CN115479924B - 一种基于温度响应型病毒分子印迹水凝胶荧光传感器的制备与应用 - Google Patents

一种基于温度响应型病毒分子印迹水凝胶荧光传感器的制备与应用 Download PDF

Info

Publication number
CN115479924B
CN115479924B CN202210896257.4A CN202210896257A CN115479924B CN 115479924 B CN115479924 B CN 115479924B CN 202210896257 A CN202210896257 A CN 202210896257A CN 115479924 B CN115479924 B CN 115479924B
Authority
CN
China
Prior art keywords
hydrogel
virus
temperature
fluorescence
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210896257.4A
Other languages
English (en)
Other versions
CN115479924A (zh
Inventor
蔡昌群
阳茜
许璐如
陈小明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangtan University
Original Assignee
Xiangtan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangtan University filed Critical Xiangtan University
Priority to CN202210896257.4A priority Critical patent/CN115479924B/zh
Publication of CN115479924A publication Critical patent/CN115479924A/zh
Application granted granted Critical
Publication of CN115479924B publication Critical patent/CN115479924B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/042Elimination of an organic solid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明提供了一种温度响应型病毒分子印迹水凝胶荧光传感器的制备方法及应用。在本发明中,碳点(CDs)作为荧光信号源,EV71作为模板病毒,加入温敏单体N‑异丙基丙烯酰胺(NIPAAm)进行印迹制备得到水凝胶印迹聚合物,并基于EV71对CDs的荧光猝灭实现对EV71的检测。该传感器同时结合了温敏单体NIPAAm和分子印迹技术的优点,实现了在37℃(低温)对EV71的高特异性识别,45℃(高温)对EV71的非破坏性洗脱,检测速度快,特异性高,操作简便。此外,由于碳点在结合不同浓度目标后荧光淬灭程度不同,可以实现荧光可视化分析。本发明提供的策略为智能型病毒分子印迹检测病毒奠定了很好的基础,对病毒的高特异性识别与便携式检测具有重要的理论意义和实际应用价值。

Description

一种基于温度响应型病毒分子印迹水凝胶荧光传感器的制备 与应用
技术领域
本发明属于分析化学检测技术领域,具体涉及一种基于温度响应的病毒分子印迹水凝胶荧光传感器的制备及应用。
背景技术
病毒检测的常规方法包括基于聚合酶链反应(PCR)的方法,例如实时定量 (RT)q-PCR、酶联免疫吸附试验(ELISA)和基于核酸序列扩增(NASBA) 等方法。然而,这些方法存在灵敏度低(ELISA方法)、耗时长(基于PCR的技术)等缺陷。这些缺陷阻碍了它们应用于环境样本中病毒的实时检测。病毒实时检测需要满足一些必要因素,例如高灵敏度、快速检测、可靠性、重现性、代表性和成本效益。
分子印迹聚合物(MIP)作为一种人工仿生受体,利用印迹腔与目标物之间的形貌记忆,以及氢键、静电作用、疏水作用、配位作用等,可以高选择性识别目标分子,具有灵敏度高,特异性强,稳定性好,成本低等优点。然而,由于病毒分子尺寸较大,结构较脆弱,印迹和洗脱比较困难,导致分子印迹技术在病毒检测领域的应用受到了很大的限制,特异性和耗时低效的缺陷导致该技术难以满足环境样本中病毒实时检测的需要。
为了解决上述问题,人们提出了一类新型策略,即智能刺激响应型分子印迹聚合物。刺激响应型MIP是指在MIP制备过程中引入智能化材料,将受到的外部刺激信号转化为尺寸形态的变化,进而促进对目标物的结合或释放,改变其对目标分子的亲和力。具体的刺激包括温度、光、pH、离子以及特定分子等。例如,赵等人将pH敏感材料聚丙烯酸(PAA)填充到印迹孔洞内制备得到了pH 响应MIP,其印迹腔溶胀和收缩状态之间的切换实现了对目标物的高效结合和释放[Zhao W F.,Fang B H.,Li N.,Nie S Q.,Wei Q.,Zhao C S.Journalof Applied Polymer ence.2009,113(2):916-921];米诺拉等人利用对苯偶氮丙烯酰苯胺成功制备了光响应MIP膜,通过在光照射下改变结合识别位点的几何形状,进而得到对底物的高亲和力[Minoura N.,Idei K.,Rachkov A.,Choi Y.W.,Ogiso M.,Matsuda K.Macromolecules.2004,37(25),9571-9576.]。此外,水凝胶材料与分子印迹技术的结合也具有重大意义,水凝胶作为一类轻度水聚合网络,具有优异的柔软性,延展性,生物相容性,稳定性,刺激响应性[Mandal A.,Clegg J.R.,Anselmo A.C., MitragotriS.Bioeng.Transl.Med.2020,5(2),e10158.]。水凝胶印迹不仅可以得到稳定均一的印迹腔,还可以与智能型材料结合对外界刺激实现明显快速的响应,最终实现对目标物的实时快速分析。
基于上述背景,将病毒分子印迹技术与智能型材料,水凝胶技术相结合,构建智能型病毒分子印迹水凝胶传感器,对于解决当前病毒传感器应用于环境样品中病毒检测时特异性低,耗时低效等缺陷具有潜在的应用价值,对于实现病毒的现场实时精确检测具有重要的意义。
发明内容
本发明的目的是提供一种温度响应的病毒分子印迹水凝胶荧光传感器的制备方法,并将所述分子印迹比率型荧光传感器应用于病毒分子的特异性识别与检测,提高病毒实际检测的效果。
本发明的目的通过如下技术方案实现。
一种温度响应型病毒分子印迹水凝胶荧光传感器的制备方法,其特征在于,该方法具有以下工艺步骤:
(1)基于荧光碳量子点和温敏单体的水凝胶病毒分子印迹聚合物(MIPs)的制备:通过柠檬酸和Tris合成蓝色荧光碳点(CDs);随后,将CDs加到功能单体、温度敏感单体、交联剂和模板病毒肠道病毒71型(EV71)的溶液里一起在37℃水浴中磁力搅拌预聚合1h;最后再往预聚合液体中加入引发剂和促进剂,并迅速转移至凝胶固定板中,37℃下进行聚合反应;待反应完成后,将所得水凝胶用超纯水多次洗涤除去未结合的单体和病毒,然后在45℃下振荡洗脱模板,得到与模板分子相匹配且具有特异性结合位点的印迹聚合物;
(2)一种温度响应型病毒分子印迹水凝胶荧光传感器的制备:基于水凝胶 MIP在45℃时吸水溶胀,印迹位点发生可逆膨胀,释放模板病毒,37℃时脱水收缩,吸附目标病毒的温敏特点,在45℃下快速洗脱模板病毒EV71后,取上述制备得到的水凝胶MIP,裁成10mm×15mm大小并置于2mL超纯水中,加入一定浓度的EV71,在37℃下振荡孵育实现对EV71的快速吸附,由于EV71 与水凝胶中CDs的相互作用最终导致CDs的荧光被猝灭,得到随EV71浓度逆相关的荧光强度变化,通过记录456nm处CDs的荧光强度变化,最终构建得到一种温度响应型病毒分子印迹水凝胶荧光传感器。
进一步地,本发明提供了上述温度响应型病毒分子印迹水凝胶荧光传感器的使用方法。其特征在于,该方法具有以下工艺步骤:
(1)在最佳条件下加入不同浓度的EV71病毒,记录荧光分光光度计测得的荧光信号,考察所述传感器对EV71病毒的检测范围和检测限;
(2)考察了所述传感器对EV71病毒的选择性和竞争性吸附能力;
(3)考察了所述传感器对EV71病毒的血清加标回收能力;
(4)考察了所述传感器对EV71病毒的重现性,可重复性和稳定性。
与现有技术相比,本发明具有以下有益效果:
(1)以丙烯酰胺(AAm)为凝胶基底,N-异丙基丙烯酰胺(NIPAAm)为温敏单体和亲水性单体,既能够提高传感器的生物相容性,又能够通过控制温度来实现对EV71的快速洗脱和高效、高特异性识别,且不会损伤模板;
(2)以CDs为荧光信号源,基于结合EV71后的荧光淬灭,构建了一个灵敏且直观的荧光检测体系;
(3)所述温敏型病毒分子印迹水凝胶能够在45℃下实现对模板病毒的快速洗脱,而不需要添加额外的洗脱剂,且所述印迹聚合物和模板均可回收与循环使用,对环境相对友好;
(4)所述病毒分子印迹聚合物制备成本低廉,传感器的构建过程简单,操作简便,对操作人员的专业要求不高,在实际应用中具有广阔前景。
附图说明
[图1]所述温度响应型病毒分子印迹水凝胶荧光传感器的构建及检测原理图
[图2]可行性分析(A)MIP吸附EV71前后的荧光光谱;(B)NIP吸附EV71 前后的荧光光谱
[图3]不同温度下MIP和NIP对EV71的吸附-解吸荧光比值,以及未加温敏单体NIPAAm制备得到的MIP对EV71的吸附-解吸值荧光比值变化图
[图4](A)CDs的红外光谱图;(B)MIP和NIP的红外光谱图
[图5](A)MIP,(B)NIP的扫描电子显微镜图
[图6](A)MIP吸附不同浓度的EV71后在456nm处的荧光强度变化(CEV71: 0.075~2.0pM);(B)MIP吸附EV71后的ΔF与EV71浓度(0.075~2.0pM)之间的线性关系
[图7](A)传感器对EV71的选择性实验;(B)传感器对EV71的竞争性实验 (H5N1,H7N9,HAV,JEV为干扰病毒)
[图8](A)传感器对EV71的重现性考察;(B)传感器对EV71的可重复性考察;(C)传感器对EV71的稳定性考察
具体实施方案
在此,将结合附图及实施例,对本发明的具体实施方案作进一步的详细描述。以下实施例用于说明本发明,但不限制本发明的应用范围及扩展。
实施例1:一种基于温度响应型病毒分子印迹水凝胶荧光传感器的制备
(1)碳点(CDs)的制备:将柠檬酸(CA,1.0505g,5.0mmol)和Tris(0.6055 g,5.0mmol)超声溶于装有20mL超纯水的50mL烧杯中,完全溶解后放入微波炉中,用560W的功率持续加热2min,取出用玻璃棒搅拌至均匀,再放入微波炉中,之后每加热30s取出搅拌均匀并用365nm紫外灯检测,直至液体变粘稠且在紫外灯下呈亮蓝色停止反应,加入15mL超纯水离心除去沉淀杂质并收集得到CDs。
(2)MIP/NIP的制备:称取150mg(1.33mmol)NIPAAm,10mg(0.065 mmol)N,N’-亚甲基双丙烯酰胺(MBA),25mg(0.35mmol)AAm于10mL 离心管中,加入2mL超纯水超声溶解,再加入100μL CDs,超声均匀,最后加入20μL模板病毒EV71(333.36pmol/L),在37℃水浴中磁力搅拌预聚合1h;之后再往预聚合液体中加入100μL 10%过硫酸铵(APS)作为引发剂,10μLN,N,N’,N’-四甲基乙二胺(TEMED)作为促进剂,迅速转移至厚度为1mm的凝胶固定板中,在37℃下反应1.5h;将得到的水凝胶用超纯水洗涤多次除去未结合的单体和病毒,然后在45℃下用超纯水振荡洗脱模板病毒,直至检测不到EV71 的荧光峰为止,至此,制备得到带有EV71印迹位点的印迹水凝胶MIP。除了不添加模板病毒EV71,非印迹水凝胶的制备方法与上述相同。
(3)所述温度响应型病毒分子印迹水凝胶荧光传感器的制备:将得到的印迹水凝胶裁成10mm×15mm大小用两片石英片夹住进行荧光测试,记录印迹水凝胶在456nm处的原始荧光强度F0。随后加入不同的浓度的EV71溶液,在37℃下振荡孵育30min,记录此时水凝胶在456nm处的荧光强度F,通过计算加入 EV71前后水凝胶的荧光强度差ΔF(ΔF=F-F0)评估EV71的浓度,最终构建一种温度响应型病毒分子印迹水凝胶荧光传感器。检测条件:激发波长:370nm,发射波长:456nm;激发狭缝:5nm,发射狭缝:5nm,电压:800V。
实施例2:所述温度响应型病毒分子印迹水凝胶荧光传感器检测病毒的可行性验证
为了验证本发明的可实施性,本实施例对所述传感器的构建原理进行了验证。如图2所示,在加入相同浓度的EV71后,MIP在456nm处的荧光强度发生明显的猝灭,而NIP在456nm没有发生明显变化;得到MIP的ΔF远大于NIP的ΔF,说明所构建的MIP传感器可以很好的吸附EV71。
实施例3:所述温度响应型病毒分子印迹水凝胶荧光传感器及中间产物的性能、形貌和结构表征
通过荧光分光光度计对传感器的温度响应性能进行了考察,研究了在不同温度下MIP和NIP对目标病毒的吸附-解吸荧光比值,以及未加温敏单体NIPAAm 的MIP吸附-解吸值荧光比值变化图(图3);37℃时,加入温敏单体的印迹水凝胶的荧光强度均大于45℃的,而未加入温敏单体的印迹水凝胶和非印迹水凝胶的前后荧光变化值不大;这是由于加入NIPAAm的印迹水凝胶会随温度升高而处于疏水状态,从而发生收缩现象;而温度下降会使印迹水凝胶亲水膨胀;
利用傅里叶变换红外光谱仪对材料进行了结构和形貌的表征。图4为(A) CDs,(B)MIP,NIP的红外光谱图;在3420cm-1和1210cm-1附近的峰,分别为-OH的拉伸和面内弯曲振动,表明羟基被封端在CDs的表面;MIP和NIP 合成后保留了CDs在3420cm-1的特征吸收峰,而且MIP和NIP相比没有明显差异,表明CDs成功掺杂进水凝胶中,印迹过程对CDs的组成几乎没有影响;
将MIP和NIP冻干后,通过扫描电子显微镜分别对MIP和NIP的形貌进行了表征,结果如图5所示,制得的水凝胶呈多孔状,而MIP相对于NIP来说拥有更多的空隙,这是由于印记水凝胶洗脱了模板病毒后会产生更多的空穴;这些结果均可表明,成功制备了所述的温度响应型病毒分子印迹水凝胶荧光传感器。
实施例4:温度响应型病毒分子印迹水凝胶荧光传感器的应用
本实施例的实验条件为:印迹水凝胶裁成10mm x 15mm大小,分散在超纯水中,pH为7.4,吸附时间为30min,温度为37℃。具体实施方案为:取特定浓度的EV71加入到10mm×15mm大小的印迹水凝胶溶液中,将整个体系在 37℃下振荡吸收30min后,用两片石英板将水凝胶夹在中间,测其荧光强度。
(1)所述温度响应型病毒分子印迹水凝胶荧光传感器对不同浓度EV71的检测分析
按上述实验步骤,以本发明所述的荧光传感器对不同浓度的EV71进行检测分析,结果如图6所示,在添加不同浓度的目标病毒后,印迹水凝胶在456nm 处的荧光发射强度相应地发生了不同程度的猝灭,在相同目标浓度下,非印迹水凝胶NIP在456mm处的荧光发射强度变化不明显。最终,所制备的传感器对 EV71的分析浓度范围为0.075~2.0pM,检测限为0.12pM。,该传感器检测线性范围较宽,检测限低,检测效率好,总体效果良好,可以满足病毒的检测需求;
(2)所述温度响应型病毒分子印迹水凝胶荧光传感器对EV71的选择性及竞争性实验
选择了相同浓度的甲型肝炎病毒(HAV),流感病毒(H5N1),流感病毒 (H7N9),日本脑炎病毒(JEV)作为干扰物来考察传感器对EV71的选择性,实验结果如图7(A)所示,可以看出,本发明所述的温度响应型病毒MIPs水凝胶荧光传感器对EV71的吸附能力明显优于对其他干扰病毒的吸附能力,表现出良好的选择性;通过同时加入相同浓度的EV71和其他干扰病毒考察了传感器的竞争性,结果如图7(B)所示,可以看出,在模板病毒EV71和其他病毒(H5N1 或H7N9或HAV或JEV)同时存在时,传感器对EV71的检测没有受到较为明显的影响,这证明本发明所述的温度响应型病毒分子印迹水凝胶荧光传感器对目标物良好的亲和力和抗干扰能力。
(3)所述温度响应型病毒分子印迹水凝胶荧光传感器对EV71的加标回收
采用了加标回收的方法来评估前面所述的方法对实际样品的分析能力。将保存在4℃下的人血清样品用磷酸盐缓冲溶液(20mM,pH=7.4)稀释100 倍,分别向其中加入浓度为0.2pM,0.4pM,0.8pM,1.6pM,2.5pM的EV71,用本发明制备的温度响应型病毒分子印迹水凝胶荧光传感器进行检测。实验结果如表1所示,加标回收率为97.24%~105.31%;
表1在稀释100倍人血清样品中的加标回收实验
(4)所述温度响应型病毒分子印迹水凝胶荧光传感器的重现性、可重复性和稳定性考察
通过使用7个不同批次合成的传感器分别对相同浓度的EV71进行荧光测试来评价传感器的重现性,结果如图8(A)所示,7次测定的结果几乎无差别,展现出良好的重现性;通过使用同一传感器对相同浓度的目标病毒进行5次循环检测来评价传感器的可重复性,结果如图8(B)所示,5次循环后仅发生较小程度的信号下降,表明构建的传感器具有良好的可重复性;通过将同一批制备的传感器放置1周,2周,3周,1个月,2个月和4个月之后用于检测目标病毒EV71来评价传感器的稳定性,结果如图8(C)所示,在放置4个月后,检测得到的最终信号仅发生较小程度的变化,最低值仍为原始值的90.6%,表明所制得的传感器至少可以储存长达4个月的时间以上,具有良好的稳定性。

Claims (3)

1.一种温度响应型病毒分子印迹水凝胶荧光传感器的制备方法,其特征在于:以CDs为荧光信号源,丙烯酰胺(AAm)为凝胶单体,N-异丙基丙烯酰胺(NIPAAm)为温敏单体和亲水性单体,在37℃下进行聚合制备得到具有EV71印迹位点和CDs荧光的温敏型印迹水凝胶,该水凝胶在45℃下吸水溶胀,目标病毒EV71从变形的印迹位点中释放出来,而在37℃下水凝胶脱水收缩,EV71被重新吸附到契合的印迹位点中,由于EV71会对水凝胶中CDs的荧光造成猝灭,通过记录水凝胶吸附EV71前后荧光强度的变化最终构建所述温度响应型病毒分子印迹水凝胶荧光传感器;
所述制备方法包括以下步骤:
1)CDs的制备:将5.0mmol柠檬酸和5.0mmolTris超声溶于装有20mL超纯水的烧杯中,放入微波炉中用560W的功率持续加热2min,取出用玻璃棒搅拌至均匀,再放入微波炉中,之后每加热30s取出搅拌均匀并用365nm紫外灯检测,直至液体变粘稠且在紫外灯下呈亮蓝色停止反应,加入15m L超纯水离心除去沉淀杂质并收集得到CDs;
2)MIP/NIP的制备:取1.33mmol NIPAAm,0.065mmol MBA,0.35mmol AAm于10mL离心管中,加入2mL超纯水超声溶解,再依次加入100μL CDs和20μL 333.36pmol/L模板病毒EV71,37℃水浴磁力搅拌预聚合1h,随后加入100μL 10%APS作为引发剂,10μL TEMED作为促进剂,迅速转移至厚度为1mm的凝胶固定板中37℃反应1.5h,得到的水凝胶用超纯水洗涤多次除去未结合的单体和病毒,然后在45℃下用超纯水振荡洗脱模板病毒,直至检测不到EV71的荧光峰为止,至此,制备得到带有EV71印迹位点的水凝胶MIP,除了不添加模板病毒EV71,非印迹水凝胶的制备方法与上述相同;
3)所述温度响应型病毒分子印迹水凝胶荧光传感器的制备:将得到的印迹水凝胶裁成10mm×15mm大小放置在2mL的超纯水中,用两片石英片夹住进行荧光测试,记录印迹水凝胶在456nm处的原始荧光强度F0,随后加入不同的浓度的EV71溶液,在37℃下振荡孵育30min,记录此时水凝胶在456nm处的荧光强度F,通过计算加入EV71前后水凝胶的荧光强度差ΔF评估EV71的浓度,最终构建一种温度响应型病毒分子印迹水凝胶荧光传感器;检测条件:激发波长:370nm,发射波长:456nm,激发狭缝:5nm,发射狭缝:5nm,电压:800V。
2.根据权利要求1所述的一种温度响应型病毒分子印迹水凝胶荧光传感器的制备方法,其特征在于:以NIPAAm为温敏单体和亲水性单体,既提高传感器的生物相容性,又能够通过控制温度实现对EV71的快速洗脱和高效、高特异性识别。
3.根据权利要求1所述制备方法制备得到的一种温度响应型病毒分子印迹水凝胶荧光传感器的应用,其特征在于:用所述温度响应型病毒分子印迹水凝胶荧光传感器对不同浓度的EV71溶液进行分析,用来评估其对EV71的检测范围和检测限大小;用所述温度响应型病毒分子印迹水凝胶荧光传感器检测相同浓度的干扰病毒溶液及目标病毒与干扰病毒同时存在的混合溶液,用以评估其对EV71的选择性识别和竞争性吸附能力;将上所述温度响应型病毒分子印迹水凝胶荧光传感器应用于人血清中EV71的加标回收,用以评估其对EV71的实际分析能力。
CN202210896257.4A 2022-07-28 2022-07-28 一种基于温度响应型病毒分子印迹水凝胶荧光传感器的制备与应用 Active CN115479924B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210896257.4A CN115479924B (zh) 2022-07-28 2022-07-28 一种基于温度响应型病毒分子印迹水凝胶荧光传感器的制备与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210896257.4A CN115479924B (zh) 2022-07-28 2022-07-28 一种基于温度响应型病毒分子印迹水凝胶荧光传感器的制备与应用

Publications (2)

Publication Number Publication Date
CN115479924A CN115479924A (zh) 2022-12-16
CN115479924B true CN115479924B (zh) 2024-05-07

Family

ID=84421693

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210896257.4A Active CN115479924B (zh) 2022-07-28 2022-07-28 一种基于温度响应型病毒分子印迹水凝胶荧光传感器的制备与应用

Country Status (1)

Country Link
CN (1) CN115479924B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110194822A (zh) * 2019-06-03 2019-09-03 西北师范大学 一种基于单臂TPE分子的温敏型双荧光Pdots的制备及应用
CN110283275A (zh) * 2019-06-27 2019-09-27 首都师范大学 碳量子点分子印迹纳米凝胶荧光传感器的合成及其应用
CN110437490A (zh) * 2019-06-19 2019-11-12 南阳师范学院 一种用于检测细胞色素c的温敏性分子印迹量子点及其制备方法和应用
CN110736725A (zh) * 2019-09-30 2020-01-31 湘潭大学 一种同时可视化检测两种病毒的分子印迹荧光传感器的制备方法及应用
KR102359333B1 (ko) * 2021-03-08 2022-02-08 한국과학기술연구원 디페닐보란 유도체를 포함하는 피루베이트 검출 센서, 이를 포함하는 피루베이트 검출용 형광 이미징 센서, 및 이를 이용한 피루베이트 검출 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110082328A (zh) * 2019-05-05 2019-08-02 江南大学 一种检测氯霉素的碳量子点-分子印迹荧光传感器材料及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110194822A (zh) * 2019-06-03 2019-09-03 西北师范大学 一种基于单臂TPE分子的温敏型双荧光Pdots的制备及应用
CN110437490A (zh) * 2019-06-19 2019-11-12 南阳师范学院 一种用于检测细胞色素c的温敏性分子印迹量子点及其制备方法和应用
CN110283275A (zh) * 2019-06-27 2019-09-27 首都师范大学 碳量子点分子印迹纳米凝胶荧光传感器的合成及其应用
CN110736725A (zh) * 2019-09-30 2020-01-31 湘潭大学 一种同时可视化检测两种病毒的分子印迹荧光传感器的制备方法及应用
KR102359333B1 (ko) * 2021-03-08 2022-02-08 한국과학기술연구원 디페닐보란 유도체를 포함하는 피루베이트 검출 센서, 이를 포함하는 피루베이트 검출용 형광 이미징 센서, 및 이를 이용한 피루베이트 검출 방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Visual Simultaneous Detection of Hepatitis A and B Viruses Based on a Mltifunctional Moleecularly Imprinted Fluorescence Sensor;蔡昌群;《analytical chemistry》;20191217;全文 *
新型分子印迹传感器高特异性检测肠道病毒71型;梁琨淞;《中国优秀硕士论文全文数据库(工程科技Ⅰ辑)》;20220515;全文 *
病毒分子印迹荧光传感器高灵敏度同时检测多种肝炎病毒;罗谅晖;《中国优秀硕士论文全文数据库(工程科技Ⅰ辑)》;20210215;全文 *

Also Published As

Publication number Publication date
CN115479924A (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
CN102516458B (zh) 一种专一结合指定糖蛋白的分子印迹聚合物及其制法和应用
Niu et al. Efficient one-pot synthesis of hydrophilic and fluorescent molecularly imprinted polymer nanoparticles for direct drug quantification in real biological samples
Percival et al. Molecular imprinted polymer coated QCM for the detection of nandrolone
CN107607498B (zh) 一种荧光纳米分子印记仿生传感器及其制备方法和应用
JP2013140183A (ja) ウエスタンブロット免疫検出法
He et al. Development of fluorescent lateral flow test strips based on an electrospun molecularly imprinted membrane for detection of triazophos residues in tap water
Silvestri et al. Polymeric devices containing imprinted nanospheres: a novel approach to improve recognition in water for clinical uses
CN105801782B (zh) 一种温敏型氧化石墨烯基印迹聚合物的制备方法及其用途
Liu et al. A molecularly imprinted polymer placed on the surface of graphene oxide and doped with Mn (II)-doped ZnS quantum dots for selective fluorometric determination of acrylamide
CN104136106A (zh) 具有聚合涂层的多孔膜及其制备和使用方法
Xiong-Hui et al. A review on bio-macromolecular imprinted sensors and their applications
KR20150135353A (ko) 생체 분자를 격리시키기 위한 표면 산화 및 관련 방법
US20200391169A1 (en) Droplet Microfluidic Synthesis of Electrically Distinct Polymer Particles for Detection, Quantification, and Barcoding
CN115479924B (zh) 一种基于温度响应型病毒分子印迹水凝胶荧光传感器的制备与应用
Wendenburg et al. Tailoring the retention of charged model compounds in polymer functionalized paper‐based microfluidic devices
Basinska et al. Design of polyglycidol-containing microspheres for biomedical applications
Liu et al. Photografted poly (methyl methacrylate)-based high performance protein microarray for hepatitis B virus biomarker detection in human serum
US20190276580A1 (en) Porous material and methods related thereto
CN106519150B (zh) 一种荧光偏振荧光磁性分子印迹传感器的制备方法
CN107132206B (zh) 病毒活性快速检测方法
Zhu et al. Synthesis of molecularly imprinted polymer via visible light activated RAFT polymerization in aqueous media at room temperature for highly selective electrochemical assay of glucose
Liang et al. A label-free immunosensor based on PHEMA/graphene oxide nanocomposite for simultaneous electrochemical determination of alpha fetoprotein
CN110437490B (zh) 一种用于检测细胞色素c的温敏性分子印迹量子点及其制备方法和应用
Hvidt et al. Contribution of entanglements to the equilibrium modulus of 1, 2-polybutadiene networks at small strains and estimate of the front factor
CN115746360A (zh) 一种间隙可调的柔性表面增强拉曼散射基底及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant