CN115433342B - 一种基于山梨醇缩水甘油醚的生物基环氧树脂及其制备方法 - Google Patents

一种基于山梨醇缩水甘油醚的生物基环氧树脂及其制备方法 Download PDF

Info

Publication number
CN115433342B
CN115433342B CN202211221150.6A CN202211221150A CN115433342B CN 115433342 B CN115433342 B CN 115433342B CN 202211221150 A CN202211221150 A CN 202211221150A CN 115433342 B CN115433342 B CN 115433342B
Authority
CN
China
Prior art keywords
glycidyl ether
epoxy resin
bio
sorbitol
sorbitol glycidyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211221150.6A
Other languages
English (en)
Other versions
CN115433342A (zh
Inventor
乔凯
黄达
赵云
张锴
赵跃
李玉光
李智勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Advanced Biomaterials And Process Equipment Research Institute Co ltd
Original Assignee
Nanjing Advanced Biomaterials And Process Equipment Research Institute Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Advanced Biomaterials And Process Equipment Research Institute Co ltd filed Critical Nanjing Advanced Biomaterials And Process Equipment Research Institute Co ltd
Priority to CN202211221150.6A priority Critical patent/CN115433342B/zh
Publication of CN115433342A publication Critical patent/CN115433342A/zh
Application granted granted Critical
Publication of CN115433342B publication Critical patent/CN115433342B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/226Mixtures of di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5026Amines cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/504Amines containing an atom other than nitrogen belonging to the amine group, carbon and hydrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)

Abstract

本发明公开了一种基于山梨醇缩水甘油醚的生物基环氧树脂及其制备方法,本发明通过不同比例的山梨醇缩水甘油醚,或者山梨醇缩水甘油醚与DGEBA进行复配,在二胺类固化剂作用下固化。通过热重和DSC分析发现,与单一DGEAB环氧树脂相比,此方法制得的环氧树脂具有良好的成炭效果,且树脂原料易得,绿色程度较高,生物安全性高。另外本发明通过复合环氧单体的方法,将山梨醇缩水甘油醚与DGEBA两种单体均匀混合后与二胺类固化剂固化所得的聚合物,其吸水率有显著下降。因此具有较大的市场应用性。

Description

一种基于山梨醇缩水甘油醚的生物基环氧树脂及其制备方法
技术领域
本发明属于于高分子化合物技术领域,具体涉及一种基于山梨醇缩水甘油醚的生物基环氧树脂及其制备方法。
背景技术
三大通用型热固性树脂之一的环氧树脂聚合后形成特殊的高度交联网络结构赋予了其优良的浸润性、粘附性、绝缘性等化物性能,被广泛应用于涂料、胶黏剂及电子电器等多种行业。但如今占市场90%的商业树脂是双酚A环氧树脂,这种树脂的原料双酚A完全依赖石油资源,虽其具有两个苯环所赋予环氧树脂良好的化物性能,但也具有干扰人体激素分泌从而导致产生对免疫、生殖及大脑的毒性或负面影响,已被美国联邦药物管理局明令禁止用作婴儿配方奶粉的包装材料。
因此行业对无害芳香族化合物的兴趣越来越深,生物基环氧树脂的开发与改性也越来越被重。此外,生物来源环氧单体的使用解决了双酚A的毒害作用,但由于高分子材料在各行业对阻燃性能要求的提高与环氧树脂本身易燃的矛盾性,对其阻燃改性日益重视。同时当前对生物质热固性树脂的研究相对较少,目前大多研究集中在基于单宁及其衍生物、(环)脂族多元醇、萜烯类和木质素及其衍生物等的生物基环氧树脂,比如儿茶素、异山梨醇、松香和香草醛等。
此外,传统的双酚A环氧树脂热稳定性较差,受热后残炭含量相对较低,碳含量较低。
发明内容
发明目的:针对现有技术的不足,本发明提供一种基于山梨醇缩水甘油醚的生物基环氧树脂及其制备方法。
技术方案:为了解决上述技术问题,本发明提供了一种基于山梨醇缩水甘油醚的生物基环氧树脂,所述生物基环氧树脂为第一单元与第二单元构成的二元聚合物,所述第一单元为单元A,或者为单元A和单元B,第二单元为单元C或单元D;
其中,X选自N、NH或NH2
第一单元与第二单元之间,通过C-N键合的方式得到环氧树脂聚合体系。
本发明还提供了所述的基于山梨醇缩水甘油醚的生物基环氧树脂的制备方法,包括将提供A单元的环氧树脂,或者提供A单元的环氧树脂和提供B单元的环氧树脂的混合物,与二胺类固化剂混匀后,加热固化,即得。
优选的,所述基于山梨醇缩水甘油醚的生物基环氧树脂的制备方法,包括以下步骤:
S1:取山梨醇缩水甘油醚,或山梨醇缩水甘油醚和双酚A缩水甘油醚(DGEBA)的混合物,作为环氧单体;
S2:在上述环氧单体中,加入二胺类固化剂,混匀,升温熔融,并在惰性气氛围下升温固化,即得所述生物基环氧树脂。
所述山梨醇缩水甘油醚和双酚A缩水甘油醚的结构式如下A-1和B-1所示:
进一步优选的,步骤S1中,山梨醇缩水甘油醚和双酚A缩水甘油醚的混合物中,山梨醇缩水甘油醚和双酚A缩水甘油醚的摩尔比为(1-3):(3-1),优选(1-2):1。
进一步优选的,步骤S2中,所述二胺类固化剂选自2,2'-二(三氟甲基)二氨基联苯或孟烷二胺,其结构如下C-1和D-1所示。
进一步优选的,步骤S2中,所述环氧单体中环氧基团与二胺类固化剂中NH的摩尔比为(0.67~1.09):1。
进一步优选的,步骤S2中,所述熔融温度为40~130℃。
进一步优选的,步骤S2中,所述固化温度为90~190℃,固化时间为2~5h。
其中,所述A与C构成的二元聚合物具有式I所示的重复结构单元,A与D构成的二元聚合物具有式Ⅱ所示的重复结构单元,所述B与C构成的二元聚合物具有式III所示的重复结构单元,所述B与D构成的二元聚合物具有式IV所示的重复结构单元,所述A、B与C构成的二元聚合物具有式V所示的重复结构单元。
其中,m≥2,n≥2。
有益效果:与现有技术相比,本发明具有以下优势:
(1)本发明中所提供的山梨醇基新型环氧树脂高残炭材料制备方法,与孟烷二胺固化所得的聚合物属于一种全生物基复合型环氧单体材料,其原料易得,绿色化程度高,生物安全性高,相应制备过程简洁且条件温和。
(2)本发明是首次使用山梨醇缩水甘油醚构建新型结构的聚合物材料,所得聚合物材料有较低的固化加工工艺温度,生物基单体含量较高,热稳定性较好,与市场上石油基环氧树脂相比具有较高的氧化后残炭值。
(3)本发明中的山梨醇缩水甘油醚和孟烷二胺可以通过生物制备法,而山梨醇这一六元醇广泛存在于自然界苹果、桃子、梨等各种水果中,工业上常用淀粉和纤维素为原料发酵催化而来,孟烷二胺是松节油深加工产品之一,因此单体的生物附加值很高,具有良好的生物安全。
(4)本发明通过山梨醇缩水甘油醚与DGEBA混合制备聚合物的方法,不仅是石油基环氧树脂的残碳率明显提高,也使山梨醇基环氧树脂的吸水率明显下降。
附图说明
图1为两种环氧树脂单体和两种固化剂的傅里叶红外谱图。
图2为制备聚合物材料得到傅里叶红外谱图(实施例2~4和对比例2)
图3为制备聚合物材料得到傅里叶红外谱图(实施例1和对比例1)
图4为制备聚合物材料得到的TGA图(实施例1和对比例1)
图5为制备聚合物材料得到的TGA图(实施例2~4和对比例2)
图6为制备聚合物材料得到的DSC图(实施例1和对比例1)
图7为制备聚合物材料得到的DSC图(实施例2~4和对比例2)
具体实施方式
下述实施例中所述实验方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可从商业途径获得。
实施例1
反应瓶中称取山梨醇缩水甘油醚(0.29g),计量加入固化剂2,2'-二(三氟甲基)二氨基联苯(0.16g),在氮气氛围下升温至120℃同时快速搅拌混合均匀,熔融后注模,然后升温至130℃固化2h,自然冷却,得到淡黄色环氧树脂聚合物材料。对其氮气下热重数据分析,如图4所示,起始分解温度为309.89℃,最大分解温度为333.35/405.77℃,700℃残炭含量(R700)为32.45%。室温下浸泡72h的吸水率为3.06%。通过对其红外数据的判断,原有环氧底物中环氧乙烷红外峰(860和910cm-1等强度伸缩振动)消逝,表明环氧树脂的环氧基团与胺基已完全聚合,同时由于环氧的开环过程,3420cm-1处相对于原料环氧单体,出现较大的吸收,推断为过程中形成的大量羟基导致的。
对比例1
反应瓶中称取DGEBA(0.34g),计量加入固化剂2,2'-二(三氟甲基)二氨基联苯(0.16g),在氮气氛围下升温至100℃同时快速搅拌确使物料混合均匀。熔融后注模,190℃固化2h,自然冷却,得到环氧树脂聚合物材料。对其氮气下热重数据分析,如图4所示,起始分解温度为395.65℃,最大分解温度为424.85℃,R700为25.06%。室温下浸泡72h的吸水率为0.92%。通过对其红外数据的判断,表明环氧树脂的环氧基团与胺基已完全聚合,同时由于环氧的开环过程,3420cm-1左右的吸收峰为过程中形成的大量羟基导致的。
实施例2
反应瓶中称取山梨醇缩水甘油醚(0.34g),计量加入固化剂孟烷二胺(0.09g),在氮气氛围下升温至40℃同时快速搅拌确使物料混合均匀。熔融后注模,95℃固化2h,自然冷却,得到环氧树脂聚合物材料。对其氮气下热重数据分析,如图5所示,起始分解温度为316.09℃,最大分解温度为347.30℃,R700为38.92%,所得材料具有良好的耐热性能。室温下浸泡72h的吸水率为4.5%。通过对其红外数据的判断,原有环氧底物中环氧乙烷红外峰(860和910cm-1等强度伸缩振动)消逝,表明环氧树脂的环氧基团与胺基已完全聚合,同时由于环氧的开环过程,3420cm-1处相对于原料环氧单体,出现较大的吸收,推断为过程中形成的大量羟基导致的。
实施例3
反应瓶中称取山梨醇缩水甘油醚(0.17g)与DGEBA(0.20g)的1:1混合物,计量加入固化剂孟烷二胺(0.0.09g),在氮气氛围下升温至55℃同时快速搅拌确使物料混合均匀。熔融后注模,100℃固化2h,自然冷却,得到环氧树脂聚合物材料。对其氮气下热重数据分析,如图5所示,起始分解温度为276.46℃,最大分解温度为276.63/394.45℃,R700为40.96%。室温下浸泡72h的吸水率为2.61%。通过对其红外数据的判断,原有环氧底物中环氧乙烷红外峰(860和910cm-1等强度伸缩振动)消逝,表明环氧树脂的环氧基团与胺基已完全聚合,同时由于环氧的开环过程,3420cm-1处相对于原料环氧单体,出现较大的吸收,推断为过程中形成的大量羟基导致的。
实施例4
反应瓶中称取山梨醇缩水甘油醚(0.17g)与DGEBA(0.10g)的2:1混合物,计量加入固化剂孟烷二胺(0.0751g),在氮气氛围下升温至40℃同时快速搅拌确使物料混合均匀。熔融后注模,90℃固化2h,自然冷却,得到环氧树脂聚合物材料。对其氮气下热重数据分析,如图5所示,起始分解温度为259.75℃,最大分解温度为258.38/290.10/390.93℃,R700为39.12%。室温下浸泡72h的吸水率为1.31%。通过对其红外数据的判断,原有环氧底物中环氧乙烷红外峰(860和910cm-1等强度伸缩振动)消逝,表明环氧树脂的环氧基团与胺基已完全聚合,同时由于环氧的开环过程,3420cm-1处相对于原料环氧单体,出现较大的吸收,推断为过程中形成的大量羟基导致的。
对比例2
反应瓶中称取DGEBA(0.40g),计量加入固化剂孟烷二胺(0.09g),在氮气氛围下梯度升温至50℃同时快速搅拌确使物料混合均匀。熔融后注模,155℃固化2h,自然冷却,得到环氧树脂聚合物材料。对其氮气下热重数据分析,如图5所示,起始分解温度为344.68℃,最大分解温度为363.34℃,R700为29.18%。室温下浸泡72h的吸水率为0.32%。通过对其红外数据的判断,原有环氧底物中环氧乙烷红外峰(860和910cm-1等强度伸缩振动)消逝,通过对其红外数据的判断,表明环氧树脂的环氧基团与胺基已完全聚合,同时由于环氧的开环过程,3420cm-1处相对于原料环氧单体,出现较大的吸收,推断为过程中形成的大量羟基导致的。
从上述六个案例的测试数据分析可知:一方面,根据氮气下热重数据所体现的,在两种二胺类固化剂作用下山梨醇缩水甘油醚的加入使得产物残炭含量大幅提高,特别是生物基固化剂孟烷二胺作用下,R700可达40%;另一方面,根据吸水率测试的结果可得,主要影响两种体系吸水率的因素是双酚A的比例和固化剂:当固化剂为孟烷二胺时的吸水率比2,2'-二(三氟甲基)二氨基联苯低,且在孟烷二胺体系中由于双酚A含量的增加,使得体系吸水率降低。具体测试方法与数据见下表。
热重测试:使用TGA550在氮气氛围下,以20℃/min的升温速率从30℃升温到800℃,可得到表1数据。
表1聚合物热稳定性与700℃度下的残碳含量
吸水率测试:
1.按上述实施方法制得直径为6.5mm的小圆片每个案例三片;
2.称重后分别置于三个5ml样品瓶中加满水,于阴暗处放置72h;
3.取出用纸巾擦干并立即称重;
4.按以下公式计算吸水率
其中B:吸水后重量,G:吸水前重量
表2聚合物浸泡吸水率
本发明提供了基于山梨醇的全生物基高残炭环氧树脂聚合材料制备方法,同时降低山梨醇基环氧树脂吸水率,具体实现该技术方案的方法和途径很多,以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。本实施例中未明确的各组成部分均可用现有技术加以实现。

Claims (6)

1.一种基于山梨醇缩水甘油醚的生物基环氧树脂,其特征在于,所述生物基环氧树脂的制备方法包括以下步骤:
S1:取山梨醇缩水甘油醚,或山梨醇缩水甘油醚和双酚A缩水甘油醚的混合物,作为环氧单体;所述山梨醇缩水甘油醚和双酚A缩水甘油醚的结构式如下A-1和B-1所示:
S2:在上述环氧单体中,加入二胺类固化剂2,2'-二(三氟甲基)二氨基联苯或孟烷二胺,混匀,升温熔融,并在惰性气氛围下升温固化,即得所述生物基环氧树脂;所述2,2'-二(三氟甲基)二氨基联苯或孟烷二胺的结构如下C-1和D-1所示:
2.权利要求1所述的基于山梨醇缩水甘油醚的生物基环氧树脂的制备方法,其特征在于,包括以下步骤:
S1:取山梨醇缩水甘油醚,或山梨醇缩水甘油醚和双酚A缩水甘油醚的混合物,作为环氧单体;所述山梨醇缩水甘油醚和双酚A缩水甘油醚的结构式如下A-1和B-1所示:
S2:在上述环氧单体中,加入二胺类固化剂2,2'-二(三氟甲基)二氨基联苯或孟烷二胺,混匀,升温熔融,并在惰性气氛围下升温固化,即得所述生物基环氧树脂;所述2,2'-二(三氟甲基)二氨基联苯或孟烷二胺的结构如下C-1和D-1所示:
3.根据权利要求2所述的基于山梨醇缩水甘油醚的生物基环氧树脂的制备方法,其特征在于,步骤S1中,山梨醇缩水甘油醚和双酚A缩水甘油醚的混合物中,山梨醇缩水甘油醚和双酚A缩水甘油醚的摩尔比为(1-3):(3-1)。
4.根据权利要求2所述的基于山梨醇缩水甘油醚的生物基环氧树脂的制备方法,其特征在于,步骤S2中,所述环氧单体中环氧基团与二胺类固化剂中NH的摩尔比为(0.67~1.09):1。
5.根据权利要求2所述的基于山梨醇缩水甘油醚的生物基环氧树脂的制备方法,其特征在于,步骤S2中,所述熔融温度为40~130℃。
6.根据权利要求2所述的基于山梨醇缩水甘油醚的生物基环氧树脂的制备方法,其特征在于,步骤S2中,所述固化温度为90~190℃,固化时间为2~5h。
CN202211221150.6A 2022-10-08 2022-10-08 一种基于山梨醇缩水甘油醚的生物基环氧树脂及其制备方法 Active CN115433342B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211221150.6A CN115433342B (zh) 2022-10-08 2022-10-08 一种基于山梨醇缩水甘油醚的生物基环氧树脂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211221150.6A CN115433342B (zh) 2022-10-08 2022-10-08 一种基于山梨醇缩水甘油醚的生物基环氧树脂及其制备方法

Publications (2)

Publication Number Publication Date
CN115433342A CN115433342A (zh) 2022-12-06
CN115433342B true CN115433342B (zh) 2023-11-14

Family

ID=84250116

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211221150.6A Active CN115433342B (zh) 2022-10-08 2022-10-08 一种基于山梨醇缩水甘油醚的生物基环氧树脂及其制备方法

Country Status (1)

Country Link
CN (1) CN115433342B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4914164A (en) * 1986-04-02 1990-04-03 Ciba-Geigy Corporation Method of coating with polyglycidyl ether of sorbitol and polyamidoamine
CN104144963A (zh) * 2012-02-20 2014-11-12 蒙彼利埃第二大学 具有改进的反应性的源自生物的环氧树脂
WO2022100926A1 (en) * 2020-11-16 2022-05-19 Henkel Ag & Co. Kgaa An epoxy composition comprising a bio-based epoxy compound

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4914164A (en) * 1986-04-02 1990-04-03 Ciba-Geigy Corporation Method of coating with polyglycidyl ether of sorbitol and polyamidoamine
CN104144963A (zh) * 2012-02-20 2014-11-12 蒙彼利埃第二大学 具有改进的反应性的源自生物的环氧树脂
WO2022100926A1 (en) * 2020-11-16 2022-05-19 Henkel Ag & Co. Kgaa An epoxy composition comprising a bio-based epoxy compound

Also Published As

Publication number Publication date
CN115433342A (zh) 2022-12-06

Similar Documents

Publication Publication Date Title
CN111333817B (zh) 一种生物基呋喃类环氧树脂聚合物及其制备方法和应用
CN104892858A (zh) 一种高生物基含量环氧树脂组合物及其固化方法和应用
EP3134456B1 (fr) Utilisation d'une composition de resine thermodurcissable de type vitrimere pour la fabrication de pieces d'isolation electrique
EP0381625A2 (de) Zähe Epoxidharze
CN101952262A (zh) 用于高tg应用的无卤苯并噁嗪基可固化组合物
CN102906148A (zh) 可固化组合物
CN113061416A (zh) 一种高强高韧环氧粘结剂及其制备方法
EP3083771A1 (en) Curable compositions
CN115232310B (zh) 一种耐高温韧性双马来酰亚胺树脂及其制备方法与应用
CN111139021B (zh) 一种可低温固化高粘接耐热氰酸酯胶黏剂及其制备方法
CN116218037A (zh) 改性二氧化硅枝接环氧树脂的环氧塑封料及其制备方法
Gaw et al. Preparation of polyimide-epoxy composites
CN115433342B (zh) 一种基于山梨醇缩水甘油醚的生物基环氧树脂及其制备方法
CN115073785B (zh) 一种邻苯二甲腈树脂薄膜及其制备方法
CN114181518B (zh) 低介电常数尼龙复合材料及其制备方法
CN112574575B (zh) 一种乙烯基聚硅氮烷苯并噁嗪杂化可陶瓷化热熔树脂、树脂材料及其制备方法
CN108250396B (zh) 一种环保型高强度抗冲击模塑料及其制备方法
CN115850714B (zh) 一种poss改性丁腈橡胶化合物及其制备方法和应用
US3022262A (en) Modified glycidyl methacrylate compositions
CN114276649B (zh) 热固性树脂组合物及其制备方法和应用
CN112457471B (zh) 一种高透光高耐热环氧树脂及其制备方法
CN116355184A (zh) 一种低固化收缩型环氧树脂及其制备方法和应用
JPH10508328A (ja) 硬化性エポキシ樹脂組成物
RU2424259C1 (ru) Эпоксидное связующее, препрег на его основе и изделие, выполненное из него
CN117264218A (zh) 一种改性苯并噁嗪树脂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant