CN115385704A - 减少微纳纤维增强碳化硅材料半成品干燥应力变形方法 - Google Patents

减少微纳纤维增强碳化硅材料半成品干燥应力变形方法 Download PDF

Info

Publication number
CN115385704A
CN115385704A CN202211012660.2A CN202211012660A CN115385704A CN 115385704 A CN115385704 A CN 115385704A CN 202211012660 A CN202211012660 A CN 202211012660A CN 115385704 A CN115385704 A CN 115385704A
Authority
CN
China
Prior art keywords
silicon carbide
finished product
micro
fiber reinforced
nano fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211012660.2A
Other languages
English (en)
Inventor
罗统斌
杨胜
陈强
周其杰
梁志
陈诚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi Sanyuan Huaxin Special Ceramics Co ltd
Original Assignee
Guangxi Sanyuan Huaxin Special Ceramics Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi Sanyuan Huaxin Special Ceramics Co ltd filed Critical Guangxi Sanyuan Huaxin Special Ceramics Co ltd
Priority to CN202211012660.2A priority Critical patent/CN115385704A/zh
Publication of CN115385704A publication Critical patent/CN115385704A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/427Diamond
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Abstract

本发明提供减少微纳纤维增强碳化硅材料半成品干燥应力变形方法,涉及碳化硅基复合材料技术领域。该减少微纳纤维增强碳化硅材料半成品干燥应力变形方法,包括以下步骤:步骤一、将碳化硅、石墨、金刚石原料混合并进行湿法球磨得到混合浆液;步骤二、将碳化硅纤维增强体长丝通过编织工艺织造为碳化硅纤维预制件;步骤三、将混合浆液与碳化硅纤维预制件置于真空压力浸渍釜中。通过纤维增强碳化硅材料半成品原料中加入将金刚石,使微纳纤维增强碳化硅材料半成品的物理强度提高并降低其热膨胀系数,达到了减少微纳纤维增强碳化硅材料半成品干燥加热时膨胀变形幅度的效果,提高了其抗变形的能力,减少了因膨胀应力造成变形或断裂问题的发生概率。

Description

减少微纳纤维增强碳化硅材料半成品干燥应力变形方法
技术领域
本发明涉及碳化硅基复合材料技术领域,具体为减少微纳纤维增强碳化硅材料半成品干燥应力变形方法。
背景技术
复合材料是由两种或两种以上不同性质的材料组合优化成具有新性能的材料,随着现代科技的发展,复合材料尤其是微纳纤维增强复合材料凭借优异的综合性能在高新技术领域得到了广泛的应用,在微纳纤维增强复合材料中,碳化硅是常用的一种原料,其具有稳定的四面体晶体结构,高温力学性能较好,微纳纤维增强碳化硅复合材料具有耐高温、耐磨损、抗氧化、吸波性,机械性能良好的优点,在航空航天,机械汽车、化工制造等领域有着良好的应用前景。
但是在微纳纤维增强碳化硅生产过程中,由于碳化硅纤维直径小、脆性较大,在其半成品干燥时,在加热的情况下会由于膨胀应力造成变形,变形严重时会导致断裂。
发明内容
针对现有技术的不足,本发明提供了减少微纳纤维增强碳化硅材料半成品干燥应力变形方法,解决了减少微纳纤维增强碳化硅材料半成品干燥应力变形的问题。
为实现以上目的,本发明通过以下技术方案予以实现:减少微纳纤维增强碳化硅材料半成品干燥应力变形方法,包括以下步骤:
步骤一、将碳化硅、石墨、金刚石原料混合并进行湿法球磨得到混合浆液;
步骤二、将碳化硅纤维增强体长丝通过编织工艺织造为碳化硅纤维预制件;
步骤三、将混合浆液与碳化硅纤维预制件置于真空压力浸渍釜中,进行真空浸渍;
步骤四、将真空浸渍后的混合物再进行加压浸渍。
步骤五、将加压浸渍后的混合物放入真空干燥箱中干燥,即得到微纳纤维增强碳化硅材料半成品。
优选的,所述碳化硅、石墨、金刚石原料球磨粒径为280-360nm。
优选的,所述步骤二中编织工艺采用2.5D斜角联锁编织法。
优选的,所述步骤三中真空浸渍时间为0.5-1h,所述真空浸渍的真空度为0.001-0.003MPa。
优选的,所述步骤四中加压浸渍的时间为2-4h,所加压力为5-10MPa。
优选的,所述步骤五中干燥温度为90-110℃。
优选的,所述碳化硅纤维增强体长丝制备方法包括以下步骤:
将聚碳硅烷的有机溶液中加入聚甲基硅烷,并充分搅拌混合;
再将混合溶液进行热模压交联,以1-10℃/min的升温速率升温至100-300℃,保温0-5h,继续升温至交联温度200-500℃,保温0-5h,升温和保温过程中保持模压压力≤40MPa,完成热模压交联后进行纺丝;
纺丝后放入固化炉中,在氧化性气氛下进行固化,固化温度为220-400℃,固化时间为2-3h;
固化后放入烧结炉中,在惰性气氛中烧结为SiC纤维,烧结时间为1-2h,烧结温度为1200-1600℃。
本发明提供了减少微纳纤维增强碳化硅材料半成品干燥应力变形方法。具备以下有益效果:
1、本发明通过纤维增强碳化硅材料半成品原料中加入将金刚石,使微纳纤维增强碳化硅材料半成品的物理强度提高并降低其热膨胀系数,达到了减少微纳纤维增强碳化硅材料半成品干燥加热时膨胀变形幅度的效果,提高了其抗变形的能力,减少了因膨胀应力造成变形或断裂问题的发生概率。
2、本发明通过将碳化硅纤维增强体长丝采用2.5D斜角联锁编织法织造碳化硅纤维预制件,使碳化硅纤维预制件的力学性能更加优良,有效地避免了后续加工过程中对纤维的损伤,提高了预制件的损伤容限。
3、本发明通过碳化硅纤维增强体长丝制备方法,消除了在纤维的形成中加入辅助剂的需求,并且混合熔体的成型性能以及可纺性均有所提高。
具体实施方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一:
本发明实施例提供减少微纳纤维增强碳化硅材料半成品干燥应力变形方法,包括以下步骤:
步骤一、将碳化硅、石墨、金刚石原料混合并进行湿法球磨得到混合浆液;
步骤二、将碳化硅纤维增强体长丝通过编织工艺织造为碳化硅纤维预制件;
步骤三、将混合浆液与碳化硅纤维预制件置于真空压力浸渍釜中,进行真空浸渍;
步骤四、将真空浸渍后的混合物再进行加压浸渍。
步骤五、将加压浸渍后的混合物放入真空干燥箱中干燥,即得到微纳纤维增强碳化硅材料半成品。
碳化硅、石墨、金刚石原料球磨粒径为280-360nm,步骤二中编织工艺采用2.5D斜角联锁编织法,步骤三中真空浸渍时间为0.5-1h,真空浸渍的真空度为0.001-0.003MPa,步骤四中加压浸渍的时间为2-4h,所加压力为5-10MPa,步骤五中干燥温度为90-110℃。
在天然贝壳类介质中人们发现
贝壳在抵御裂纹、吸收能量、增强抗冲击方面具有优异的性能,贝壳中由有机质和珍珠层构造的交错结构,有利于滞止裂纹长距离扩展,促进裂纹频繁偏转,提高动态断裂性能,金刚石与碳化硅两相复合材料的微结构形变机理与天然贝壳中的交错构造相似,有益于抵抗冲击,其具有高热导率、高硬度和低热膨胀系数等优异性质,使微纳纤维增强碳化硅材料半成品的物理强度提高并降低其热膨胀系数,达到了减少微纳纤维增强碳化硅材料半成品干燥加热时膨胀变形幅度的效果,提高了其抗变形的能力,减少了因膨胀应力造成变形或断裂问题的发生概率。
碳化硅纤维长丝采用编织的方式织成的织物具有经、纬密的均匀性好,变异系数小,织物参数可控的优点,碳化硅纤维长丝的织造是在织物结构工艺设计的基础上实现的,大多采用2.5D多层织物,2.5D多层织物设计是通过经纱上下移动,与多层纬纱交织,得到角联锁组织,角联锁包括层间角联锁和贯穿深度角联锁,由于2.5D机织碳化硅纤维在3个方向实现成型,配合纤维粗细、织物密度及复合用料,可以满足不同的力学性能要求,所制作的各向异性结构的增强复合材料,是其他金属无法比拟的,且由于2.5D碳化硅纤维增加了织物厚度,使材料吸波性能提高,用于各种结构吸波材料。
实施例二:
本发明实施例提供碳化硅纤维增强体长丝制备方法,包括以下步骤:
将聚碳硅烷的有机溶液中加入聚甲基硅烷,并充分搅拌混合;
再将混合溶液进行热模压交联,以1-10℃/mi n的升温速率升温至100-300℃,保温0-5h,继续升温至交联温度200-500℃,保温0-5h,升温和保温过程中保持模压压力≤40MPa,完成热模压交联后进行纺丝;
纺丝后放入固化炉中,在氧化性气氛下进行固化,固化温度为220-400℃,固化时间为2-3h;
固化后放入烧结炉中,在惰性气氛中烧结为SiC纤维,烧结时间为1-2h,烧结温度为1200-1600℃。
通过向加有聚碳硅烷的有机溶液中加入聚甲基硅烷,对该混合溶液加热交联后纺丝,随后在氧化性气氛下加热固化,最后在惰性气氛中烧成SiC纤维,通过上述方法消除了在纤维的形成中加入辅助剂的需求,并且混合熔体的成型性能以及可纺性均有所提高。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (7)

1.减少微纳纤维增强碳化硅材料半成品干燥应力变形方法,其特征在于:包括以下步骤:
步骤一、将碳化硅、石墨、金刚石原料混合并进行湿法球磨得到混合浆液;
步骤二、将碳化硅纤维增强体长丝通过编织工艺织造为碳化硅纤维预制件;
步骤三、将混合浆液与碳化硅纤维预制件置于真空压力浸渍釜中,进行真空浸渍;
步骤四、将真空浸渍后的混合物再进行加压浸渍。
步骤五、将加压浸渍后的混合物放入真空干燥箱中干燥,即得到微纳纤维增强碳化硅材料半成品。
2.根据权利要求1所述的减少微纳纤维增强碳化硅材料半成品干燥应力变形方法,其特征在于:所述碳化硅、石墨、金刚石原料球磨粒径为280-360nm。
3.根据权利要求1所述的减少微纳纤维增强碳化硅材料半成品干燥应力变形方法,其特征在于:所述步骤二中编织工艺采用2.5D斜角联锁编织法。
4.根据权利要求1所述的减少微纳纤维增强碳化硅材料半成品干燥应力变形方法,其特征在于:所述步骤三中真空浸渍时间为0.5-1h,所述真空浸渍的真空度为0.001-0.003MPa。
5.根据权利要求1所述的减少微纳纤维增强碳化硅材料半成品干燥应力变形方法,其特征在于:所述步骤四中加压浸渍的时间为2-4h,所加压力为5-10MPa。
6.根据权利要求1所述的减少微纳纤维增强碳化硅材料半成品干燥应力变形方法,其特征在于:所述步骤五中干燥温度为90-110℃。
7.根据权利要求1所述的减少微纳纤维增强碳化硅材料半成品干燥应力变形方法,其特征在于:所述碳化硅纤维增强体长丝制备方法包括以下步骤:
将聚碳硅烷的有机溶液中加入聚甲基硅烷,并充分搅拌混合;
再将混合溶液进行热模压交联,以1-10℃/min的升温速率升温至100-300℃,保温0-5h,继续升温至交联温度200-500℃,保温0-5h,升温和保温过程中保持模压压力≤40MPa,完成热模压交联后进行纺丝;
纺丝后放入固化炉中,在氧化性气氛下进行固化,固化温度为220-400℃,固化时间为2-3h;
固化后放入烧结炉中,在惰性气氛中烧结为SiC纤维,烧结时间为1-2h,烧结温度为1200-1600℃。
CN202211012660.2A 2022-08-23 2022-08-23 减少微纳纤维增强碳化硅材料半成品干燥应力变形方法 Pending CN115385704A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211012660.2A CN115385704A (zh) 2022-08-23 2022-08-23 减少微纳纤维增强碳化硅材料半成品干燥应力变形方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211012660.2A CN115385704A (zh) 2022-08-23 2022-08-23 减少微纳纤维增强碳化硅材料半成品干燥应力变形方法

Publications (1)

Publication Number Publication Date
CN115385704A true CN115385704A (zh) 2022-11-25

Family

ID=84119807

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211012660.2A Pending CN115385704A (zh) 2022-08-23 2022-08-23 减少微纳纤维增强碳化硅材料半成品干燥应力变形方法

Country Status (1)

Country Link
CN (1) CN115385704A (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000344582A (ja) * 1999-06-03 2000-12-12 Toshiba Corp 繊維強化複合材料
US20040013876A1 (en) * 2001-09-19 2004-01-22 Kiyohito Okamura Process for producing reinforcing sic fiber for sic composite material
CN1868971A (zh) * 2006-05-25 2006-11-29 南京航空航天大学 一种碳纤维增韧的碳-碳化硅基复合材料及其制备方法
CN102276279A (zh) * 2011-06-10 2011-12-14 中国人民解放军国防科学技术大学 碳化硅纤维增强碳化硅复合材料的制备方法
CN102690124A (zh) * 2011-09-14 2012-09-26 中国人民解放军总后勤部军需装备研究所 一种C/SiC陶瓷基复合材料及其制备方法
CN103724033A (zh) * 2013-07-23 2014-04-16 太仓派欧技术咨询服务有限公司 一种立体织物增强氮化硅-碳化硅陶瓷复合材料及其制备方法
CN105503227A (zh) * 2015-12-25 2016-04-20 苏州宏久航空防热材料科技有限公司 一种立体织物增强碳化硅-金刚石复合材料的制备方法
CN107556011A (zh) * 2017-08-23 2018-01-09 中国建筑材料科学研究总院 SiCf/SiC复合材料及其制备方法
CN108530099A (zh) * 2017-03-06 2018-09-14 海南大学 一种块体碳增强体/碳复合材料及其制备方法
CN110451969A (zh) * 2019-09-17 2019-11-15 景德镇陶瓷大学 碳纤维-碳化锆复合材料及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000344582A (ja) * 1999-06-03 2000-12-12 Toshiba Corp 繊維強化複合材料
US20040013876A1 (en) * 2001-09-19 2004-01-22 Kiyohito Okamura Process for producing reinforcing sic fiber for sic composite material
CN1868971A (zh) * 2006-05-25 2006-11-29 南京航空航天大学 一种碳纤维增韧的碳-碳化硅基复合材料及其制备方法
CN102276279A (zh) * 2011-06-10 2011-12-14 中国人民解放军国防科学技术大学 碳化硅纤维增强碳化硅复合材料的制备方法
CN102690124A (zh) * 2011-09-14 2012-09-26 中国人民解放军总后勤部军需装备研究所 一种C/SiC陶瓷基复合材料及其制备方法
CN103724033A (zh) * 2013-07-23 2014-04-16 太仓派欧技术咨询服务有限公司 一种立体织物增强氮化硅-碳化硅陶瓷复合材料及其制备方法
CN105503227A (zh) * 2015-12-25 2016-04-20 苏州宏久航空防热材料科技有限公司 一种立体织物增强碳化硅-金刚石复合材料的制备方法
CN108530099A (zh) * 2017-03-06 2018-09-14 海南大学 一种块体碳增强体/碳复合材料及其制备方法
CN107556011A (zh) * 2017-08-23 2018-01-09 中国建筑材料科学研究总院 SiCf/SiC复合材料及其制备方法
CN110451969A (zh) * 2019-09-17 2019-11-15 景德镇陶瓷大学 碳纤维-碳化锆复合材料及其制备方法

Similar Documents

Publication Publication Date Title
CN113912405A (zh) 一种混编纤维预制体增强的复合材料及其制备方法
CN106007767B (zh) 一种混杂基体热结构c/c-mc复合材料及其制备方法
EP2233616B1 (en) Processes for producing flameproof fiber and carbon fiber
CN107586117B (zh) 一种碳纤维增韧氧化铝陶瓷材料的方法
CN114804902B (zh) 梯度承载透波隐身一体化陶瓷基复合材料及其制备方法
CN107810173B (zh) 处理碳化硅纤维的方法
CN112500180B (zh) 氮化物纤维增强陶瓷基透波复合材料及其精密成型方法
CN109608218B (zh) 一种自愈合陶瓷基复合材料及其低温快速制备方法
CN113698219A (zh) 一种氮化硅纤维增强陶瓷基复合材料及其制备方法
CN107827461A (zh) 一种耐烧蚀纤维增韧硅硼碳氮锆陶瓷基复合材料、其制备方法及应用
CN112500183B (zh) 一种氧化铝纤维增强的耐高温抗冲刷保温材料的制备方法
US6303096B1 (en) Pitch based carbon fibers
CN113896554B (zh) 一种高致密纤维增强石英陶瓷复合材料及其制备方法
CN115028456A (zh) 碳化硅纤维废丝增强碳化硅陶瓷基复合材料的制备方法
CN115385704A (zh) 减少微纳纤维增强碳化硅材料半成品干燥应力变形方法
CN206217892U (zh) 贯通道结构及具有其的列车
CN115196984B (zh) 三维编织含界面相的氧化铝纤维增强氧化物陶瓷基复合材料及其制备方法
CN109130402B (zh) 一种高性能纤维复合材料的制备方法
CN106396429A (zh) 玻璃结构及具有其的列车
CN115124360B (zh) 一种碳纤维增韧陶瓷材料及其制备方法
JP4245725B2 (ja) 炭素繊維強化炭素複合材料からなる高温加圧成型炉部材及びその製造方法
CN114407227A (zh) 一种高层密扁平碳纤维梯度缝合预制体及制备方法
CN108914554A (zh) 一种新型环保耐火玄武岩纤维布
CN112110742B (zh) 一种高导热C/C-SiC复合材料的制备方法
CN115417683A (zh) 一种氧化物连续长丝增强氧化物陶瓷基复合材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20221125

RJ01 Rejection of invention patent application after publication