
US20100204518A1 (en) Sintering resistant catalyst for use in hydrogenation and dehydrogenation reactions and methods for producing the same
Liu et al. Preparation of Janus-type catalysts and their catalytic performance at emulsion interface
CN104844408B (zh) 一种催化α-蒎烯加氢制备顺式蒎烷的方法
Li et al. Selective oxidations on recoverable catalysts assembled in emulsions
JPH0610181B2 (ja) オキシム製造のための接触方法
CN113563201B (zh) 基于固定床微反应器连续高效合成3,4-二氯苯胺的方法
Schulz et al. Aqueous Rhodium Colloidal Suspension in Reduction of Arene Derivatives in Biphasic System: a Significant Physico‐chemical Role of Surfactant Concentration on Catalytic Activity
JPH07246343A (ja) 担持触媒の製造方法
CN107999116A (zh) 用于催化氯代芳硝基化合物选择加氢的催化剂
CN113145178B (zh) 一种Janus结构聚合物基纳米金属催化剂及其制备方法和应用
CN115501875B (zh) 一种Pickering微小乳液催化体系的构建方法及其应用
CN105253890A (zh) 一种一步法合成单分散SiO2微米粒子的方法
CN112337462A (zh) 一种通过硝酸蒸汽法制备的原子级分散Pd催化剂及其应用
CN111111652B (zh) 自支撑型AuPd合金介孔纳米球及其制备方法和应用
CN112774587A (zh) 一种磁性氧化铁@聚乙烯醇核-壳纳米结构的制备方法
KR20130037676A (ko) 나노입자 현탁액의 제조 방법
Ni et al. pH-Switchable Pickering miniemulsion enabled by carbon quantum dots for quasi-homogenized biphasic catalytic system
CN111203230B (zh) 一种Pd/FeOOH@RGO皮克林乳液及其催化碳碳偶联反应的应用
CN111389398A (zh) 分级中空二氧化硅限域氧化亚铜可见光催化剂的制备方法
CN111330574B (zh) 反相微乳法制备核壳型铈金催化剂的方法及催化剂的应用
CN114181716B (zh) 气体响应型Pickering乳化剂、制备方法及在Suzuki反应中的应用
CN109939696B (zh) 一种Pt-Fe纳米催化剂、其制备方法和应用
CN110090648B (zh) 一种还原氧化石墨烯负载的铜钯氧化物纳米颗粒及其制备方法和应用
Wissing et al. Synthesis and Immobilization of Metal Nanoparticles Using Photoactive Polymer‐Decorated Zeolite L Crystals and Their Application in Catalysis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant