CN115432752B - 绣球花型NiO@NiMoO4复合材料及其制备和应用 - Google Patents
绣球花型NiO@NiMoO4复合材料及其制备和应用 Download PDFInfo
- Publication number
- CN115432752B CN115432752B CN202211329269.5A CN202211329269A CN115432752B CN 115432752 B CN115432752 B CN 115432752B CN 202211329269 A CN202211329269 A CN 202211329269A CN 115432752 B CN115432752 B CN 115432752B
- Authority
- CN
- China
- Prior art keywords
- nimoo
- hydrogen storage
- hydrogen
- nio
- composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 71
- 238000002360 preparation method Methods 0.000 title claims abstract description 12
- 241001092080 Hydrangea Species 0.000 title claims abstract description 9
- 235000014486 Hydrangea macrophylla Nutrition 0.000 title claims abstract description 9
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 139
- 239000001257 hydrogen Substances 0.000 claims abstract description 136
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 133
- 239000011232 storage material Substances 0.000 claims abstract description 51
- 238000000498 ball milling Methods 0.000 claims abstract description 23
- 238000003860 storage Methods 0.000 claims abstract description 23
- 239000000463 material Substances 0.000 claims abstract description 19
- 238000001354 calcination Methods 0.000 claims abstract description 9
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 8
- 239000002245 particle Substances 0.000 claims abstract description 5
- 239000003054 catalyst Substances 0.000 claims description 25
- 238000006243 chemical reaction Methods 0.000 claims description 15
- 239000011259 mixed solution Substances 0.000 claims description 6
- 239000012298 atmosphere Substances 0.000 claims description 5
- 238000000227 grinding Methods 0.000 claims description 5
- 239000012456 homogeneous solution Substances 0.000 claims description 5
- 239000002244 precipitate Substances 0.000 claims description 5
- 239000000047 product Substances 0.000 claims description 5
- 238000003756 stirring Methods 0.000 claims description 5
- 229910000851 Alloy steel Inorganic materials 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- MEFBJEMVZONFCJ-UHFFFAOYSA-N molybdate Chemical compound [O-][Mo]([O-])(=O)=O MEFBJEMVZONFCJ-UHFFFAOYSA-N 0.000 claims description 4
- 150000002815 nickel Chemical class 0.000 claims description 4
- 238000007789 sealing Methods 0.000 claims description 4
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 claims description 4
- 238000004140 cleaning Methods 0.000 claims description 3
- 239000008367 deionised water Substances 0.000 claims description 3
- 229910021641 deionized water Inorganic materials 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 3
- 239000012467 final product Substances 0.000 claims description 3
- 239000004005 microsphere Substances 0.000 claims description 3
- 239000003607 modifier Substances 0.000 claims description 3
- 238000001291 vacuum drying Methods 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 239000012300 argon atmosphere Substances 0.000 claims description 2
- 238000001816 cooling Methods 0.000 claims description 2
- 238000004321 preservation Methods 0.000 claims description 2
- 238000010521 absorption reaction Methods 0.000 abstract description 26
- 238000000034 method Methods 0.000 abstract description 16
- 238000003795 desorption Methods 0.000 abstract description 15
- 238000002474 experimental method Methods 0.000 abstract description 3
- 238000013329 compounding Methods 0.000 abstract description 2
- 238000005516 engineering process Methods 0.000 abstract description 2
- 238000012827 research and development Methods 0.000 abstract description 2
- 230000009102 absorption Effects 0.000 description 24
- 238000006356 dehydrogenation reaction Methods 0.000 description 19
- 239000011777 magnesium Substances 0.000 description 15
- 230000008569 process Effects 0.000 description 9
- 229910052749 magnesium Inorganic materials 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 7
- 230000003197 catalytic effect Effects 0.000 description 5
- 238000012512 characterization method Methods 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 230000005012 migration Effects 0.000 description 3
- 238000013508 migration Methods 0.000 description 3
- 239000002073 nanorod Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000000877 morphologic effect Effects 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910018864 CoMoO4 Inorganic materials 0.000 description 1
- 229910017855 NH 4 F Inorganic materials 0.000 description 1
- 229910005809 NiMoO4 Inorganic materials 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 229910012375 magnesium hydride Inorganic materials 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000002135 nanosheet Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000009103 reabsorption Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000013112 stability test Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/0005—Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
- C01B3/001—Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
- C01B3/0078—Composite solid storage mediums, i.e. coherent or loose mixtures of different solid constituents, chemically or structurally heterogeneous solid masses, coated solids or solids having a chemically modified surface region
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/0005—Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
- C01B3/001—Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
- C01B3/0084—Solid storage mediums characterised by their shape, e.g. pellets, sintered shaped bodies, sheets, porous compacts, spongy metals, hollow particles, solids with cavities, layered solids
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B6/00—Hydrides of metals including fully or partially hydrided metals, alloys or intermetallic compounds ; Compounds containing at least one metal-hydrogen bond, e.g. (GeH3)2S, SiH GeH; Monoborane or diborane; Addition complexes thereof
- C01B6/04—Hydrides of alkali metals, alkaline earth metals, beryllium or magnesium; Addition complexes thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/04—Oxides; Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
本发明公开一种绣球花型NiO@NiMoO4复合材料及其制备和应用,属于储氢材料技术领域,本申请综合利用水热法、煅烧法和球磨技术完成复合材料的制备,所得材料微观表现为绣球花型的球状形貌,粒径为2‑3μm。其与MgH2复配形成的MgH2+10wt%NiO@NiMoO4复合储氢材料用于升温放氢实验后、在190℃时即开始放氢,在300℃下、于4.5min内就可快速释放6.44wt%的H2,达到理论析氢量的99.4%,表明该复合储氢材料具有良好的低温吸放氢动力学性能和较高的吸放氢量;且该复合储氢材料具备较好的循环稳定性;综合来看,该材料在储氢领域的应用前景可观,也能为储氢材料的研发提供新的思路。
Description
技术领域
本发明属于储氢材料技术领域,具体涉及一种绣球花型NiO@NiMoO4复合材料及其制备方法和其在储氢材料中的应用。
背景技术
在倡导绿色、低碳、环保的时代背景之下,氢能源作为绿色环保的清洁能源,势必会成为未来的主流能源之一。近年来,随着新能源汽车行业的快速发展,能源市场对于氢能的需求也在快速增长,因而在未来很长一段时间内,储氢材料的发展与应用对环保及能源开发必然都有重大意义。
氢是可以通过物理或化学吸收储存在固体材料中的二次能源,与传统的高压气体储存和低温液体储存方式相比,气固储氢的方式具有致密性高、存储安全的特性。但是固体储氢材料在大规模应用中主要表现出以下几点问题:1、如何提高材料的储氢量;2、如何降低材料成本,减少贵金属的使用。目前常见的储氢材料主要有金属、非金属储氢材料,其中,镁基储氢材料是非常有潜力的一种。在众多镁基储氢材料中,MgH2因具有较高的储氢能力(7.6wt%)、可逆的吸氢和解吸氢性能,被认为是理想的固态储氢材料之一,在能源转换、燃料电池和蓄热应用方面均具有广阔的前景。但镁基材料在实际应用时也存在明显的缺陷,主要表现在镁基材料的放氢动力学性能差,需要在350℃左右的高温下才能有效吸放氢,且MgH2的热力学性质过于稳定,这也造成了MgH2脱氢温度过高的问题,这些都阻碍了此类材料在储氢领域的大规模应用。
基于MgH2本身存在的问题,探求出有效的改善镁基储氢材料性能的方法势在必行,目前已知的手段主要有三种:一是对MgH2微观结构进行调制;二是通过添加过渡金属、金属氧化物以及盐类金属物质作为催化剂来提升储氢性能;三是对材料进行表面改性。其中,掺杂催化剂被认为是改善MgH2动力学性能的最为简单有效的策略,该方法可以解决MgH2脱氢温度高、吸附动力学慢的问题,但是在降低MgH2的热力学稳定性方面,在很长一段时间内都没有重大进展,这是导致其放氢温度高的本质原因。
Tianping Huang等人(Tianping Huang,Xu Huang,Chuanzhu Hu.et.Enhancinghydrogen storage properties of MgH2 through addition of Ni/CoMoO4 nanorods,Journal Pre-proof,S2468-6069(20)30232-X)曾提出一种利用Ni/CoMoO4纳米棒提高MgH2的储氢性能的方案,具体是将制备完成的一维NiMoO4和CoMoO4纳米棒引入到MgH2中,NiMoO4和CoMoO4的加入降低了MgH2、尤其是NiMoO2的起始和峰值解吸温度,MgH2-10wt.%NiMoO4的峰值温度仅有257.3℃;通过掺杂NiMoO4,MgH2的脱氢活化能也降低了约40.8%;MgH2-NiMoO4体系表现出增强的等温氢解吸和再吸收行为,在300℃下10分钟内释放6wt.%的氢,在150℃、3.2MPa初始压力下10分钟之内吸收5.5wt.%的氢,相比于纯MgH2,MgH2-NiMoO4系统表现出更低的脱氢温度和更快的动力学,较之前的研究有明显的突破。
但是,申请人认为,上述方案虽能较为明显的降低MgH2的放氢温度,但是实际放氢温度仍处于一个较高的水平,这可能与其使用的掺杂催化剂NiMoO4为一维棒状结构有关,因为催化剂形状首先会影响催化剂的密堆积结构,其次会影响原料反应所需的载体表面,一维棒状形貌的材料能提供的反应活性位点有限,在促进反应过程中电子构型和电荷迁移性质的变化方面还稍显不足,所以可能并不能为后续吸脱氢过程提供足够多的H“扩散通道”。为了进一步降低脱氢温度,提升MgH2的放氢动力学性能,有必要对催化剂的组成和形貌进行更进一步地探索,以期研究出能再度降低MgH2放氢温度的新材料,为储氢材料催化剂的研发提供新的思路和指导意见。
发明内容
本发明的目的在于解决现有技术中存在的问题,提出一种绣球花型NiO@NiMoO4复合材料及其制备和应用,该材料凭借独特的形貌优势为后续吸脱氢过程提供更多的氢“扩散通道”和活性“催化点位”,较现有技术而言,再一次有效降低了脱氢温度,解决了常规储氢材料脱附动力学慢的问题。
本发明的技术方案如下:一种绣球花型NiO@NiMoO4复合材料,该复合材料微观表现为伴随着褶皱的连续层状结构,整体呈现出绣球花型的球状形貌,微球粒径为2-3μm。
上述绣球花型NiO@NiMoO4复合材料的制备方法如下:
1)将镍盐和钼酸盐溶于去离子水中,搅拌形成混合溶液;
2)向混合溶液中加入一定量的表面修饰剂和沉淀剂,搅拌形成均质溶液;
3)将均质溶液放入反应釜中,密封后,置于真空干燥箱,进行水热反应;
4)反应结束,冷却反应釜,在室温下清理干燥沉淀物;
5)将清理干燥后的沉淀物置于管式炉中进行煅烧;
6)取出煅烧后的产物,研磨,即得最终产物NiO@NiMoO4。
进一步地,步骤1)中,镍盐和钼酸盐的摩尔比为2~3:1。
进一步地,步骤2)中,所用表面修饰剂为NH4F、NH4NO3、CHO2中的至少一种,所用沉淀剂为CO(NH2)2、HC(NH2)2、(C3H5NO)n中的至少一种。
进一步地,步骤3)中,水热反应的温度为130~135℃,保温时间为12~13h。
进一步地,步骤5)中,煅烧温度为500~600℃,煅烧时间为3~4h。
上述绣球花型NiO@NiMoO4复合材料可应用在储氢领域,该复合材料作为储氢材料催化剂与MgH2按一定比例复配后,在惰性气氛下装入球磨罐进行混合球磨即得到复合储氢材料。
进一步地,配置的复合储氢材料中,NiO@NiMoO4与MgH2的质量比为1:9,该复合储氢材料在190℃开始放氢,在300℃下、4.5min内能释放6.44wt%的H2,达到理论析氢量的99.4%。
进一步地,惰性气氛是指压力为7~7.5Mpa的高纯氩气气氛,球磨机公转速度为400~450r/min,球磨时间为2~3h。
进一步地,进行球磨时的球料比为40:1,所用球磨工具为碳化钨硬质合金钢球。
相比于现有技术,本发明具有如下优点:
1、本申请制备的NiO@NiMoO4复合材料整体呈现出类似于绣球花型的球状结构,具体表现为伴随着明显褶皱的连续层状结构,微球粒径大约在2-3μm,相较于传统一维结构的催化剂材料而言,该结构的复合材料作为储氢材料的催化剂,可以提供更多的反应活性点位,进一步促进反应过程中电子构型和电荷迁移性质的变化,为后续吸脱氢过程提供更多的H“扩散通道”和活性“催化点位”;
2、本申请制备出的NiO@NiMoO4催化剂与MgH2复合后,均匀分布在MgH2表面,这有利于催化点位的增加,能够有效提升MgH2的储氢性能,加快氢气在MgH2上的吸附和解离并大大降低MgH2的脱氢温度,达到快速吸放氢的目的;
3、将本申请制备的NiO@NiMoO4复合材料与MgH2按照1:9的质量比复配球磨后形成的MgH2+10wt%NiO@NiMoO4复合储氢材料作用于升温放氢实验,在190℃时即开始放氢,较现有技术而言,MgH2放氢温度再次有了明显的降低,说明该复合储氢材料具有良好的低温吸放氢动力学性能;
4、在300℃下,本申请制备的MgH2+10wt%NiO@NiMoO4复合储氢材料于4.5min内就可以快速释放6.44wt%的H2,达到理论析氢量的99.4%,表明该复合储氢材料有较高的吸放氢量;
5、本申请制得的复合储氢材料具备较好的循环稳定性,循环10次后,储氢容量仍能达到5.84%,有效率能保持在90%以上;
6、本本申请公开的制备方法操作简便,采用简单的水热法、煅烧法和球磨技术即完成了NiO@NiMoO4微粒的制备,所用原料常规易得,具有成本低的优势,该复合材料既可以应用于氢能源燃料电池,也可以适用于便携式电源装置的贮氢源等。
附图说明
图1是实施例一中制备的NiO@NiMoO4复合材料的SEM图;
图2是MgH2+10wt%NiO@NiMoO4复合储氢材料与MgH2的升温放氢曲线;
图3是MgH2+10wt%NiO@NiMoO4复合储氢材料的XRD图谱;
图4是MgH2+10wt%NiO@NiMoO4复合储氢材料放氢后的XRD图谱;
图5是MgH2+10wt%NiO@NiMoO4复合储氢材料与MgH2的恒温放氢曲线图;
图6是MgH2+10wt%NiO@NiMoO4复合储氢材料与MgH2的升温吸氢曲线;
图7是MgH2+10wt%NiO@NiMoO4复合储氢材料吸氢后的XRD图谱;
图8是MgH2+10wt%NiO@NiMoO4复合储氢材料的恒温吸放氢循环性能图。
具体实施方式
下面结合附图对本发明的技术方案作进一步的说明,但并不局限于此,凡是对本发明技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,均应涵盖在本发明的保护范围中。
实施例一、绣球花型NiO@NiMoO4复合材料的制备
1、将4mmol NiCl2·6H2O和2mmol(NH4)6Mo7O24·4H2O溶解在70mL去离子水中,搅拌5min形成混合溶液;
2、向混合溶液中加入6mmol NH4F和10mmol CO(NH2)2,搅拌1h;
3、将搅拌得到的均质溶液放到水热反应釜中,密封,在真空干燥箱中于130℃下保持12h;
4、反应釜冷却后,将沉淀物在室温下清理干燥;
5、将干燥物置于管式炉中,在空气环境下,于500℃煅烧3h;
6、取出煅烧后的干燥物,在研磨钵上进行多次研磨,最终产物即为NiO@NiMoO4复合材料。
图1为本实施例制得的NiO@NiMoO4的SEM图,本申请通过传统的水热工艺将NiO组装在NiMoO4上,NiO@NiMoO4复合材料整体呈现出类似于绣球花型的球状结构,表现出与常见的镁基储氢材料催化剂不同的形貌特征,不再是简单的一维片状或者棒状结构,而是表现出伴随着明显褶皱的连续层状结构,构成这一特殊形貌的主要是因为在指定条件的水热还原反应中,基于范德华力的作用,催化剂发生挤压和团聚导致的现象。微球粒径大约在2-3μm,由纳米片和纳米棒复合形成球状结构,造成这一独特现象的原因是晶体的形成有缺陷,缺陷部位可以提供更多的反应活性点位,进一步促进反应过程中电子构型和电荷迁移性质的变化,为后续吸脱氢过程提供更多的氢“扩散通道”和活性“催化点位”。
实施例二、MgH2+10wt%NiO@NiMoO4复合储氢材料的制备
在压力约为7Mpa的Ar气氛下,将实施例一中制备的NiO@NiMoO4微粒(100mg)和MgH2(900mg)混合装入球磨罐中,球料比为40:1,以400r/min的球磨机公转速度球磨2h,球磨时使球磨罐正反各交替运行30min,交替期间需停转10min,球磨1h后,捣碎罐中结块样品后再正反交替各球磨30min,球磨1h,球磨结束后取出样品,在手套箱中密封保存,得到MgH2+10wt%NiO@NiMoO4复合储氢材料。
作为优选,本实施例中采用碳化钨硬质合金钢球作为球磨工具,其耐磨、抗弯曲性好,可以在恶劣环境下长时间使用,相比普通的不锈钢钢球,球磨过程中的碳化钨硬质合金钢球不会掉落磨损的碳化物,因而可提高复合储氢材料的纯度和均匀度。
相关性能测试
吸氢、脱氢稳定性测试在气态储氢性能测试设备Sievert型储氢性能测试仪上进行,技术性能指标:1-15MPa H2,20-600℃。
1、研究掺杂催化剂NiO@NiMoO4对MgH2脱氢性能的影响:
分别对MgH2和MgH2+10wt%NiO@NiMoO4进行脱氢测试,在手套箱中分别取样100~150mg放入装置中,抽真空,检漏后测试开始,测试时以2℃/min的速率升温到450℃。图2是测试后得到的MgH2+10wt%NiO@NiMoO4和MgH2的升温放氢曲线。从图中可以看出,MgH2+10wt%NiO@NiMoO4复合体系的起始脱氢温度下降到了190℃,比纯MgH2低约170℃。显著降低了MgH2的脱氢温度,提高了放氢动力学性能,较现有的镁基储氢材料催化剂也有明显的突破。
图3为MgH2+10wt%NiO@NiMoO4的XRD表征图,从图中可以看出,复合材料的主要成分都为MgH2,且在2θ=42°附近出现了MgO的衍射峰,这可能是由于在制备过程中,少量的Mg粉被氧化所导致的。总的来看,在MgH2材料中掺杂NiO@NiMoO4催化剂后并没有出现额外的新相,这意味着球磨过程中的NiO@NiMoO4具有较好的稳定性。
图4为MgH2+10wt%NiO@NiMoO4复合储氢材料完全脱氢后的XRD物相表征图,此次表征利用X射线衍射仪完成。从图中可以看出,当MgH2+10wt%NiO@NiMoO4复合材料完全脱氢后,主要的衍射峰从MgH2变成了Mg,且NiO@NiMoO4相消失了,取而代之出现了Mg2Ni和Mo的衍射峰,这意味着催化剂和MgH2发生了反应。
采用“定容加压法”测定复合储氢材料的恒温放氢性能。测试结果如图5所示,从图中可以看出,该复合体系在300℃恒温下展现出超快的放氢速度,MgH2+10wt%NiO@NiMoO4可在4.5min内迅速释放6.44wt%的H2,基本达到理论脱氢量(6.48wt%)。然而MgH2仅能释放0.04wt%的H2,即使是在反应进行60min后,MgH2释放的氢气也不到1wt%。
2、研究掺杂催化剂NiO@NiMoO4对MgH2升温吸氢性能的影响
测试MgH2+10wt%NiO@NiMoO4复合储氢材料的升温吸氢性能:
抽真空、检漏后利用完全脱氢后的复合材料进行吸氢测试。通过温控箱控制升温过程以1℃/min的速率升温到400℃。
图6为MgH2+10wt%NiO@NiMoO4复合材料的升温吸氢曲线,从图中可以看出,该复合材料在40℃以下就已开始缓慢吸氢,当温度达到150℃时已经吸收了4.54wt%的H2。然而,在相同温度下,纯MgH2才刚刚开始吸氢,且仅吸收了不到0.2wt%的H2。
图7为MgH2+10wt%NiO@NiMoO4复合储氢材料完全吸氢后的XRD物相表征图,此次表征利用X射线衍射仪完成。当完全脱氢后的复合材料完成吸氢过程后,主要的衍射峰再次从Mg变成了MgH2,Mo的衍射峰依然存在,但是Mg2Ni的衍射峰却消失了,吸氢后,出现了Mg2NiH4的衍射峰。这表明Mg2Ni和Mg2NiH4在吸放氢过程中来回转换,提高了MgH2的储氢性能,它们和Mo单质共同起到了实质催化作用。
3、研究MgH2+10wt%NiO@NiMoO4复合储氢材料的循环稳定性
循环测试中,放氢时间为15min,吸氢时间为5min。
如图8所示,在第1次循环中,复合材料的脱氢量为6.48wt%,吸氢量为6.3wt%。吸氢量不足的原因可能是因为生成了MgO。当第2次循环结束后,材料的放氢量开始持续下降,吸氢量也出现了轻微衰退。随后的循环实验中,下降趋势减缓,储氢量趋于稳定。最终,在完成第10次循环后,复合材料的储氢容量为5.84wt%,有效率保持在90%以上
综上可知,本实施例制备的复合储氢材料中,NiO@NiMoO4起到催化剂的作用,用来提高MgH2的吸放氢动力学性能。MgH2主要作为吸放氢的载体,NiO@NiMoO4催化剂均匀分布在MgH2表面,在吸放氢时的高温环境下,复合储氢材料中原位生成的Mg2NiH4和Mo之间的协同作用将有助于促进H2的解离和扩散,从而加快MgH2的氢气吸附和解离性能。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
Claims (5)
1.一种绣球花型NiO@NiMoO4复合材料的制备方法,其特征在于,包括如下步骤:
1)将镍盐和钼酸盐溶于去离子水中,搅拌形成混合溶液;
2)向混合溶液中加入一定量的表面修饰剂NH4F和沉淀剂CO(NH2)2,搅拌形成均质溶液;
3)将均质溶液放入反应釜中,密封后,置于真空干燥箱,进行水热反应;
4)反应结束,冷却反应釜,在室温下清理干燥沉淀物;
5)将清理干燥后的沉淀物置于管式炉中进行煅烧;
6)取出煅烧后的产物,研磨,即得最终产物NiO@NiMoO4;
步骤1)中,镍盐和钼酸盐的摩尔比为2~3:1;
步骤3)中,水热反应的温度为130~135℃,保温时间为12 ~13 h;
步骤5)中,煅烧温度为500~600℃,煅烧时间为3~4 h;
所得复合材料NiO@NiMoO4微观表现为伴随着褶皱的连续层状结构,整体呈现出绣球花型的球状形貌,微球粒径为2-3 μm。
2.一种绣球花型NiO@NiMoO4复合材料,其特征在于,其是基于权利要求1所述的绣球花型NiO@NiMoO4复合材料的制备方法制备得到的。
3. 如权利要求2所述的绣球花型NiO@NiMoO4复合材料在储氢领域的应用,其特征在于,该复合材料作为储氢材料催化剂与MgH2按一定比例复配后,在惰性气氛下装入球磨罐进行混合球磨即得到复合储氢材料;复合储氢材料中,NiO@NiMoO4与MgH2的质量比为1:9,该复合储氢材料在190℃开始放氢,在300℃下、4.5 min内能释放6.44 wt% 的H2,达到理论析氢量的99.4%。
4. 如权利要求3所述的绣球花型NiO@NiMoO4复合材料在储氢领域的应用,其特征在于,惰性气氛是指压力为7~7.5 Mpa的高纯氩气气氛,球磨机公转速度为400~450 r/min,球磨时间为2~3 h。
5.如权利要求3所述的绣球花型NiO@NiMoO4复合材料在储氢领域的应用,其特征在于,进行球磨时的球料比为40:1,所用球磨工具为碳化钨硬质合金钢球。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211329269.5A CN115432752B (zh) | 2022-10-27 | 2022-10-27 | 绣球花型NiO@NiMoO4复合材料及其制备和应用 |
PCT/CN2023/081193 WO2024087463A1 (zh) | 2022-10-27 | 2023-03-14 | 绣球花型NiO@NiMoO4复合材料及其制备和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211329269.5A CN115432752B (zh) | 2022-10-27 | 2022-10-27 | 绣球花型NiO@NiMoO4复合材料及其制备和应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115432752A CN115432752A (zh) | 2022-12-06 |
CN115432752B true CN115432752B (zh) | 2023-11-14 |
Family
ID=84252320
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211329269.5A Active CN115432752B (zh) | 2022-10-27 | 2022-10-27 | 绣球花型NiO@NiMoO4复合材料及其制备和应用 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115432752B (zh) |
WO (1) | WO2024087463A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115432752B (zh) * | 2022-10-27 | 2023-11-14 | 江苏科技大学 | 绣球花型NiO@NiMoO4复合材料及其制备和应用 |
CN116462156B (zh) * | 2023-04-12 | 2024-08-06 | 桂林电子科技大学 | 一种基于绣球花状NiO/KNbO3的MgH2复合材料及其制备方法和应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109133199A (zh) * | 2018-05-15 | 2019-01-04 | 安徽大学 | 一种高循环性能球状纳米钼酸镍电极材料的制备方法 |
US20210147249A1 (en) * | 2019-11-19 | 2021-05-20 | Changzhou University | Manganese-doped nickel molybdate electrode material and methods for preparing the same |
CN113769750A (zh) * | 2021-09-15 | 2021-12-10 | 江苏科技大学 | 一种简便的NiO@C纳米粉末的制备方法及其在储氢材料中的应用 |
CN113896167A (zh) * | 2021-11-12 | 2022-01-07 | 江苏科技大学 | 一种复合储氢材料、其制备方法及其应用 |
CN115072808A (zh) * | 2022-06-29 | 2022-09-20 | 西北工业大学 | 一种钼酸镍-氧化镍花状微球材料及其制备方法和应用、乙醇气体传感器及其制备方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108258223B (zh) * | 2018-01-19 | 2020-05-05 | 安徽工业大学 | 一种多级结构的球形n掺杂c包覆金属氧化物负极材料的制备方法 |
CN115432752B (zh) * | 2022-10-27 | 2023-11-14 | 江苏科技大学 | 绣球花型NiO@NiMoO4复合材料及其制备和应用 |
-
2022
- 2022-10-27 CN CN202211329269.5A patent/CN115432752B/zh active Active
-
2023
- 2023-03-14 WO PCT/CN2023/081193 patent/WO2024087463A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109133199A (zh) * | 2018-05-15 | 2019-01-04 | 安徽大学 | 一种高循环性能球状纳米钼酸镍电极材料的制备方法 |
US20210147249A1 (en) * | 2019-11-19 | 2021-05-20 | Changzhou University | Manganese-doped nickel molybdate electrode material and methods for preparing the same |
CN113769750A (zh) * | 2021-09-15 | 2021-12-10 | 江苏科技大学 | 一种简便的NiO@C纳米粉末的制备方法及其在储氢材料中的应用 |
CN113896167A (zh) * | 2021-11-12 | 2022-01-07 | 江苏科技大学 | 一种复合储氢材料、其制备方法及其应用 |
CN115072808A (zh) * | 2022-06-29 | 2022-09-20 | 西北工业大学 | 一种钼酸镍-氧化镍花状微球材料及其制备方法和应用、乙醇气体传感器及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
WO2024087463A1 (zh) | 2024-05-02 |
CN115432752A (zh) | 2022-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ding et al. | Tailoring MgH2 for hydrogen storage through nanoengineering and catalysis | |
CN115432752B (zh) | 绣球花型NiO@NiMoO4复合材料及其制备和应用 | |
Zhang et al. | Metal organic framework supported niobium pentoxide nanoparticles with exceptional catalytic effect on hydrogen storage behavior of MgH2 | |
Zhang et al. | The hydrogen storage properties of MgH2–Fe3S4 composites | |
Zou et al. | Preparation and hydrogen sorption properties of a Ni decorated Mg based Mg@ Ni nano-composite | |
Xie et al. | High hydrogen desorption properties of Mg-based nanocomposite at moderate temperatures: The effects of multiple catalysts in situ formed by adding nickel sulfides/graphene | |
Zou et al. | Hydrogen storage properties of Mg–TM–La (TM= Ti, Fe, Ni) ternary composite powders prepared through arc plasma method | |
Zhang et al. | Core-shell Ni3N@ Nitrogen-doped carbon: synthesis and application in MgH2 | |
Chen et al. | High loading nanoconfinement of V-decorated Mg with 1 nm carbon shells: hydrogen storage properties and catalytic mechanism | |
WO2023082551A1 (zh) | 一种复合储氢材料、其制备方法及其应用 | |
Wang et al. | Striking enhanced effect of PrF3 particles on Ti3C2 MXene for hydrogen storage properties of MgH2 | |
Wen et al. | Regulation of the integrated hydrogen storage properties of magnesium hydride using 3D self-assembled amorphous carbon-embedded porous niobium pentoxide | |
Wang et al. | Synthesis of Mg-based composite material with in-situ formed LaH3 and its hydrogen storage characteristics | |
Hou et al. | Ni 3 Fe/BC nanocatalysts based on biomass charcoal self-reduction achieves excellent hydrogen storage performance of MgH 2 | |
Zhong et al. | Hydrogen storage properties of Mg (Al) solid solution alloy doped with LaF3 by ball milling | |
Wei et al. | Improved hydrogen storage performances of the as-milled Mg-Al-Y alloy by co-doping of Tm@ C (Tm= Fe, Co, Cu) | |
ZHANG et al. | Catalytic effect of two-dimensional Mo2TiC2 MXene for tailoring hydrogen storage performance of MgH2 | |
Lan et al. | Introducing Ni-NC ternary nanocomposite as an active material to enhance the hydrogen storage properties of MgH2 | |
CN111515380B (zh) | 一种高容量镁基复合储氢材料及其制备方法 | |
Li et al. | Enhanced hydrogen storage performance of magnesium hydride catalyzed by medium-entropy alloy CrCoNi nanosheets | |
Zhang et al. | Effect of LaFeO3 on hydrogenation/dehydrogenation properties of MgH2 | |
Hong et al. | Structure modification of magnesium hydride for solid hydrogen storage | |
CN114590774A (zh) | 一种基于分级多孔微球Ti-Nb-O的氢化镁储氢材料及其制备方法 | |
CN114751369A (zh) | 一种MnCo2O4.5-MgH2复合储氢材料及其制备方法 | |
CN118558333A (zh) | 一种NiFe硫化物合金纳米花球催化剂、含该催化剂的复合储氢材料及其制备方法与应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |