CN115445664A - 一种高活性催化剂及其制备方法和应用 - Google Patents

一种高活性催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN115445664A
CN115445664A CN202211048078.1A CN202211048078A CN115445664A CN 115445664 A CN115445664 A CN 115445664A CN 202211048078 A CN202211048078 A CN 202211048078A CN 115445664 A CN115445664 A CN 115445664A
Authority
CN
China
Prior art keywords
catalyst
zirconium
cezr
mofs
cerium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211048078.1A
Other languages
English (en)
Other versions
CN115445664B (zh
Inventor
魏振浩
岳昌海
黄益平
倪泽雨
黄晶晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Construction Industrial and Energy Engineering Group Co Ltd
Original Assignee
China Construction Industrial and Energy Engineering Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Construction Industrial and Energy Engineering Group Co Ltd filed Critical China Construction Industrial and Energy Engineering Group Co Ltd
Priority to CN202211048078.1A priority Critical patent/CN115445664B/zh
Publication of CN115445664A publication Critical patent/CN115445664A/zh
Application granted granted Critical
Publication of CN115445664B publication Critical patent/CN115445664B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2239Bridging ligands, e.g. OAc in Cr2(OAc)4, Pt4(OAc)8 or dicarboxylate ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/04Preparation of esters of carbonic or haloformic acids from carbon dioxide or inorganic carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/30Complexes comprising metals of Group III (IIIA or IIIB) as the central metal
    • B01J2531/38Lanthanides other than lanthanum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/48Zirconium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)

Abstract

本发明提供一种高活性催化剂及其制备方法和应用,所述催化剂的活性成分为氧化镓,所述氧化镓占催化剂总质量的0.5‑10wt%,所述催化剂的载体为含有铈和锆双金属的金属‑有机骨架材料。本发明将Ga2O3负载于CeZr‑MOFs‑NH2上,Ga2O3本身能够提供路易斯酸碱活性位,有效改善载体的酸碱活性位点分布,提高催化剂的反应活性。

Description

一种高活性催化剂及其制备方法和应用
技术领域
本发明涉及催化剂技术领域,具体是一种高活性催化剂及其制备方法和应用。
背景技术
近年来,由CO2引发的温室效应对人类生存环境产生了越来越严重的威胁,在《巴黎协定》框架下,碳中和已成为各国应对气候变化行动的新标杆,控制和减少CO2的排放成为当今各国政府及科学界亟待解决的共同问题。为了解决这一问题,科研人员加大了对CO2捕集利用与封存(CCUS)技术的研发和合作,CCUS技术也逐步驶入高速发展的快车道。将CO2作为原料转化为高附加值的化学品被认为是CCUS的终极解决方案,其不仅能够实现碳减排,还能将CO2“变废为宝”,对解决温室效应并实现碳中和具有重要意义。
碳酸二甲酯(DMC)是近年来备受关注的环保型绿色化学品,被形象地誉为有机合成领域的“新基块”。由于DMC具有良好的化学反应性、高含氧量、低毒和优良的溶解性等独特性能,激发了巨大的市场需求。最重要的是,DMC具有较高的含氧量(53.3%),可替代甲基叔丁基醚(18.2%)作为汽油和柴油添加剂,其能够有效地改善燃油的辛烷值,同时也能够减少因化石燃料燃烧产生的CO2排放量。迄今为止,DMC的合成方法主要有光气法、甲醇氧化羰基化法、酯交换法、尿素醇解法和直接法。其中,直接法是以 CO2和CH3OH为原料直接反应合成DMC,该法避免使用剧毒反应原料,副产物只有水,原子利用率100%,符合绿色化学理念。另外,该法不仅能够实现能CO2资源化利用,还能极大地提高产品附加值,在碳资源利用和碳减排方面具有重要意义,符合可持续发展要求。近年来,该合成方法受到了国内外学者的广泛关注,然而,CO2难以活化且该反应受热力学平衡限制,导致其反应物的转化率和目标产物的收率均偏低,因而阻碍了其工业化进程,因此开发高效的催化剂是直接法合成DMC的研究重点。
目前,非均相催化剂是直接法合成DMC反应领域的研究热点。非均相催化剂包括过渡金属氧化物催化剂、杂多酸催化剂和负载型催化剂,其能够解决均相催化剂的分离回收及重复使用的问题,简化工艺流程,降低能耗。
Meng团队以膨胀石墨为载体,通过浸渍法制备了一系列碳载Cu-Ni催化剂。结果表明,膨胀石墨负载纳米Cu-Ni催化剂的性能最佳,在最优反应条件下(105℃和 1.2MPa),甲醇转化率高达9.0%,DMC选择性为88.0%(XIAO M,WANG S,WANG X,et al,ChemicalEngineering Journal,2009,147(2-3):287-296)。他们认为Cu、 Ni和Cu-Ni合金的协同作用对CH3OH和CO2的活化发挥重要作用,Cu-Ni与载体之间的相互作用以及金属活性组分的良好分散有助于提高催化活性。
CN110479287A公布了一种用于合成碳酸二甲酯的Cu-Ni/POP-PPh3整体式催化剂,该催化剂在160℃和2.4MPa的条件下,甲醇转化率可达11.2%,但是其DMC选择性偏低,导致其DMC收率(8.46%)不高,而且副产品给后续产品的分离带来了麻烦。Zheng 团队对比研究了掺杂不同金属离子(Al、Ca、Ce、Pr和Y)的ZrO2催化剂的催化性能。结果表明,Ce掺杂的ZrO2催化剂具有最高的催化活性,在170℃和17.5MPa的条件下, Ce0.1Zr0.9O2纳米棒催化剂的甲醇转化率为0.64%,DMC选择性为100%(ZHENG Q,NISHIMURA R,SATO Y,et al,ChemicalEngineering Journal,2022,429:132378-132378)。 Aouissi团队将杂多酸Co1.5PW12O40催化剂应用于直接法合成DMC反应。研究发现,在 200℃和常压条件下,甲醇转化率为7.6%,DMC选择性为86.5%(AOUISSI A,AL-DEYAB S S,Journal of Natural Gas Chemistry,2012,21(2):189-193)。
但上述文献中非均相催化剂存在以下不足,导致其无法工业化:
(1)杂多酸Co1.5PW12O40催化剂和Cu-Ni负载型催化剂的目标产物选择性较低,增加了产品分离的复杂性;
(2)铈锆氧化物催化剂的反应效率偏低,在不添加脱水剂的情况下,其甲醇转化率小于1%,导致反应物的转化率和目标产物的收率均偏低。
发明内容
针对上述现有技术,本发明提出一种高活性催化剂及其制备方法和应用。
本发明提供的一种高活性催化剂,所述催化剂的活性成分为氧化镓,所述氧化镓占催化剂总质量的0.5-10wt%,所述催化剂的载体为含有铈和锆双金属的金属-有机骨架材料。
本发明还提供一种高活性催化剂的制备方法,包括下述步骤:
S1、以铈的金属盐、锆的金属盐、有机配体作为原料,采用溶剂热法制备含有铈和锆双金属的金属-有机骨架材料;
S2、以所述金属-有机骨架材料、镓的金属盐溶液作为原料,采用离子交换法制得活性成分为氧化镓、载体为金属-有机骨架材料的催化剂。
优选地,S1中的具体操作包括下述步骤:将铈的金属盐、锆的金属盐、对苯二甲酸和2-二氨基对苯二甲酸溶解于N,N-二甲基甲酰胺和乙酸溶液中并搅拌均匀,所得溶液在70-150℃下晶化12-36h,产物连续用N,N-二甲基甲酰胺和丙酮各洗涤3次后过滤并干燥,获得CeZr-MOFs-NH2
优选地,S1中,所述铈的金属盐选自硝酸铈、硫酸铈、氯化铈或者醋酸铈中的至少一种。
优选地,S1中,所述锆的金属盐选自氯化锆、氯氧化锆、丙醇锆或乙酸锆中的至少一种。
优选地,S1中,各原料的摩尔配比为:铈:锆:对苯二甲酸:2-二氨基对苯二甲酸:N,N-二甲基甲酰胺:乙酸=1:1-9:10-80:1-10:200-800:20-50。
优选地,S2中的具体操作包括下述步骤:将一定量的CeZr-MOFs-NH2分散在去离子水或乙醇溶液中,在搅拌的状态下加入镓的金属盐溶液,混合均匀后于20-80℃的水浴温度下继续搅拌6-24h,采用去离子水和乙醇交替离心洗涤数次后干燥,所得固体在 150-300℃下焙烧,获得Ga2O3/CeZr-MOFs-NH2粉末,压制成型后破碎成5-10目的 Ga2O3/CeZr-MOFs-NH2催化剂。
优选地,S2中,所述镓的金属盐选自硝酸镓或者氯化镓中的至少一种。
优选地,S2中,Ga2O3的质量百分含量为0.5-10%。
本发明提供一种所述的催化剂在直接法合成碳酸二甲酯中的应用。
相对于现有技术,本发明的有益效果为:
1、本发明以高比表面积和孔隙率的CeZr-MOFs-NH2作载体,采用离子交换法负载Ga2O3,都有利于活性组分Ga2O3的均匀分布,提高催化剂的反应活性。
2、铈、锆氧化物催化剂的比表面积小,酸碱活性位点有限,因此本发明通过溶剂热法制备含有Ce和Zr双金属的CeZr-MOFs-NH2,其具有高比表面积和孔隙率,并且具有丰富的酸碱位点与氧空位,赋予了催化剂优异的DMC选择性。
3、本发明将Ga2O3负载于CeZr-MOFs-NH2上,Ga2O3本身能够提供路易斯酸碱活性位,有效改善载体的酸碱活性位点分布,提高催化剂的反应活性。
4、将本发明得到的Ga2O3/CeZr-MOFs-NH2作为催化剂用于直接法合成碳酸二甲酯中,能够得到具有高活性和高选择性的DMC,同时反应条件温和,对推动直接法合成DMC工业化具有重要意义。
具体实施方式
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面进一步阐述本发明。
实施例1
制备Ga2O3负载量1wt%的Ga2O3/CeZr-MOFs-NH2催化剂,步骤如下:
S1、溶剂热法制备CeZr-MOFs-NH2:将硝酸铈(CeN3O9·6H2O,99.95wt%)、丙醇锆(C12H28O4Zr,99wt%)、对苯二甲酸(C8H6O4,99wt%)和2-二氨基对苯二甲酸(C8H7NO4,98wt%)溶解于N,N-二甲基甲酰胺(C3H7NO,99.8wt%)和乙酸(CH3CO2H,99.8wt%)溶液中并搅拌均匀,所得溶液中各原料的摩尔配比为Ce:Zr:C8H6O4:C8H7NO4:C3H7NO: CH3CO2H=1:3:60:3:300:25,将所得溶液在120℃下晶化36h,产物连续用N,N-二甲基甲酰胺和丙酮各洗涤3次后过滤并干燥,获得CeZr-MOFs-NH2粉末;
S2、离子交换法制备1wt%Ga2O3/CeZr-MOFs-NH2:将100克CeZr-MOFs-NH2分散在乙醇溶液中,在搅拌的状态下加入3.0克硝酸镓(Ga(NO3)3,99.99wt%),混合均匀后在 25℃的水浴温度下继续搅拌24h,用去离子水和乙醇交替离心洗涤数次后干燥,所得固体在250℃下焙烧,获得1wt%Ga2O3/CeZr-MOFs-NH2粉末,将1wt%Ga2O3/CeZr-MOFs-NH2粉末压片后破碎成5-10目的1wt%Ga2O3/CeZr-MOFs-NH2催化剂颗粒。
实施例2
制备Ga2O3负载量2wt%的Ga2O3/CeZr-MOFs-NH2催化剂,步骤如下:
S1、溶剂热法制备CeZr-MOFs-NH2:将硝酸铈(CeN3O9·6H2O,99.95wt%)、氯化锆(ZrCl4,99.9wt%)、对苯二甲酸(C8H6O4,99wt%)和2-二氨基对苯二甲酸(C8H7NO4, 98wt%)溶解于N,N-二甲基甲酰胺(C3H7NO,99.8wt%)和乙酸(CH3CO2H,99.8wt%)溶液中并搅拌均匀,所得溶液中各原料的摩尔配比为Ce:Zr:C8H6O4:C8H7NO4:C3H7NO: CH3CO2H=1:9:20:1:400:35,将所得溶液在130℃下晶化24h,产物连续用N,N-二甲基甲酰胺和丙酮各洗涤3次后过滤并干燥,获得CeZr-MOFs-NH2粉末;
S2、离子交换法制备2wt%Ga2O3/CeZr-MOFs-NH2:将100克CeZr-MOFs-NH2分散在去离子水中,在搅拌的状态下加入5.6克硝酸镓(Ga(NO3)3,99.99wt%),混合均匀后在 45℃的水浴温度下继续搅拌20h,用去离子水和乙醇交替离心洗涤数次后干燥,所得固体在280℃下焙烧,获得2wt%Ga2O3/CeZr-MOFs-NH2粉末,将2wt%Ga2O3/CeZr-MOFs-NH2粉末压片后破碎成5-10目的2wt%Ga2O3/CeZr-MOFs-NH2催化剂颗粒。
实施例3
制备Ga2O3负载量4wt%的Ga2O3/CeZr-MOFs-NH2催化剂,步骤如下:
S1、溶剂热法制备CeZr-MOFs-NH2:将醋酸铈((CH3CO2)3Ce,99.9wt%)、乙酸锆(C8H12O8Zr,99wt%)、对苯二甲酸(C8H6O4,99wt%)和2-二氨基对苯二甲酸(C8H7NO4,98wt%)溶解于N,N-二甲基甲酰胺(C3H7NO,99.8wt%)和乙酸(CH3CO2H,99.8wt%)溶液中并搅拌均匀,所得溶液中各原料的摩尔配比为Ce:Zr:C8H6O4:C8H7NO4:C3H7NO:CH3CO2H=1: 5:30:6:300:45,将所得溶液在140℃下晶化20h,产物连续用二甲基甲酰胺和丙酮各洗涤3次后过滤并干燥,获得CeZr-MOFs-NH2粉末;
S2、离子交换法制备4wt%Ga2O3/CeZr-MOFs-NH2:将100克CeZr-MOFs-NH2分散在乙醇溶液中,在搅拌的状态下加入3.9克氯化镓(GaCl3,99.99wt%)和5.7克硝酸镓 (Ga(NO3)3,99.99wt%),待溶液混合均匀后在60℃的水浴温度下继续搅拌24h,随后用去离子水和乙醇交替离心洗涤数次后干燥,所得固体在300℃下焙烧,获得4wt% Ga2O3/CeZr-MOFs-NH2粉末,将4wt%Ga2O3/CeZr-MOFs-NH2粉末压片后破碎成5-10目的 4wt%Ga2O3/CeZr-MOFs-NH2催化剂颗粒。
实施例4
制备Ga2O3负载量5wt%的Ga2O3/CeZr-MOFs-NH2催化剂,步骤如下:
S1、溶剂热法制备CeZr-MOFs-NH2:将氯化铈(CeCl3,99.9wt%)、氯氧化锆(ZrOCl2·8H2O,99wt%)、对苯二甲酸(C8H6O4,99wt%)和2-二氨基对苯二甲酸(C8H7NO4,98wt%)溶解于N,N-二甲基甲酰胺(C3H7NO,99.8wt%)和乙酸(CH3CO2H,99.8wt%)溶液中并搅拌均匀,所得溶液中各原料的摩尔配比为Ce:Zr:C8H6O4:C8H7NO4:C3H7NO: CH3CO2H=1:1.5:40:9:500:30,然后将所得溶液在120℃下晶化32h,产物连续用 N,N-二甲基甲酰胺和丙酮各洗涤3次后过滤并干燥,获得CeZr-MOFs-NH2粉末;
S2、离子交换法制备5wt%Ga2O3/CeZr-MOFs-NH2:将100克CeZr-MOFs-NH2分散在去离子水中,然后在搅拌的状态下加入14.4克硝酸镓(Ga(NO3)3,99.99wt%),待溶液混合均匀后在30℃的水浴温度下继续搅拌24h,随后用去离子水和乙醇交替离心洗涤数次后干燥,所得固体在300℃下焙烧,获得5wt%Ga2O3/CeZr-MOFs-NH2粉末,将5wt% Ga2O3/CeZr-MOFs-NH2粉末压片后破碎成5-10目的5wt%Ga2O3/CeZr-MOFs-NH2催化剂颗粒。
实施例5
制备Ga2O3负载量8wt%的Ga2O3/CeZr-MOFs-NH2催化剂,步骤如下:
S1、溶剂热法制备CeZr-MOFs-NH2:将硝酸铈(CeN3O9·6H2O,99.95wt%)、氯化锆(ZrCl4,99.9wt%)、对苯二甲酸(C8H6O4,99wt%)和2-二氨基对苯二甲酸(C8H7NO4,98wt%)溶解于N,N-二甲基甲酰胺(C3H7NO,99.8wt%)和乙酸(CH3CO2H,99.8wt%)溶液中并搅拌均匀,所得溶液中各原料的摩尔配比为Ce:Zr:C8H6O4:C8H7NO4:C3H7NO:CH3CO2H=1: 1:20:1:400:35,然后将所得溶液在130℃下晶化24h,产物连续用N,N-二甲基甲酰胺和丙酮各洗涤3次后过滤并干燥,获得CeZr-MOFs-NH2粉末;
S2、离子交换法制备8wt%Ga2O3/CeZr-MOFs-NH2:将100克CeZr-MOFs-NH2分散在去离子水中,然后在搅拌的状态下加入22.4克硝酸镓(Ga(NO3)3,99.99wt%),待溶液混合均匀后在25℃的水浴温度下继续搅拌24h,随后用去离子水和乙醇交替离心洗涤数次后干燥,所得固体在200℃下焙烧,获得8wt%Ga2O3/CeZr-MOFs-NH2粉末,将8wt% Ga2O3/CeZr-MOFs-NH2粉末压片后破碎成5-10目的8wt%Ga2O3/CeZr-MOFs-NH2催化剂颗粒。
试验例
将实施例1-5得到的催化剂颗粒应用于CO2和CH3OH直接合成DMC反应,具体操作如下:分别将1wt%、2wt%、4wt%、5wt%、8wt%Ga2O3/CeZr-MOFs-NH2催化剂颗粒置于固定床管式反应器恒温段,反应气体中CH3OH和CO2的摩尔2:1,分别设置反应条件, 反应1h后通过色谱在线进行成分检测分析。
本试验中,以甲醇的转化率XM,DMC的选择性SDMC和DMC的收率YDMC作为评价催化剂性能的指标,计算公式如下;
XM=nDMC/nM×100%
SDMC=nDMC/(nDMC+n副产物)×100%
YDMC=XM×SDMC×100%
式中:nM表示进料中甲醇的碳摩尔数;nDMC表示产物中碳酸二甲酯的碳摩尔数;n副产物表示产物中副产物的碳摩尔数。
本试验中各Ga2O3/CeZr-MOFs-NH2催化剂颗粒的反应条件和反应结果如下表所示:
实施例 1 2 3 4 5
Ga<sub>2</sub>O<sub>3</sub>负载量(wt%) 1 2 4 5 8
Ce/Zr 1:3 1:9 1:5 1:1.5 1:1
反应温度(℃) 190 170 150 120 170
反应压力(MPa) 4.5 3.5 2.0 1.0 2.5
质量空速(h<sup>-1</sup>) 2500 400 1500 600 2000
X<sub>M</sub>(%) 5.4 9.0 19.5 18.1 15.9
S<sub>DMC</sub>(%) 99.0 97.0 98.7 100 100
Y<sub>DMC</sub>(%) 5.3 8.7 19.2 18.1 15.9
直接法合成DMC反应在热力学上是不可行的,热力学研究表明,该反应在298K标准状态下不能自发进行(标准自由能变(ΔGr 0(298K)=25kJ/mol>0);当反应温度超过333K,反应压力在5-10MPa范围内时,反应可以自发进行(自由能变ΔGr 0≤0)。由上表可以看出,通过本发明制备的催化剂去催化CO2和CH3OH直接合成DMC,反应条件温和,而且反应物转化率和产物的收率明显较高。甲醇的最高转化率高达19.5%,DMC 的选择性可达100%,DMC的收率高达19.2%,而且这仅仅是上述有限几个实施例特定条件下得出的数据,实际上,在最后的工艺参数条件下,甲醇转化率和DMC的收率还能够进一步提高。
以上仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书内容所作的等效结构,直接或间接运用在其他相关的技术领域,均同理在本发明的专利保护范围之内。

Claims (10)

1.一种高活性催化剂,其特征在于,所述催化剂的活性成分为氧化镓,所述氧化镓占催化剂总质量的0.5-10wt%,所述催化剂的载体为含有铈和锆双金属的金属-有机骨架材料。
2.一种高活性催化剂的制备方法,其特征在于,包括下述步骤:
S1、以铈的金属盐、锆的金属盐、有机配体作为原料,采用溶剂热法制备含有铈和锆双金属的金属-有机骨架材料;
S2、以所述金属-有机骨架材料、镓的金属盐溶液作为原料,采用离子交换法制得活性成分为氧化镓、载体为金属-有机骨架材料的催化剂。
3.如权利要求2所述的制备方法,其特征在于,S1中的具体操作包括下述步骤:将铈的金属盐、锆的金属盐、对苯二甲酸和2-二氨基对苯二甲酸溶解于N,N-二甲基甲酰胺和乙酸溶液中并搅拌均匀,所得溶液在70-150℃下晶化12-36h,产物连续用N,N-二甲基甲酰胺和丙酮各洗涤3次后过滤并干燥,获得CeZr-MOFs-NH2
4.如权利要求2或3所述的制备方法,其特征在于,S1中,所述铈的金属盐选自硝酸铈、硫酸铈、氯化铈或者醋酸铈中的至少一种。
5.如权利要求2或3所述的制备方法,其特征在于,S1中,所述锆的金属盐选自氯化锆、氯氧化锆、丙醇锆或乙酸锆中的至少一种。
6.如权利要求3所述的制备方法,其特征在于,S1中,各原料的摩尔配比为:铈:锆:对苯二甲酸:2-二氨基对苯二甲酸:N,N-二甲基甲酰胺:乙酸=1:1-9:10-80:1-10:200-800:20-50。
7.如权利要求3所述的制备方法,其特征在于,S2中的具体操作包括下述步骤:将一定量的CeZr-MOFs-NH2分散在去离子水或乙醇溶液中,在搅拌的状态下加入镓的金属盐溶液,混合均匀后于20-80℃的水浴温度下继续搅拌6-24h,采用去离子水和乙醇交替离心洗涤数次后干燥,所得固体在150-300℃下焙烧,获得Ga2O3/CeZr-MOFs-NH2粉末,压制成型后破碎成5-10目的Ga2O3/CeZr-MOFs-NH2催化剂。
8.如权利要求2或7所述的制备方法,其特征在于,S2中,所述镓的金属盐选自硝酸镓或者氯化镓中的至少一种。
9.如权利要求 7所述的制备方法,其特征在于,S2中,所述Ga2O3/CeZr-MOFs-NH2粉末中Ga2O3的质量百分含量为0.5-10%。
10.一种如权利要求1-9任一项所述的催化剂在直接法合成碳酸二甲酯中的应用。
CN202211048078.1A 2022-08-30 2022-08-30 一种高活性催化剂及其制备方法和应用 Active CN115445664B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211048078.1A CN115445664B (zh) 2022-08-30 2022-08-30 一种高活性催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211048078.1A CN115445664B (zh) 2022-08-30 2022-08-30 一种高活性催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN115445664A true CN115445664A (zh) 2022-12-09
CN115445664B CN115445664B (zh) 2023-11-21

Family

ID=84300577

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211048078.1A Active CN115445664B (zh) 2022-08-30 2022-08-30 一种高活性催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN115445664B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120035762A (ko) * 2010-10-06 2012-04-16 서울대학교산학협력단 디메틸카보네이트 제조용 세리아-지르코니아 복합 담체에 담지된 갈륨 옥사이드 촉매, 그 제조방법 및 상기 촉매를 이용한 디메틸카보네이트의 제조방법
CN104549439A (zh) * 2013-10-23 2015-04-29 中国石油化工股份有限公司 一种高活性合成碳酸二甲酯的催化剂及其制备方法和应用
JP2017160132A (ja) * 2016-03-07 2017-09-14 富士フイルム株式会社 炭酸エステルの製造方法
CN107694555A (zh) * 2017-09-12 2018-02-16 安徽大学 一种铟铈混合氧化物催化剂及其制备方法和应用
CN113828359A (zh) * 2021-09-17 2021-12-24 福州大学 一种“瓶中造船”法制备固载有机强碱的Zr基MOFs复合材料及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120035762A (ko) * 2010-10-06 2012-04-16 서울대학교산학협력단 디메틸카보네이트 제조용 세리아-지르코니아 복합 담체에 담지된 갈륨 옥사이드 촉매, 그 제조방법 및 상기 촉매를 이용한 디메틸카보네이트의 제조방법
CN104549439A (zh) * 2013-10-23 2015-04-29 中国石油化工股份有限公司 一种高活性合成碳酸二甲酯的催化剂及其制备方法和应用
JP2017160132A (ja) * 2016-03-07 2017-09-14 富士フイルム株式会社 炭酸エステルの製造方法
CN107694555A (zh) * 2017-09-12 2018-02-16 安徽大学 一种铟铈混合氧化物催化剂及其制备方法和应用
CN113828359A (zh) * 2021-09-17 2021-12-24 福州大学 一种“瓶中造船”法制备固载有机强碱的Zr基MOFs复合材料及其应用

Also Published As

Publication number Publication date
CN115445664B (zh) 2023-11-21

Similar Documents

Publication Publication Date Title
JP2014517765A (ja) シュウ酸アルキルエステルの水素添加によるエチレングリコールを合成するための複合担体触媒及びその製造方法
CN104926657B (zh) 草酸酯气相加氢合成乙醇酸酯的方法
CN108997274A (zh) 一种液相氢转移催化糠醛加氢制备2-甲基呋喃的方法
CN110856817B (zh) 一种用于生产羟基乙酸甲酯的催化剂及其制备方法和应用
CN105294409A (zh) 一种丁香酚合成方法
CN103922931B (zh) 一种一步催化合成乙二醇乙醚乙酸酯的方法
CN105214672A (zh) 一种大型化甲醇催化剂的制备方法
CN105126897B (zh) 一种sba‑15分子筛负载铜基催化剂及制备方法和应用
CN105664953A (zh) 一种尿素醇解合成碳酸乙烯酯的复配催化剂及制备工艺和应用
KR101205897B1 (ko) 복합금속산화물 담체에 담지된 귀금속 촉매 및 이를 이용한 1,2-프로판디올의 제조방법
CN1065413A (zh) 用合成气液相生产甲醇的催化剂体系和方法
CN101773848A (zh) 一种用于合成甲基叔丁基醚的催化剂及制备方法
CN101780419B (zh) 一种羧酸锌配合物催化剂及其用于制备脂肪族聚碳酸酯的应用
CN110882716B (zh) 固体酸催化剂一锅多步催化生物质衍生糠醛转化为γ-戊内酯的制备方法
CN115445664B (zh) 一种高活性催化剂及其制备方法和应用
KR101793530B1 (ko) 글리세롤 및 이산화탄소로부터 글리세롤 카보네이트를 제조하기 위한 촉매 및 이의 제조방법
TWI654178B (zh) 二烷基碳酸酯之製備方法
CN114602477B (zh) 用于co2低温制甲醇的双壳空心铜锌基催化剂及其制备方法
CN113398912B (zh) 一种用于氨基甲酸甲酯醇解合成碳酸二甲酯的催化剂
CN108855158A (zh) 一种钴-钌双金属多相催化剂的制备方法及应用
CN111393402B (zh) BrØnsted酸/季铵盐复合催化CO2与环氧化物环加成制备环状碳酸酯的方法
CN108129311B (zh) 一种从二氧化碳和丙三醇制造丙三醇碳酸酯的方法
CN111992209A (zh) 一种用于合成草酸二甲酯的催化剂及其制备方法和应用
CN112121805A (zh) 一种二氧化碳加氢合成甲醇催化剂及其制备和应用
CN115814814B (zh) 负载钌的铁铬双金属氧化物催化剂制备方法及应用该催化剂合成2,5-呋喃二甲酸的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant