CN115478194B - 一种激光修复用NiCrWMoCoNbAlTi粉体材料及其制备方法 - Google Patents

一种激光修复用NiCrWMoCoNbAlTi粉体材料及其制备方法 Download PDF

Info

Publication number
CN115478194B
CN115478194B CN202110661374.8A CN202110661374A CN115478194B CN 115478194 B CN115478194 B CN 115478194B CN 202110661374 A CN202110661374 A CN 202110661374A CN 115478194 B CN115478194 B CN 115478194B
Authority
CN
China
Prior art keywords
less
equal
powder
powder material
laser repair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110661374.8A
Other languages
English (en)
Other versions
CN115478194A (zh
Inventor
张甲
侯万良
李冰
邓予婷
栾胜家
高明浩
常辉
朱宏博
徐娜
常新春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN202110661374.8A priority Critical patent/CN115478194B/zh
Publication of CN115478194A publication Critical patent/CN115478194A/zh
Application granted granted Critical
Publication of CN115478194B publication Critical patent/CN115478194B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/053Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 30% but less than 40%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/023Alloys based on nickel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • C23C24/106Coating with metal alloys or metal elements only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0848Melting process before atomisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明涉及激光修复材料领域,具体提供一种激光修复用NiCrWMoCoNbAlTi粉体材料及其制备方法。按重量百分比计,该合金粉末的化学成分及杂质含量如下:Ni余量;Cr32~35;Al0.50~1.10;Ti0.50~1.10;Co0.68~1.50;W4.30~5.30;Mo2.30~3.30;Nb0.50~1.10;Fe≤4.0;B≤0.008;O≤0.060;C≤0.1;Si≤0.4;Mn≤0.50;S≤0.010;P≤0.015。采用“预制母合金+超声气体雾化”两步法工艺:(1)真空感应熔炼制备母合金锭;(2)超声气体雾化制备粉体。采用该方法制得的合金粉末材料化学成分均匀、杂质含量少、流动性好、松装密度合理、成粉率高,适用于K640M、K417G及相似成分的涡轮发动机叶片的激光修复。

Description

一种激光修复用NiCrWMoCoNbAlTi粉体材料及其制备方法
技术领域
本发明涉及激光修复材料领域,具体提供一种激光修复用NiCrWMoCoNbAlTi粉体材料及其制备方法。
背景技术
高温合金叶片是涡轮发动机的关键部件,成品价格昂贵。由于其使役环境苛刻,承受环境介质的高温氧化、腐蚀,以及较大的气动力和高速运动粒子的冲蚀,会造成不同程度的损伤,导致叶片性能下降,无法满足使用要求。另外,由于叶片的成分复杂、铸造工艺难度大、后续加工精度要求高,造成其成品率低、生产成本高。因此对有损伤或缺陷的高温合金叶片进行修复,延长叶片的寿命,降低成本,具有巨大的经济效益。激光熔覆技术具有热影响区小、成型精度高、组织细小、易于实现自动化等特点,解决了传统修复方法(如:氩弧焊、真空钎焊、钨极惰性气体保护焊(TIG)和等离子体熔覆等)存在的热输入量大、易热变形或开裂和热疲劳损伤等技术缺陷,为叶片修复提供一条有效技术途径。然而获得与母合金基材相匹配、工艺性好的粉体填充材料是激光熔覆技术的前提与基础,为K640M、K417G及相似成分的涡轮发动机叶片的激光修复提供材料保障。
发明内容
本发明的目的在于提供一种激光修复用NiCrWMoCoNbAlTi粉体材料及其制备方法,采用该方法制得的合金粉末材料化学成分均匀、杂质含量少、流动性好、松装密度合理、成粉率高,适用于K640M、K417G及相似成分的涡轮发动机叶片的激光修复。
本发明的技术方案是:
一种激光修复用NiCrWMoCoNbAlTi粉体材料,按重量百分比计,该合金粉末的化学成分及杂质含量如下:Ni:余量;Cr:32~35;Al:0.50~1.10;Ti:0.50~1.10;Co:0.68~1.50;W:4.30~5.30;Mo:2.30~3.30;Nb:0.50~1.10;Fe:≤4.0;B:≤0.008;O:≤0.060;C:≤0.1;Si:≤0.4;Mn:≤0.50;S:≤0.010;P:≤0.015。
所述的激光修复用NiCrWMoCoNbAlTi粉体材料的制备方法,采用“预制母合金+超声气体雾化”两步法工艺,包括如下步骤:
步骤1:母合金锭制备
采用真空感应熔炼法制备母合金锭,将原料镍、铬、钨、钼、钴和铌置于镁铝坩埚内,抽真空,真空度不大于5Pa时加热,精炼温度1550±50℃,精炼时间7min~15min后浇注成雾化合金锭;
步骤2:粉末气体雾化制备
采用超声气体雾化技术制备粉体材料,将雾化合金锭置于镁铝坩埚内,铝和钛放入加料斗;抽真空,真空度不大于5Pa时加热,熔炼温度1520±50℃,停止抽真空,雾化炉体内充入氩气至常压,放入铝和钛继续熔炼1~3min,然后拔出中柱杆进行雾化,雾化介质为氩气,雾化压力4MPa~7MPa,合金液流量为3kg/min~5kg/min;
步骤3:对步骤2所制备的粉末进行粒度筛分,获得NiCrWMoCoNbAlTi粉体材料。
所述的激光修复用NiCrWMoCoNbAlTi粉体材料的制备方法,利用Hartman激波管原理使高压气体加速,并产生振荡频率为1~10万赫兹的脉冲气流,该气流直接冲击液态金属流,使其雾化成微小的液滴,随后液滴在飞行过程中与气体产生热交换后冷却凝固成合金粉末颗粒。
所述的激光修复用NiCrWMoCoNbAlTi粉体材料的制备方法,按重量百分比计,该粉体粒度组成为:+100目≤3%,-100目~+400目≥87%,-400目≤10%。
所述的激光修复用NiCrWMoCoNbAlTi粉体材料的制备方法,该粉体的流动性不大于25s/50g,松装密度不小于4g/cm3
所述的激光修复用NiCrWMoCoNbAlTi粉体材料的制备方法,该粉体颗粒呈球形或近球形。
所述的激光修复用NiCrWMoCoNbAlTi粉体材料的制备方法,该粉体成品率为55~75%。
本发明设计思想及原理如下:
激光熔覆用粉体材料的成分设计需要根据叶片合金的化学成分和组织结构进行调整优化,本发明设计的修复粉体材料由多种元素组成,包括固溶强化元素Cr、W、Mo、Co和沉淀强化元素Nb、Al、Ti,其熔覆层与K640M和K417G高温合金具有良好的适配性。然而多种合金元素的熔点差异较大(W的熔点3410℃,Mo的熔点2620℃,Ti的熔点1668℃,Al的熔点660℃),熔炼和雾化过程中如何保证合金成分的精确控制是技术难题。本发明中采用“预制母合金+超声气体雾化”两步法工艺,实现对合金成分的有效控制;同时,采用超声气体雾化技术并优化雾化工艺参数,实现合金粉末粒度和形貌有效控制。
本发明的优点及有益效果是:
采用本发明所述方法制得的激光修复用NiCrWMoCoNbAlTi粉体材料化学成分、杂质含量、形貌和粒度均得到有效控制,具有优异的流动性和松装密度,有利于有损伤或缺陷的K640M、K417G及相似成分的涡轮发动机叶片修复时形成高质量熔覆层,延长叶片使用寿命、降低成本,这对航空发动机技术发展具有重要意义,应用前景广阔。
附图说明
图1为实施例1中NiCrWMoCoNbAlTi合金粉末扫描电镜照片。
图2为实施例2中NiCrWMoCoNbAlTi合金粉末扫描电镜照片。
图3为实施例3中NiCrWMoCoNbAlTi合金粉末扫描电镜照片。
具体实施方式
在具体实施过程中,本发明一种激光修复用NiCrWMoCoNbAlTi粉体材料及其制备方法,所述NiCrWMoCoNbAlTi粉体材料的化学成分及杂质含量如表1所示。
表1 NiCrWMoCoNbAlTi合金粉体材料的化学成分及杂质含量
采用“预制母合金+超声气体雾化”两步法工艺,实现对粉末化学成分的有效控制,具体工艺过程如下:
步骤1:母合金锭制备
采用真空感应熔炼法制备母合金锭,将原料镍、铬、钨、钼、钴和铌置于镁铝坩埚内,抽真空,真空度不大于5Pa时加热,精炼温度1550±50℃,精炼时间7min~15min后浇注成雾化合金锭。
步骤2:粉末气体雾化制备
采用超声气体雾化技术制备粉体材料,利用Hartman激波管原理使高压气体加速,并产生振荡频率为1~10万赫兹的脉冲气流,该气流直接冲击液态金属流,使其雾化成微小的液滴,随后液滴在飞行过程中与气体产生热交换后冷却凝固成合金粉末颗粒。在雾化炉体中设置镁铝坩埚,将雾化合金锭置于镁铝坩埚内,铝和钛放入加料斗;抽真空,真空度不大于5Pa时加热,熔炼温度1520±50℃,停止抽真空,雾化炉体内充入氩气至常压,放入铝和钛继续熔炼1~3min,然后拔出中柱杆(中柱杆是一个堵在镁铝坩埚底部的长杆,防止熔炼时熔体从坩埚底部流出,而雾化时拔起,使熔体从坩埚内流出)进行雾化,雾化介质为氩气,雾化压力4MPa~7MPa,合金液流量为3kg/min~5kg/min。
步骤3:对步骤2所制备的粉末进行粒度筛分,粒度组成满足表2要求。
表2 NiCrWMoCoNbAlTi合金粉体粒度组成
粒度 +100目 -100目~+400目 -400目
含量(wt%) ≤3% ≥87% ≤10%
为了保证杂质含量满足要求,优选的原料为:
(1)镍:满足牌号Ni9996或相当规格、更高规格的电解镍;
(2)钴:满足牌号Co9995或相当规格、更高规格的电解钴;
(3)铝:满足牌号Al99.00或相当规格、更高规格的工业纯铝、精铝;
(4)铬:满足牌号JCr98.5A或相当规格、更高规格的金属铬;
(5)钛:0级(MHT-100)或1级(MHT-110)海绵钛;
(6)钨:牌号W-1或W-2的钨条;
(7)钼:牌号Mo-1或Mo-2的钼条;
(8)铌:牌号Nb-1或Nb-2的铌条;
下面,通过实施例和附图对本发明进一步详细阐述。
实施例1
本实施例中,制备激光修复用NiCrWMoCoNbAlTi粉体材料的配料如表3所示。
表3 NiCrWMoCoNbAlTi合金粉体材料的配料
本实施例中,激光修复用NiCrWMoCoNbAlTi粉体材料的制备方法如下:
步骤1:母合金锭制备
采用真空感应熔炼法制备母合金锭,将原料镍、铬、钨、钼、钴和铌置于镁铝坩埚内,抽真空,真空度2Pa时加热,精炼温度1550℃,精炼时间10min后浇注成雾化合金锭。
步骤2:粉末气体雾化制备
采用超声气体雾化设备制备粉体,将雾化合金锭置于镁铝坩埚内,铝和钛放入加料斗;抽真空,真空度1Pa时加热,熔炼温度1520℃,停止抽真空,雾化炉体内充入氩气至常压,放入铝和钛继续熔炼2min,然后拔出中柱杆进行雾化,雾化介质为氩气,雾化压力5MPa,合金液流量为5kg/min。
步骤3:对步骤2所制备的粉末进行粒度筛分,粒度组成如表4所示。
表4 实施例1合金粉末粒度组成
粒度 +100目 -100目~+400目 -400目
含量(wt%) 0.8% 92.1 7.1%
对步骤3所制备的NiCrWMoCoNbAlTi合金粉末进行表征:
(1)NiCrWMoCoNbAlTi合金粉末化学成分及杂质含量如表5所示。
表5 实施例1粉末的化学成分及杂质含量
(2)NiCrWMoCoNbAlTi合金粉末流动性为16.9s/50g,松装密度为4.42g/cm3
(3)NiCrWMoCoNbAlTi合金粉末颗粒呈球形或近球形(如图1)。
(4)NiCrWMoCoNbAlTi合金粉末成品率为71.5%。
实施例2
与实施例1不同之处在于,步骤2:采用超声气体雾化设备制备粉体,将雾化合金锭置于镁铝坩埚内,铝和钛放入加料斗。抽真空,真空度0.8Pa时加热,熔炼温度1550℃时停止抽真空,雾化炉体内充入氩气至常压,然后加入铝和钛继续熔炼3min后雾化,雾化介质为氩气,雾化压力6MPa,合金液流量为4kg/min,液态合金流经雾化喷嘴时被高压高速气流破碎成小液滴,随后液滴在飞行过程中与气体产生热交换后快凝成合金粉末。
对实施例2所制备的粉末进行粒度筛分,粒度组成如表6所示。
表6 实施例2粉末粒度组成
对实施例2所制备的NiCrWMoCoNbAlTi合金粉末进行表征:
(1)NiCrWMoCoNbAlTi合金粉末化学成分及杂质含量如表7所示。
表7 实施例2粉末的化学成分及杂质含量
(2)NiCrWMoCoNbAlTi合金粉末流动性为16.6s/50g,松装密度为4.46g/cm3
(3)NiCrWMoCoNbAlTi合金粉末颗粒呈球形或近球形(如图2)。
(4)NiCrWMoCoNbAlTi合金粉末成品率为67.3%。
实施例3
与实施例1不同之处在于,步骤2:采用超声气体雾化设备制备粉体,将雾化合金锭置于镁铝坩埚内,铝和钛放入加料斗。抽真空,真空度1Pa时加热,熔炼温度1500℃时停止抽真空,雾化炉体内充入氩气至常压,然后加入铝和钛继续熔炼2min后雾化,雾化介质为氩气,雾化压力7MPa,合金液流量为3.5kg/min,液态合金流经雾化喷嘴时被高压高速气流破碎成小液滴,随后液滴在飞行过程中与气体产生热交换后快凝成合金粉末。对实施例3所制备的粉末进行粒度筛分,粒度组成如表8所示。
表8 实施例3粉末粒度组成
粒度 +325目 -325目~+800目 -800目
含量(wt%) 0.3% 93.2 6.5%
对实施例3所制备的NiCrWMoCoNbAlTi合金粉末进行表征:
(1)NiCrWMoCoNbAlTi合金粉末化学成分及杂质含量如表9所示。
表9 实施例3粉末的化学成分及杂质含量
(2)NiCrWMoCoNbAlTi合金粉末流动性为16.3s/50g,松装密度为4.49g/cm3
(3)NiCrWMoCoNbAlTi合金粉末颗粒呈球形或近球形(如图3)。
(4)NiCrWMoCoNbAlTi合金粉末成品率为62.5%。
实施例结果表明,采用本发明所述方法制备的NiCrWMoCoNbAlTi合金粉末其化学成分和杂质含量、流动性、松装密度、颗粒形貌均在要求范围内,且粉末质地均匀、干燥,获得的粉末可应用于K640M、K417G及相似成分的涡轮发动机叶片的激光修复。

Claims (6)

1.一种激光修复用NiCrWMoCoNbAlTi粉体材料,其特征在于,按重量百分比计,该粉体材料的化学成分及杂质含量如下:Ni:余量;Cr:32~35;Al:0.50~1.10;Ti:0.50~1.10;Co:0.68~1.50;W:4.30~5.30;Mo:2.30~3.30;Nb:0.50~1.10;Fe:≤4.0;B:≤0.008;O:≤0.060;C:≤0.1;Si:≤0.4;Mn:≤0.50;S:≤0.010;P:≤0.015;
所述的激光修复用NiCrWMoCoNbAlTi粉体材料的制备方法,采用“预制母合金+超声气体雾化”两步法工艺,包括如下步骤:
步骤1:母合金锭制备
采用真空感应熔炼法制备母合金锭,将原料镍、铬、钨、钼、钴和铌置于镁铝坩埚内,抽真空,真空度不大于5Pa时加热,精炼温度1550±50℃,精炼时间7min~15min后浇注成雾化合金锭;
步骤2:粉末气体雾化制备
采用超声气体雾化技术制备粉体材料,将雾化合金锭置于镁铝坩埚内,铝和钛放入加料斗;抽真空,真空度不大于5Pa时加热,熔炼温度1520±50℃,停止抽真空,雾化炉体内充入氩气至常压,放入铝和钛继续熔炼1~3min,然后拔出中柱杆进行雾化,雾化介质为氩气,雾化压力4MPa~7MPa,合金液流量为3kg/min~5kg/min;
步骤3:对步骤2所制备的粉末进行粒度筛分,获得NiCrWMoCoNbAlTi粉体材料。
2.按照权利要求1所述的激光修复用NiCrWMoCoNbAlTi粉体材料,其特征在于,利用Hartman激波管原理使高压气体加速,并产生振荡频率为1~10万赫兹的脉冲气流,该气流直接冲击液态金属流,使其雾化成微小的液滴,随后液滴在飞行过程中与气体产生热交换后冷却凝固成合金粉末颗粒。
3.按照权利要求1所述的激光修复用NiCrWMoCoNbAlTi粉体材料,其特征在于,按重量百分比计,该粉体粒度组成为:+100目≤3%,-100目~+400目≥87%,-400目≤10%。
4.按照权利要求1所述的激光修复用NiCrWMoCoNbAlTi粉体材料,其特征在于,该粉体的流动性不大于25s/50g,松装密度不小于4g/cm3
5.按照权利要求1所述的激光修复用NiCrWMoCoNbAlTi粉体材料,其特征在于,该粉体颗粒呈球形或近球形。
6.按照权利要求1所述的激光修复用NiCrWMoCoNbAlTi粉体材料,其特征在于,该粉体成品率为55~75%。
CN202110661374.8A 2021-06-15 2021-06-15 一种激光修复用NiCrWMoCoNbAlTi粉体材料及其制备方法 Active CN115478194B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110661374.8A CN115478194B (zh) 2021-06-15 2021-06-15 一种激光修复用NiCrWMoCoNbAlTi粉体材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110661374.8A CN115478194B (zh) 2021-06-15 2021-06-15 一种激光修复用NiCrWMoCoNbAlTi粉体材料及其制备方法

Publications (2)

Publication Number Publication Date
CN115478194A CN115478194A (zh) 2022-12-16
CN115478194B true CN115478194B (zh) 2023-11-10

Family

ID=84419568

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110661374.8A Active CN115478194B (zh) 2021-06-15 2021-06-15 一种激光修复用NiCrWMoCoNbAlTi粉体材料及其制备方法

Country Status (1)

Country Link
CN (1) CN115478194B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103045909A (zh) * 2013-01-06 2013-04-17 沈阳黎明航空发动机(集团)有限责任公司 一种NiCrAlYSi粉末喷涂材料的制备方法
CN104975204A (zh) * 2014-04-14 2015-10-14 新日铁住金株式会社 Ni基耐热合金焊接接头的制造方法及Ni基耐热合金焊接接头
CN107250417A (zh) * 2015-02-12 2017-10-13 新日铁住金株式会社 奥氏体系耐热合金焊接接头的制造方法及使用其得到的焊接接头
CN108115136A (zh) * 2018-02-01 2018-06-05 东北大学 一种k417g高温合金粉末及其制备方法和使用方法
CN109328389A (zh) * 2016-06-27 2019-02-12 贺利氏传感器科技有限公司 用于接触传感器的电缆,测温装置,将电缆与测温装置连接在一起的方法以及合金在制造电缆方面的应用
WO2021004579A1 (de) * 2019-07-05 2021-01-14 Vdm Metals International Gmbh Nickel-basislegierung für pulver und verfahren zur herstellung eines pulvers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103045909A (zh) * 2013-01-06 2013-04-17 沈阳黎明航空发动机(集团)有限责任公司 一种NiCrAlYSi粉末喷涂材料的制备方法
CN104975204A (zh) * 2014-04-14 2015-10-14 新日铁住金株式会社 Ni基耐热合金焊接接头的制造方法及Ni基耐热合金焊接接头
CN107250417A (zh) * 2015-02-12 2017-10-13 新日铁住金株式会社 奥氏体系耐热合金焊接接头的制造方法及使用其得到的焊接接头
CN109328389A (zh) * 2016-06-27 2019-02-12 贺利氏传感器科技有限公司 用于接触传感器的电缆,测温装置,将电缆与测温装置连接在一起的方法以及合金在制造电缆方面的应用
CN108115136A (zh) * 2018-02-01 2018-06-05 东北大学 一种k417g高温合金粉末及其制备方法和使用方法
WO2021004579A1 (de) * 2019-07-05 2021-01-14 Vdm Metals International Gmbh Nickel-basislegierung für pulver und verfahren zur herstellung eines pulvers

Also Published As

Publication number Publication date
CN115478194A (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
CN108941588B (zh) 一种激光成形用镍基高温合金粉末的制备方法
CN105950947B (zh) 用于3d打印的富铁高熵合金粉体材料及其制备方法
CN109439962B (zh) 一种选区激光熔化成形镍基高温合金的方法
CN103160769B (zh) 镍基合金的冷喷涂
CN113481412B (zh) 一种增材制造镍基高温合金及其制备方法和应用
CN106623959A (zh) 一种增材制造用Waspalloy球形粉末的制备方法
CN107716934A (zh) 一种用于3D打印技术的Inconel718合金粉末的制备方法
CN105008063A (zh) 用于改进金属合金的热加工性的方法
Chen et al. Comparative study of IN600 superalloy produced by two powder metallurgy technologies: Argon Atomizing and Plasma Rotating Electrode Process
JP2011122246A (ja) ナノ構造化フェライト合金の加工処理方法並びに製品
CN114107827B (zh) 一种3d打印用双相不锈钢粉末及其制备和打印方法
CN109909492A (zh) 一种高强高韧铝合金粉体材料及其制备方法
CN113084181A (zh) 用于3d打印的gh3230镍基高温合金粉末制备方法
CN113445041A (zh) 一种镁合金表面低成本轻质高熵合金/氧化铝复合涂层的制备方法
CN114892043B (zh) 激光增材制造专用高韧性高温镍基合金粉末及其制备方法
CN106119663B (zh) 水泥回转窑上过渡带内表面用合金粉体、制备及其涂层
CN113414397B (zh) 一种铁基金属粉末的真空气雾化连续制备方法
CN114450426B (zh) 合金、合金粉末、合金构件和复合构件
CN115478194B (zh) 一种激光修复用NiCrWMoCoNbAlTi粉体材料及其制备方法
CN116949320A (zh) 一种3d打印用高温合金粉末、制备方法及打印方法
CN114875274A (zh) 一种3D打印用高γ′相镍基高温合金粉末及其制备工艺
VerSnyder Keynote Lecture Superalloy Technology-Today and Tomorrow
CN114632938B (zh) 一种抗II型热腐蚀CoCrAlY合金粉末的制备方法
CN114632939B (zh) 一种NiCoCrAlY抗高温氧化热喷涂合金粉末材料的制备方法
CN114570933A (zh) 一种高钼高硅钴基热喷涂合金粉末的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant