CN115373375A - 机器人的返回充电桩的方法、装置、机器人及存储介质 - Google Patents

机器人的返回充电桩的方法、装置、机器人及存储介质 Download PDF

Info

Publication number
CN115373375A
CN115373375A CN202110540622.3A CN202110540622A CN115373375A CN 115373375 A CN115373375 A CN 115373375A CN 202110540622 A CN202110540622 A CN 202110540622A CN 115373375 A CN115373375 A CN 115373375A
Authority
CN
China
Prior art keywords
inductor
robot
distance
coil
returning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110540622.3A
Other languages
English (en)
Other versions
CN115373375B (zh
Inventor
王中甲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Weilan Continental Beijing Technology Co ltd
Original Assignee
Weilan Continental Beijing Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Weilan Continental Beijing Technology Co ltd filed Critical Weilan Continental Beijing Technology Co ltd
Priority to CN202110540622.3A priority Critical patent/CN115373375B/zh
Publication of CN115373375A publication Critical patent/CN115373375A/zh
Application granted granted Critical
Publication of CN115373375B publication Critical patent/CN115373375B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
    • G05D1/024Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors in combination with a laser
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0225Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving docking at a fixed facility, e.g. base station or loading bay
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/0278Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using satellite positioning signals, e.g. GPS
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Manipulator (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明提出一种机器人的返回充电桩的方法、装置、机器人及存储介质,机器人的第一端中间位置设置有三个电感器;第一电感器垂直于地面设置;第二电感器和第三电感器平行于地面设置,且横向对称地设置在第一电感器的两侧,充电桩上设置有矩形通电线圈,矩形通电线圈上存在对准充电桩的中间线的中间边,方法包括:根据第一电感器对通电线圈的感应数据,控制机器人运行至第一电感器位于中间边上的中间位置;根据第二电感器、第三电感器对通电线圈的感应数据,确定第二电感器和通电线圈之间的第一距离以及第三电感器与通电线圈之间的第二距离;根据第一距离和第二距离,控制机器人从中间位置返回充电桩。降低了机器人回桩的成本,且回桩成功率高。

Description

机器人的返回充电桩的方法、装置、机器人及存储介质
技术领域
本发明涉及机器人技术领域,尤其涉及一种机器人的返回充电桩的方法、装置、机器人及存储介质。
背景技术
随着机器人技术的日趋成熟,机器人的应用场景也越来越广泛,例如:用于送餐的送餐机器人、用于环境清洁的扫地机器人、割草机等。由于机器人在各个领域发挥着越来越重要的作用,大众对机器人的智能化需求也越来越高。
近年来,机器人的自主巡线功能成为了研究的热点。相关技术中,在机器人工作完没电或者工作过程中需要返回充电桩时,通常使用激光以及测量距离和测量位置传感器组合的方式,来实现机器人自动巡线回桩。但是,这种方式,使用到的传感器种类和数量较多,硬件设计制作成本和软件设计成本均比较高,并且,当一种传感器异常或者机器人受到外界干扰时,容易发生自动回桩失败的情况,回桩成功率低。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本发明的第一个目的在于提出一种机器人的返回充电桩的方法,以解决相关技术中的机器人自动巡线回桩的方式存在的硬件设计制作成本和软件设计成本均比较高,且回桩成功率低的问题。
本发明的第二个目的在于提出一种机器人的返回充电桩的装置。
本发明的第三个目的在于提出一种机器人。
本发明的第四个目的在于提出一种计算机可读存储介质。
为达上述目的,本发明第一方面实施例提出了一种机器人的返回充电桩的方法,所述机器人的第一端中间位置设置有第一电感器、第二电感器和第三电感器;所述第一电感器垂直于地面设置;所述第二电感器和所述第三电感器平行于地面设置,且横向对称地设置在所述第一电感器的两侧,所述充电桩上设置有矩形通电线圈,所述矩形通电线圈上存在对准所述充电桩的中间线的中间边,所述方法包括:根据所述第一电感器对所述通电线圈的感应数据,控制所述机器人运行至所述第一电感器位于所述中间边上的中间位置;根据所述第二电感器、所述第三电感器对所述通电线圈的感应数据,确定所述第二电感器和所述通电线圈之间的第一距离以及所述第三电感器与所述通电线圈之间的第二距离;根据所述第一距离和所述第二距离,控制所述机器人从所述中间位置返回所述充电桩。
本发明实施例提出的机器人的返回充电桩的方法,根据第一电感器对通电线圈的感应数据,控制机器人运行至第一电感器位于中间边上的中间位置,根据第二电感器、第三电感器对通电线圈的感应数据,确定第二电感器和通电线圈之间的第一距离以及第三电感器与通电线圈之间的第二距离,根据第一距离和第二距离,控制机器人从中间位置返回充电桩。由于仅根据电感器对通电线圈的感应数据,即可实现机器人的自主回桩,降低了机器人回桩的硬件设计复杂度和软件算法复杂度,从而降低了成本,且回桩成功率高。
根据本发明的一个实施例,所述根据所述第一电感器对所述通电线圈的感应数据,控制所述机器人运行至所述第一电感器位于所述中间边上的中间位置,包括:在根据所述第一电感器对所述通电线圈的感应数据确定所述第一电感器位于所述通电线圈的覆盖区域,且根据所述第一距离和所述第二距离确定所述机器人满足预设回桩条件时,控制所述机器人向靠近所述中间位置的方向旋转至所述中间位置。
根据本发明的一个实施例,所述根据所述第一电感器对所述通电线圈的感应数据,控制所述机器人运行至所述第一电感器位于所述中间边上的中间位置,包括:在根据所述第一电感器对所述通电线圈的感应数据确定所述第一电感器位于所述通电线圈的覆盖区域,且根据所述第一距离和所述第二距离确定所述机器人不满足预设回桩条件时,控制所述机器人:第一步:向靠近所述中间位置的方向旋转至所述中间位置或者所述覆盖区域外;第二步:前进预设距离并向靠近所述中间位置的方向旋转至所述中间位置;第三步:在确定所述机器人满足预设的后退条件时,后退出所述覆盖区域,并再次进入所述覆盖区域;第四步:重复所述第一步至所述第三步直到不满足所述后退条件。
根据本发明的一个实施例,所述后退条件包括:后退次数小于等于预设次数阈值,和/或,所述第一距离或者所述第二距离小于等于第一预设距离阈值。
根据本发明的一个实施例,所述预设回桩条件包括:所述机器人与所述中间位置之间的角度小于等于预设角度阈值;其中,所述机器人与所述中间位置之间的角度的确定方式为,根据所述第一距离、所述第二距离、以及所述第二电感器和所述第三电感器之间的距离,确定所述第二电感器和所述第三电感器的连线与所述中间位置之间的角度;根据预设角度数值、以及所述连线与所述中间位置之间的角度,确定所述机器人与所述中间位置之间的角度。
根据本发明的一个实施例,所述根据所述第一距离和所述第二距离,控制所述机器人从所述中间位置返回所述充电桩,包括:控制所述机器人前进,并获取所述第一距离和所述第二距离的差值;根据所述差值确定所述机器人的旋转角度;控制所述机器人旋转所述旋转角度。
根据本发明的一个实施例,所述机器人为割草机。
为达上述目的,本发明第二方面实施例提出了一种机器人的返回充电桩的装置,所述机器人的第一端中间位置设置有第一电感器、第二电感器和第三电感器;所述第一电感器垂直于地面设置;所述第二电感器和所述第三电感器平行于地面设置,且横向对称地设置在所述第一电感器的两侧,所述充电桩上设置有矩形通电线圈,所述矩形通电线圈上存在对准所述充电桩的中间线的中间边,所述装置包括:第一控制模块,用于根据所述第一电感器对所述通电线圈的感应数据,控制所述机器人运行至所述第一电感器位于所述中间边上的中间位置;确定模块,用于根据所述第二电感器、所述第三电感器对所述通电线圈的感应数据,确定所述第二电感器和所述通电线圈之间的第一距离以及所述第三电感器与所述通电线圈之间的第二距离;第二控制模块,用于根据所述第一距离和所述第二距离,控制所述机器人从所述中间位置返回所述充电桩。
本发明实施例提出的机器人的返回充电桩的装置,根据第一电感器对通电线圈的感应数据,控制机器人运行至第一电感器位于中间边上的中间位置,根据第二电感器、第三电感器对通电线圈的感应数据,确定第二电感器和通电线圈之间的第一距离以及第三电感器与通电线圈之间的第二距离,根据第一距离和第二距离,控制机器人从中间位置返回充电桩。由于仅根据电感器对通电线圈的感应数据,即可实现机器人的自主回桩,降低了机器人回桩的硬件设计复杂度和软件算法复杂度,从而降低了成本,且回桩成功率高。
根据本发明的一个实施例,所述第一控制模块,具体用于:在根据所述第一电感器对所述通电线圈的感应数据确定所述第一电感器位于所述通电线圈的覆盖区域,且根据所述第一距离和所述第二距离确定所述机器人满足预设回桩条件时,控制所述机器人向靠近所述中间位置的方向旋转至所述中间位置。
根据本发明的一个实施例,所述第一控制模块,具体还用于:在根据所述第一电感器对所述通电线圈的感应数据确定所述第一电感器位于所述通电线圈的覆盖区域,且根据所述第一距离和所述第二距离确定所述机器人不满足预设回桩条件时,控制所述机器人:第一步:向靠近所述中间位置的方向旋转至所述中间位置或者所述覆盖区域外;第二步:前进预设距离并向靠近所述中间位置的方向旋转至所述中间位置;第三步:在确定所述机器人满足预设的后退条件时,后退出所述覆盖区域,并再次进入所述覆盖区域;第四步:重复所述第一步至所述第三步直到不满足所述后退条件。
根据本发明的一个实施例,所述后退条件包括:后退次数小于等于预设次数阈值,和/或,所述第一距离或者所述第二距离小于等于第一预设距离阈值。
根据本发明的一个实施例,所述预设回桩条件包括:所述机器人与所述中间位置之间的角度小于等于预设角度阈值;其中,所述机器人与所述中间位置之间的角度的确定方式为,根据所述第一距离、所述第二距离、以及所述第二电感器和所述第三电感器之间的距离,确定所述第二电感器和所述第三电感器的连线与所述中间位置之间的角度;根据预设角度数值、以及所述连线与所述中间位置之间的角度,确定所述机器人与所述中间位置之间的角度。
根据本发明的一个实施例,所述第二控制模块,具体用于:控制所述机器人前进,并获取所述第一距离和所述第二距离的差值;根据所述差值确定所述机器人的旋转角度;控制所述机器人旋转所述旋转角度。
根据本发明的一个实施例,所述机器人为割草机。
为达上述目的,本发明第三方面实施例提出了一种机器人,所述机器人的第一端中间位置设置有第一电感器、第二电感器和第三电感器;所述第一电感器垂直于地面设置;所述第二电感器和所述第三电感器平行于地面设置,且横向对称地设置在所述第一电感器的两侧,所述机器人还包括:至少一个处理器;以及与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行第一方面实施例所述的机器人的返回充电桩的方法。
为达上述目的,本发明第四方面实施例提出了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如本发明第一方面实施例所述的机器人的返回充电桩的方法。
附图说明
图1是本申请实施例提供的机器人中的电感器的布局示意图;
图2是本申请实施例提供的机器人中的电感器的另一布局示意图;
图3是本申请实施例提供的电感器与机器人中的处理器的连接关系示意图;
图4是本申请实施例提供的电感器与机器人中的处理器的另一连接关系示意图;
图5是本申请实施例提供的第二电感器与通电线圈的之间的第一距离以及第三电感器与通电线圈之间的第二距离的示意图;
图6是根据本申请实施例提供的一种机器人的返回充电桩的方法的流程图;
图7是根据本申请实施例提供的一种在充电桩上布设通电线圈的示意图;
图8是根据本申请实施例提供的另一种机器人的返回充电桩的方法的流程图;
图9-15为机器人与充电桩及矩形通电线圈之间的位置关系示意图;
图16是根据本申请实施例提供的控制机器人从中间位置返回充电桩的流程图;
图17是根据本申请实施例提供的另一种机器人的返回充电桩的方法的流程图;
图18是本申请实施例提供的一种机器人的返回充电桩的装置的流程图;
图19是本申请实施例提供的一种机器人的结构图。
具体实施方式
下面详细描述本发明的实施例,实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
相关技术中,在机器人工作完没电或者工作过程中需要返回充电桩时,通常使用激光以及测量距离和测量位置传感器组合的方式,来实现机器人自动巡线回桩。但是,这种方式,使用到的传感器种类和数量较多,硬件设计制作成本和软件设计成本均比较高,并且,当一种传感器异常或者机器人受到外界干扰时,容易发生自动回桩失败的情况,回桩成功率低。
本申请各实施例主要针对上述现有技术中存在的技术问题,提出一种机器人的返回充电桩的方法、装置、机器人以及存储介质,其中,机器人的第一端中间位置设置有第一电感器、第二电感器和第三电感器;第一电感器垂直于地面设置;第二电感器和第三电感器平行于地面设置,且横向对称地设置在第一电感器的两侧,充电桩上设置有矩形通电线圈,矩形通电线圈上存在对准充电桩的中间线的中间边,机器人在回桩时,根据第一电感器对通电线圈的感应数据,控制机器人运行至第一电感器位于中间边上的中间位置,根据第二电感器、第三电感器对通电线圈的感应数据,确定第二电感器和通电线圈之间的第一距离以及第三电感器与通电线圈之间的第二距离,根据第一距离和第二距离,控制机器人从中间位置返回充电桩。由于仅根据电感器对通电线圈的感应数据,即可实现机器人的自主回桩,降低了机器人回桩的硬件设计复杂度和软件算法复杂度,从而降低了成本,且回桩成功率高。
下面结合附图来描述本发明实施例的机器人的返回充电桩的方法、装置、机器人及存储介质。
为清楚说明本申请实施例的机器人的返回充电桩的方法、装置、机器人及存储介质,首先结合附图1-5,对机器人上设置的电感器进行说明。
图1是本申请实施例提供的机器人中的电感器的布局示意图,图2是本申请实施例提供的机器人中的电感器的另一布局示意图。其中,图1为俯视图,图2为正视图(机器人2在图2中未示出)。
如图1和图2所示,机器人2的第一端中间位置可以设置第一电感器11、第二电感器12和第三电感器13。
其中,第一电感器11垂直于地面设置,感应得到的感应数据用于确定第一电感器11与通电线圈的内外侧关系;
第二电感器12和第三电感器13平行于地面设置,且第二电感器12和第三电感器13横向对称地设置在第一电感器11的两侧,第二电感器12感应得到的感应数据用于确定第二电感器12与通电线圈之间的距离关系,第三电感器13感应得到的感应数据用于确定第三电感器13与通电线圈之间的距离关系。
其中,第一电感器11、第二电感器12以及第三电感器13可以为自感器。
可以理解的是,通电线圈可以按照预设方式设置。在示例性实施例中,通电线圈相对于地面水平设置,并且,通电线圈通有特定频率的电流信号,比如,20KHZ(千赫兹)的PWM波信号,从而在通电线圈所在区域可以产生磁场。在示例性实施例中,机器人2为割草机时,水平设置的通电线圈可以是割草区域的边界引导线所围成的通电线圈,或者,也可以是设置在充电桩底盘上的通电线圈,其中,通电线圈可以设置在充电桩底盘的上表面或者下表面,本申请对此不作限制。
第一电感器11垂直于地面设置,当第一电感器11在水平设置的通电线圈附近时,可以感应到通电线圈产生的磁场,并且产生感应数据,由于通电线圈内外的磁场强度不同,第一电感器11位于通电线圈内侧和外侧时,感应数据比如电压信号的大小不同,从而根据第一电感器11感应得到的感应数据,即可确定第一电感器11与水平设置的通电线圈的内外侧关系。本申请实施例以通电线圈为水平设置的通电线圈为例进行说明。
另外,第二电感器12和第三电感器13平行于地面设置,并且横向对称设置在第一电感器11的两侧。以第二电感器12为例,当第二电感器12在通电线圈附近时,第二电感器12可以感应到通电线圈产生的磁场,并且可以产生感应数据。由于第二电感器12与通电线圈之间的距离不同时,该第二电感器12产生的感应数据比如电压信号的大小不同,从而根据该第二电感器12感应得到的感应数据,可以确定该第二电感器12与通电线圈之间的距离关系。同理,根据第三电感器13感应得到的感应数据,可以确定第三电感器13与通电线圈之间的距离关系。
在示例性实施例中,如图1和图2所示,可以将第二电感器12和第三电感器13设置在电路板14上。其中,第一电感器11垂直于电路板14设置在电路板14中部,第二电感器12和第三电感器13平行于电路板14设置,且第二电感器12和第三电感器13横向对称设置在第一电感器11的两侧。
在机器人2利用电感器返回充电桩时,可以将电路板14平行于地面设置在机器人2上,从而使第一电感器11垂直于地面,第二电感器12和第三电感器13平行于地面,以保证第一电感器11能够感应到感应数据,第二电感器12能够感应到感应数据,第三电感器13能够感应到感应数据。
在示例性实施例中,第一电感器11、第二电感器12和第三电感器13可以设置在机器人2第一端的中间位置,其中,第一端可以为机器人2的前端,从而机器人2可以根据第一电感器11对通电线圈的感应数据,确定第一电感器11与通电线圈的内外侧关系,并且根据第二电感器12对通电线圈的感应数据,确定第二电感器与通电线圈之间的距离关系,根据第三电感器13对通电线圈的感应数据,确定第三电感器与通电线圈之间的距离关系,进而根据第一电感器11与通电线圈的内外侧关系、第二电感器12和第三电感器13分别与通电线圈之间的距离关系,控制机器人2返回充电桩。其中,在机器人2第一端中间位置设置第一电感器11、第二电感器12和第三电感器13时,可以将第一电感器11、第二电感器12和第三电感器13放置在机器人2前端中间位置的上表面上,或者水平粘贴在机器人2前端中间位置的侧面上,本申请实施例对此不作限制。
具体的,机器人2中可以设置有处理器21,从而通过处理器21,根据第一电感器11采集到的感应数据、第二电感器12采集到的感应数据以及第三电感器13采集到的感应数据,确定机器人2相对充电桩的相对位置关系,以控制机器人2准确返回充电桩。
如图3所示,第一电感器11可以与处理器21连接,从而第一电感器11可以将采集到的感应数据传输至处理器21,以使处理器21根据感应数据,确定第一电感器11与通电线圈的内外侧关系。第二电感器12以及第三电感器13可以分别与处理器21连接,从而第二电感器12和第三电感器13可以分别将采集到的感应数据传输至处理器21,以使处理器21根据第二电感器12传输的感应数据确定第二电感器12与通电线圈之间的距离关系,根据第三电感器13传输的感应数据确定第三电感器13与通电线圈之间的距离关系。处理器21根据第一电感器11与水平设置的通电线圈的内外侧关系,以及两个第二电感器12分别与通电线圈之间的距离关系,即可控制机器人2返回充电桩。
在示例性实施例中,如图4所示,还可以在机器人2上设置中间电路23,第一电感器11与处理器21通过中间电路23连接。其中,图3和图4中24为机器人2的驱动轮。
其中,中间电路23可以包括放大电路231和比较电路232,放大电路231分别与第一电感器11和比较电路232连接,放大电路231可以对第一电感器11上产生的感应数据进行放大处理,比较电路232与处理器21连接,比较电路232可以按照第一预设电压阈值对放大处理后的感应数据进行方波处理,并提供给处理器21。由于第一电感器11位于通电线圈内侧和外侧时,进行方波处理后的感应数据的占空比不同,从而处理器21可以根据感应数据的占空比,确定第一电感器11位于通电线圈内侧还是外侧。
其中,第一预设电压阈值,可以根据需要设置,本申请实施例对此不作限制。
需要说明的是,在示例性实施例中,中间电路23除放大电路231和比较电路232之外,还可以包括滤波电路(图4中未示出),滤波电路分别与第一电感器11和放大电路231连接,滤波电路可以对第一电感器11上产生的感应数据进行滤波处理,以滤除干扰信号,提高放大电路231获取的信号质量。
另外,在示例性实施例中,中间电路23也可以不包括比较电路232,即中间电路23可以仅包括放大电路231,放大电路231分别与第一电感器11和处理器21连接,或者中间电路23可以仅包括滤波电路和放大电路231,放大电路231分别与滤波电路和处理器21连接,从而处理器21可以直接根据放大处理后的感应数据确定第一电感器11位于通电线圈内侧还是外侧。
需要说明的是,在示例性实施例中,通电线圈的数量可以根据需要设置,比如可以在充电桩区域设置一个通电线圈,也可以在充电桩区域对称设置两个通电线圈,本申请对此不作限制。
在通电线圈的数量为一个时,可以根据第一电感器11对该通电线圈的感应数据,确定第一电感器11与该通电线圈的内外侧关系,分别根据第二电感器12和第三电感器13对该通电线圈的感应数据,确定第二电感器12和第三电感器13与该通电线圈之间的距离关系。
在通电线圈的数量为多个时,可以根据第一电感器11对多个通电线圈的感应数据,确定第一电感器11与多个通电线圈的内外侧关系,根据第二电感器12对某个通电线圈的感应数据,确定第二电感器12与该个通电线圈之间的距离,根据第三电感器13对某个通电线圈的感应数据,确定第三电感器13与该个通电线圈之间的距离。
以图5为例,假设第一电感器11、第二电感器12和第三电感器13设置在机器人2前端的中间位置,图5中虚线32为充电桩上水平设置的通电线圈。其中,假设在充电桩上设置了一个矩形通电线圈,矩形通电线圈上存在对准充电桩的中间线的中间边a,且通电线圈通有例如频率为20KHZ的PWM波信号。
根据第一电感器11对通电线圈32的感应数据,可以确定第一电感器11与通电线圈32的内外侧关系。根据第二电感器12对通电线圈32的感应数据,可以确定第二电感器12与通电线圈32之间的距离。根据第三电感器13对通电线圈32的感应数据,可以确定第三电感器13与通电线圈32之间的距离。
其中,本申请实施例中,第二电感器12与通电线圈32之间的距离,具体可以为第二电感器12至通电线圈32的各个边之间的最短距离,第三电感器13与通电线圈32之间的距离,具体可以为第三电感器13至通电线圈32的各个边的最短距离。
参考图5,由于第二电感器12至通电线圈32的对准充电桩的中间线的中间边a的距离最短,则第二电感器12与通电线圈32之间的距离,可以为图5中的第二电感器12至通电线圈32的中间边a的垂直距离A。由于第三电感器13至通电线圈32的对准充电桩的中间线的中间边a的距离最短,则第三电感器13与通电线圈之间的距离,可以为图5中的第三电感器13至通电线圈32的中间边a的垂直距离B。
可以理解的是,在第一电感器11和第二电感器12之间的距离以及第一电感器11和第三电感器13之间的距离过小时,则第二电感器12采集的感应数据与第三电感器13采集的感应数据的差值很小,第二电感器12和第三电感器13分别与通电线圈之间的距离的差值也很小,从而无法根据第二电感器12与通电线圈之间的距离以及第三电感器13与通电线圈之间的距离,准确确定机器人2相对充电桩的相对位置关系,以控制机器人2准确返回充电桩。因此,本申请实施例中,第一电感器11与第二电感器12之间的距离以及第一电感器11与第三电感器13之间的距离需大于等于预设阈值,以使机器人2利用电感器进行自主回桩时,能够准确确定机器人2与充电桩的相对位置关系。
其中,预设阈值,可以根据需要设置,本申请实施例对此不作限制。
下面结合图6,对本申请实施例提供的机器人的返回充电桩的方法进行详细说明。
图6是根据本申请实施例提供的一种机器人的返回充电桩的方法的流程图。
其中,本申请实施例提供的机器人的返回充电桩的方法,可以由本申请实施例提供的机器人的返回充电桩的装置以下简称回桩装置执行,其中,该回桩装置,可以被配置在机器人中,以实现机器人的自主巡线返回充电桩。在示例性实施例中,回桩装置可以为机器人中的处理器。机器人,可以是割草机、扫地机等任意类型的机器人,本申请实施例对此不作限制。
如图6所示,本申请实施例提供的机器人的返回充电桩的方法包括以下步骤101-103。
步骤101,根据第一电感器对通电线圈的感应数据,控制机器人运行至第一电感器位于中间边上的中间位置。
具体的,如图5所示,机器人2的第一端中间位置设置有第一电感器、第二电感器和第三电感器,第一电感器垂直于地面设置,第二电感器和第三电感器平行于地面设置,且横向对称地设置在第一电感器的两侧。其中,三个电感器可以为相同型号的值为10mH(豪亨)的电感。
充电桩上设置有矩形通电线圈,矩形通电线圈存在对准充电桩的中间线的中间边,矩形通电线圈可以在充电桩区域产生磁场。在示例性实施例中,矩形通电线圈在充电桩上的布设方式可以如图7所示。需要说明的是,充电桩包括底盘,矩形通电线圈具体可以设置在底盘的上表面或者下表面。
如图7所示,可以在充电桩3的底盘31上水平设置矩形通电线圈32,矩形通电线圈32上存在对准充电桩的中间线的中间边a。其中,矩形通电线圈可以通有20KHZ的PWM波信号。需要说明的是,图7以矩形通电线圈32的其它边位于中间边a的左侧,即矩形通电线圈32设置在充电桩的左半区域为例进行示意。在实际应用中,矩形通电线圈32的其它边也可以位于中间边a的右侧,即矩形通电线圈32设置在充电桩的右半区域,本申请对此不作限制。本申请实施例中以图7所示的矩形通电线圈在充电桩上的布设方式为例进行说明。
其中,矩形通电线圈的中间边对准充电桩的中间线,中间位置位于中间边上,中间位置可以为中间边上的任意位置。
可以理解的是,矩形通电线圈可以在充电桩区域产生磁场,本申请实施例中,可以根据第一电感器对矩形通电线圈的感应数据,控制机器人运行到第一电感器位于中间边上的中间位置。
步骤102,根据第二电感器、第三电感器对通电线圈的感应数据,确定第二电感器和通电线圈之间的第一距离以及第三电感器与通电线圈之间的第二距离。
可以理解的是,在机器人行进过程中,可以根据第二电感器对矩形通电线圈感应得到的感应数据,实时确定第二电感器与矩形通电线圈之间的第一距离,根据第三电感器对矩形通电线圈感应得到的感应数据,实时确定第三电感器与矩形通电线圈之间的第二距离。
其中,第二电感器和通电线圈之间的第一距离,为第二电感器至矩形通电线圈的最短距离;第三电感器与通电线圈之间的第二距离,为第三电感器至矩形通电线圈的最短距离。
需要说明的是,在以图7所示的方式布设矩形通电线圈时,若第一电感器位于矩形通电线圈32的中间边a上的中间位置,则如图5所示,此时第一距离为第二电感器至矩形通电线圈32的中间边a的垂直距离,第二距离为第三电感器至矩形通电线圈32的中间边a的垂直距离。
本申请实施例中,步骤101和102可以同时执行,也可以先执行步骤101再执行步骤102,或者先执行步骤102再执行步骤101,本申请对步骤101和102的执行时机不作限制。
步骤103,根据第一距离和第二距离,控制机器人从中间位置返回充电桩。
可以理解的是,以图7所示的方式在充电桩上布设矩形通电线圈时,在机器人运行到第一电感器位于中间边上的中间位置时,可以从中间位置返回充电桩,并且在返回充电桩的过程中,可以通过调整机器人的位姿,使机器人始终巡矩形通电线圈的中间边行进,直至回桩到位。
具体实现时,回桩装置在机器人从中间位置返回充电桩的过程中,可以根据第一距离和第二距离,实时调整机器人的位姿,实现机器人巡矩形通电线圈的中间边进行精准回桩。
上述机器人的返回充电桩的方法,由于仅利用电感器的感应数据,即可实现机器人返回充电桩,降低了硬件设计复杂度和软件算法复杂度,且不需要用户布置长引导线即可实现机器人的精准回桩,节省了用户负担和使用成本。并且,由于利用电感器的感应数据可以准确确定机器人相对充电桩的相对位置关系,从而能够实现机器人的准确巡线,进而控制机器人准确返回充电桩,且回桩过程不易受光线等外界干扰,提高了回桩成功率。
本申请实施例提供的机器人的返回充电桩的方法,根据第一电感器对通电线圈的感应数据,控制机器人运行至第一电感器位于中间边上的中间位置,根据第二电感器、第三电感器对通电线圈的感应数据,确定第二电感器和通电线圈之间的第一距离以及第三电感器与通电线圈之间的第二距离,根据第一距离和第二距离,控制机器人从中间位置返回充电桩。由于仅根据电感器对通电线圈的感应数据,即可实现机器人的自主回桩,降低了机器人回桩的硬件设计复杂度和软件算法复杂度,从而降低了成本,且回桩成功率高。
下面结合图8,对本申请实施例提供的机器人的返回充电桩的方法进行进一步说明。
图8是根据本申请实施例提供的另一种机器人的返回充电桩的方法的流程图。
如图8所示,本申请实施例提供的机器人的返回充电桩的方法,可以包括以下步骤:
步骤201,根据第二电感器、第三电感器对通电线圈的感应数据,确定第二电感器和通电线圈之间的第一距离以及第三电感器与通电线圈之间的第二距离。
具体的,在机器人返回充电桩时,可以在机器人的前进过程中,实时根据第二电感器对矩形通电线圈的感应数据,确定第二电感器与矩形通电线圈之间的第一距离,根据第三电感器对矩形通电线圈的感应数据,确定第三电感器与矩形通电线圈之间的第二距离。并且,可以根据第一电感器对矩形通电线圈的感应数据,确定第一电感器与矩形通电线圈的内外侧关系。
步骤202,在根据第一电感器对通电线圈的感应数据确定第一电感器位于通电线圈的覆盖区域,且根据第一距离和第二距离确定机器人满足预设回桩条件时,控制机器人向靠近中间位置的方向旋转至中间位置。
步骤203,根据第一距离和第二距离,控制机器人从中间位置返回充电桩。
具体的,在机器人前进过程中,可以根据第一电感器与矩形通电线圈的内外侧关系,确定第一电感器位于哪个区域。其中,第一电感器位于的区域,可以包括矩形通电线圈上或者边界、矩形通电线圈外和矩形通电线圈内(即矩形通电线圈的覆盖区域)。
在示例性实施例中,由于第一电感器在矩形通电线圈内时,感应数据比如电压信号的数值较大,而第一电感器在矩形通电线圈边界或者矩形通电线圈外时,感应数据比如电压信号的数值较小,则本申请实施例中,可以预先设置预设第二电压阈值,从而根据感应数据与第二预设电压阈值,确定第一电感器位于哪个区域。
其中,第二预设电压阈值,可以根据需要设置,本申请实施例对此不作限制。
比如,可以设置第二预设电压阈值为第一电感器位于矩形通电线圈边界时感应到的第一电压信号的大小,从而在第一电感器对矩形通电线圈感应的电压信号大于第二预设电压阈值时,可以确定第一电感器位于矩形通电线圈内;第一电感器对矩形通电线圈感应的电压信号等于第二预设电压阈值时,可以确定第一电感器位于矩形通电线圈上;第一电感器对矩形通电线圈感应的电压信号小于第二预设电压阈值时,可以确定第一电感器位于矩形通电线圈外;第一电感器对矩形通电线圈感应的电压信号接近第二预设电压阈值时,可以确定第一电感器位于矩形通电线圈边界。
在示例性实施例中,当机器人从第一电感器位于矩形通电线圈外切换至矩形通电线圈的覆盖区域时,回桩装置可以根据第一距离和第二距离判断机器人是否满足预设回桩条件。
其中,预设回桩条件用于判断控制机器人通过一次旋转运行到第一电感器位于矩形通电线圈的中间边上的中间位置之后控制机器人从中间位置返回充电桩,还是通过多次调整机器人位姿,将机器人运行到第一电感器位于矩形通电线圈的中间边上的中间位置后控制机器人从中间位置返回充电桩。在机器人满足预设回桩条件时,控制机器人向靠近中间位置的方向旋转至中间位置后,即可控制机器人从中间位置返回充电桩。在机器人不满足预设回桩条件时,通过多次调整机器人位姿,将机器人运行到第一电感器位于矩形通电线圈的中间边上的中间位置,再控制机器人从中间位置返回充电桩。
在示例性实施例中,预设回桩条件可以包括:机器人与中间位置之间的角度小于等于预设角度阈值。其中,预设角度阈值,可以根据需要设置,此处不作限制。
其中,机器人与中间位置之间的角度的确定方式为,根据第一距离、第二距离、以及第二电感器和第三电感器之间的距离,确定第二电感器和第三电感器的连线与中间位置之间的角度;根据预设角度数值、以及连线与中间位置之间的角度,确定机器人与中间位置之间的角度。
其中,机器人与中间位置之间的角度,可以理解为机器人的纵向对称中线与矩形通电线圈的中间边之间的角度。其中,此处的纵向可以为与第二电感器和第三电感器的连线垂直的方向。
其中,预设角度数值,可以为90度。
具体的,预设角度数值、第二电感器和第三电感器的连线与中间位置之间的角度值,这两个角度值作差,即可得到机器人与中间位置之间的角度。
可以理解的是,机器人与中间位置之间的角度小于等于预设角度阈值时,表示机器人相对矩形通电线圈的中间边的方向的偏航角度较小,此时,控制机器人旋转一次运行到第一电感器位于矩形通电线圈的中间边上的中间位置,再控制机器人从中间位置返回充电桩,即可实现机器人精准返回充电桩。
在示例性实施例中,在机器人满足预设回桩条件时,为了控制机器人旋转到第一电感器位于矩形通电线圈的中间边上的中间位置,在第一电感器位于矩形通电线圈的覆盖区域时,可以控制机器人向靠近中间位置的方向旋转至中间位置。其中,在矩形通电线圈设置在充电桩的左半区域时,可以控制机器人右转,直至第一电感器位于矩形通电线圈的中间边上的中间位置,停止旋转;在矩形通电线圈设置在充电桩的右半区域时,可以控制机器人左转,直至第一电感器位于矩形通电线圈的中间边上的中间位置,停止旋转。其中,机器人中设置有存储器,在充电桩上设置矩形通电线圈后,可以将矩形通电线圈的设置方式存储在机器人的存储器中,从而可以根据存储器中存储的数据,确定矩形通电线圈设置在充电桩的左半区域还是右半区域。
在示例性实施例中,在控制机器人向靠近中间位置的方向旋转至中间位置时,为了提高控制的准确性,还可以结合第二电感器和第三电感器的所属区域控制机器人旋转。
具体的,在机器人行进过程中,可以根据第一电感器与矩形通电线圈的内外侧关系、第一距离和第二距离,确定第二电感器和第三电感器分别位于哪个区域。其中,第二电感器和第三电感器位于的区域,可以包括矩形通电线圈上或者边界、矩形通电线圈外和矩形通电线圈内。
在第一电感器位于矩形通电线圈外或者矩形通电线圈边界时,若第一距离小于等于第二预设距离阈值,且第二距离大于等于第二预设距离阈值且小于2倍第二预设距离阈值,则确定第一电感器在矩形通电线圈内,第二电感器在矩形通电线圈外;在第一电感器位于矩形通电线圈外或者矩形通电线圈边界时,若第二距离小于等于第二预设距离阈值,且第一距离大于等于第二预设距离阈值且小于2倍第二预设距离阈值,则确定第三电感器在矩形通电线圈内,第四电感器在矩形通电线圈外;在第一电感器位于矩形通电线圈外或者矩形通电线圈边界时,若第一距离大于等于2倍第二预设距离阈值,或者第二距离阈值大于等于2倍第二预设距离阈值,则确定第一电感器和第二电感器均在矩形通电线圈外。
其中,第二预设距离阈值,可以根据需要设置。比如,本申请实施例中,可以设置第一电感器与第二电感器之间的距离值的一半,即第一电感器或第二电感器与第一电感器之间的距离值,为第二预设距离阈值。
在示例性实施例中,在机器人满足预设回桩条件时,若矩形通电线圈设置在充电桩的左半区域,可以控制机器人右转,直至第一电感器位于矩形通电线圈的中间边上的中间位置,且第二电感器和第三电感器的所属区域不同(比如第二电感器位于矩形通电线圈内、第三电感器位于矩形通电线圈外)时,停止旋转;在矩形通电线圈设置在充电桩的右半区域时,可以控制机器人左转,直至第一电感器位于矩形通电线圈的中间边上的中间位置,且第二电感器和第三电感器的所属区域不同(比如第二电感器位于矩形通电线圈外、第三电感器位于矩形通电线圈内)时,停止旋转。
在示例性实施例中,控制机器人运行到第一电感器位于矩形通电线圈的中间边上的中间位置后,即可根据第一距离和第二距离,控制机器人从中间位置返回充电桩。
在示例性实施例中,存在机器人直接从第一电感器位于矩形通电线圈外运行至第一电感器位于矩形通电线圈的中间边上的中间位置的情况,此时,可以直接根据第一距离和第二距离,控制机器人从中间位置返回充电桩。
具体根据第一距离和第二距离控制机器人从中间位置返回充电桩时,可以采用下面的方法:控制机器人前进,并获取第一距离和第二距离的差值;根据差值确定机器人的旋转角度;控制机器人旋转该旋转角度。
具体控制机器人从中间位置返回充电桩时,可以控制机器人前进,并在前进的过程中,获取第一距离和第二距离的差值,并根据差值确定机器人的旋转角度,控制机器人旋转该旋转角度,再控制机器人前进。由此,通过在前进过程中,实时根据第一距离和第二距离的差值,控制机器人旋转,即可实现机器人巡矩形通电线圈的中间边精准的返回充电桩。
其中,旋转角度,可以为机器人旋转至第一距离和第二距离的差值为0或者小于预设差值阈值时所需旋转的角度。该旋转角度可以通过实时计算获取,也可以通过预先确定不同距离差值与旋转角度的对应关系,进而回桩装置在获取第一距离和第二距离的差值后,根据获取的第一距离和第二距离的差值从预先确定的对应关系获取,也可以通过其它方式获取,本申请实施例对此不作限制。
在示例性实施例中,可以利用PID(Proportion Integration Differentiation,比例-积分-微分)控制器,根据第一距离和第二距离的差值,确定机器人的旋转角度。其中,PID控制器的输入为第一距离和第二距离的差值,PID控制器的输出为机器人的旋转角度。
或者,也可以根据第一距离和第二距离的差值,确定机器人的旋转角速度,然后控制机器人以该旋转角速度旋转,再控制机器人前进,以实现机器人的巡线回桩,本申请实施例对此不作限制。
下面结合图9-16,以矩形通电线圈设置在充电桩的左半区域,矩形通电线圈上存在对准充电桩的中间线的中间边为例,对上述过程进行进一步说明。其中,图9-15为机器人与充电桩及矩形通电线圈之间的位置关系示意图。图16为控制机器人从中间位置返回充电桩的流程图。
需要说明的是,本申请实施例中,还可以根据通电线圈的设置方式,将充电桩附近能感应到通电线圈的磁场的区域进行标记,从而可以先控制机器人前进至预先标记的区域,再采用本申请实施例提供的机器人的返回充电桩的方法进行巡线回桩。
如图9-15所示,在机器人返回充电桩时,机器人可以结合GPS(GlobalPositioning System,全球定位系统)等定位技术进行定位,在确定机器人行驶到充电桩附近(预先标记的区域)后(机器人与充电桩之间的位置关系参考图9),可以继续控制机器人前进,并在机器人前进过程中,获取第一电感器、第二电感器和第三电感器分别对矩形通电线圈的感应数据,并结合第一电感器对矩形通电线圈的感应数据,确定第一电感器是否从通电线圈外切换到通电线圈的覆盖区域,根据第二电感器对矩形通电线圈的感应数据,确定第二电感器和矩形通电线圈之间的第一距离,根据第三电感器对矩形通电线圈的感应数据,确定第二电感器和矩形通电线圈之间的第二距离。
若机器人从第一电感器位于矩形通电线圈外运行到第一电感器位于矩形通电线圈的中间边上的中间位置,可以直接控制机器人从中间位置返回充电桩。
若机器人从第一电感器位于矩形通电线圈外运行到第一电感器位于矩形通电线圈的覆盖区域(机器人与充电桩之间的位置关系参考图10)且机器人满足预设回桩条件时,可以控制机器人右转,直至如图11所示,第一电感器位于矩形通电线圈的中间边上的中间位置,且第二电感器位于矩形通电线圈的覆盖区域,第三电感器位于矩形通电线圈外时,停止旋转。进而如图12-15所示,控制机器人从中间位置返回充电桩,直至回桩成功(图15为回桩成功后机器人与充电桩及矩形通电线圈之间的位置关系图)。
需要说明的是,上述图9-15所示的机器人与充电桩及矩形通电线圈之间的位置关系,仅是示意性说明,不能理解为对本申请技术方案的限制。
如图16所示,在控制机器人进入从中间位置返回充电桩的流程后(步骤301),可以控制机器人前进(步骤302),并在前进的过程中,获取第一距离和第二距离的差值(步骤303),并根据差值确定机器人的旋转角度(步骤304),然后控制机器人旋转该旋转角度(305),再判断是否回桩到位(步骤306),若回桩到位则回桩结束(步骤307),若未回桩到位,则继续控制机器人前进(步骤302),进而根据第一距离和第二距离的差值,继续控制机器人旋转,直至机器人回桩到位。
本申请实施例提供的机器人的返回充电桩的方法,根据第二电感器、第三电感器对通电线圈的感应数据,确定第二电感器和通电线圈之间的第一距离以及第三电感器与通电线圈之间的第二距离,在根据第一电感器对通电线圈的感应数据确定第一电感器位于通电线圈的覆盖区域,且根据第一距离和第二距离确定机器人满足预设回桩条件时,控制机器人向靠近中间位置的方向旋转至中间位置,根据第一距离和第二距离,控制机器人从中间位置返回充电桩,使得在确定第一电感器位于矩形通电线圈的覆盖区域,且根据第一距离和第二距离确定机器人满足预设回桩条件时,仅利用电感器的感应数据,即可实现机器人的自主回桩,降低了机器人回桩的硬件设计复杂度和软件算法复杂度,从而降低了成本,且通过根据第一距离和第二距离调整机器人的位姿,使得机器人能够精准回桩,提高了回桩成功率,并且由于可以直接控制机器人旋转到第一电感器位于矩形通电线圈的中间边上的中间位置,从而提高了回桩效率。
下面结合图17,对本申请实施例提供的机器人的返回充电桩的方法进行进一步说明。
图17是根据本申请实施例提供的另一种机器人的返回充电桩的方法的流程图。
如图17所示,本申请实施例提供的机器人的返回充电桩的方法,可以包括以下步骤:
步骤401,根据第二电感器、第三电感器对通电线圈的感应数据,确定第二电感器和通电线圈之间的第一距离以及第三电感器与通电线圈之间的第二距离。
其中,步骤401的具体实现过程及原理,可以参考上述实施例的描述,此处不再赘述。
步骤402,根据第一电感器对通电线圈的感应数据确定第一电感器位于通电线圈的覆盖区域,且根据第一距离和第二距离确定机器人不满足预设回桩条件。
步骤403,控制机器人向靠近中间位置的方向旋转至中间位置或者覆盖区域外。
其中,确定第一电感器位于哪个区域的实现过程及原理,以及关于预设回桩条件的说明,可以参考上述实施例的描述,此处不再赘述。
可以理解的是,第一电感器位于通电线圈的覆盖区域,但机器人与中间位置之间的角度大于预设角度阈值时,表示机器人相对矩形通电线圈的中间边的方向的偏航角度较大,此时,若控制机器人旋转一次运行到第一电感器位于矩形通电线圈的中间边上的中间位置后,控制机器人从中间位置返回充电桩,可能无法实现机器人精准返回充电桩。那么此时可以通过多次调整机器人位姿,将机器人运行到第一电感器位于矩形通电线圈的中间边上的中间位置,再控制机器人从中间位置返回充电桩,从而实现机器人精准返回充电桩。
具体的,可以先控制机器人向靠近中间位置的方向旋转至中间位置或者矩形通电线圈的覆盖区域外。其中,在矩形通电线圈设置在充电桩的左半区域,第一电感器位于矩形通电线圈的覆盖区域,且机器人不满足预设回桩条件时,可以控制机器人右转,直至第一电感器位于矩形通电线圈的中间边上的中间位置或者矩形通电线圈的覆盖区域外,停止旋转;在矩形通电线圈设置在充电桩的右半区域,第一电感器位于矩形通电线圈的覆盖区域,且机器人不满足预设回桩条件时,可以控制机器人左转,直至第一电感器位于矩形通电线圈的中间边上的中间位置或者矩形通电线圈的覆盖区域外,停止旋转。再通过以下步骤404-407的方式,多次调整机器人位姿,将机器人运行到第一电感器位于矩形通电线圈的中间边上的中间位置。
步骤404,前进预设距离并向靠近中间位置的方向旋转至中间位置。
其中,预设距离,可以根据需要任意设置,比如,在充电桩区域较大时,可以将预设距离设置为较大的值,比如1米、2米,等等,在充电桩区域较小时,可以将预设距离设置为较小的值,比如0.3米、0.6米,等等。
可以理解的是,在控制机器人旋转至第一电感器位于中间位置或者矩形通电线圈的覆盖区域外,并控制机器人前进预设距离后,第一电感器可能不再位于中间位置。此时,可以再次控制机器人向靠近中间位置的方向旋转,使得第一电感器位于中间位置。
具体的,以矩形通电线圈设置在充电桩的左半区域为例,在控制机器人前进预设距离后,若第一电感器位于矩形通电线圈的覆盖区域,则可以控制机器人右转,使得第一电感器位于中间位置;若第一电感器位于矩形通电线圈外,则可以控制机器人左转,使得第一电感器位于中间位置。
步骤405,判断机器人是否满足预设的后退条件,若是,则执行步骤406,否则,执行步骤408。
其中,后退条件可以包括:后退次数小于等于预设次数阈值,和/或,第一距离或者第二距离小于等于第一预设距离阈值。其中,预设次数阈值和第一预设距离阈值,可以根据需要设置,本申请实施例对此不作限制。
其中,第一电感器位于中间位置,第一距离或者第二距离小于等于第一预设距离阈值时,表示机器人相对矩形通电线圈的中间边的方向的偏航角较大。
步骤406,后退出覆盖区域。
步骤407,再次进入通电线圈的覆盖区域。
具体的,在步骤404执行后,可以判断机器人是否满足后退条件,若满足,则控制机器人后退出矩形通电线圈的覆盖区域,并对后退次数进行加1处理,再控制机器人进入矩形通电线圈的覆盖区域,并返回重复执行步骤403-407,直至机器人不满足预设的后退条件。
需要说明的是,本申请实施例中,步骤407执行时,存在机器人未行进到第一电感器进入通电线圈的覆盖区域,而是直接行进到第一电感器位于矩形通电线圈的中间边上的中间位置的情况,此时,不必再执行步骤403。另外,步骤404执行时,存在机器人前进预设距离后,第一电感器仍然位于中间位置的情况,此时,可以直接执行后续步骤408。
步骤408,根据第一距离和第二距离,控制机器人从中间位置返回充电桩。
可以理解的是,本申请实施例中,机器人后退次数大于预设次数阈值,和/或,第一距离和第二距离大于第一预设距离阈值时,可以认为第一电感器距离中间位置的偏差较小,且机器人相对矩形通电线圈的中间边的方向的偏航角较小,此时可以根据第一距离和第二距离,控制机器人从中间位置返回充电桩。通过设置预设后退条件,在机器人不满足预设后退条件时,控制机器人从中间位置返回充电桩,可以避免机器人始终无法到达巡线回桩状态的情况。
通过多次调整机器人的姿态,控制机器人向靠近中间位置的方向旋转至中间位置,再控制机器人从中间位置返回充电桩,避免了机器人以初始状态为机器人相对矩形通电线圈的中间边的方向的偏航角度较大时,进入巡线流程(从中间位置返回充电桩流程)导致不能精准回桩的情况。
具体控制机器人从中间位置返回充电桩的方法,可以参考上述实施例的描述,此处不再赘述。
通过利用上述方式控制机器人返回充电桩,使得仅利用电感器的感应数据,即可实现机器人返回充电桩,降低了机器人回桩的硬件设计复杂度和软件算法复杂度,从而降低了成本,且通过多次调整机器人的位姿,使第一电感器位于矩形通电线圈的中间边上的中间位置,使得机器人能够精准返回充电桩,进一步提高了回桩成功率。
为了实现上述实施例,本发明实施例还提出一种机器人的返回充电桩的装置。
图18是本申请实施例提供的一种机器人的返回充电桩的装置的结构图。
其中,机器人的第一端中间位置设置有第一电感器、第二电感器和第三电感器;第一电感器垂直于地面设置;第二电感器和第三电感器平行于地面设置,且横向对称地设置在第一电感器的两侧,充电桩上设置有矩形通电线圈,矩形通电线圈上存在对准充电桩的中间线的中间边。
如图18所示,本发明实施例提出的机器人的返回充电桩的装置4具体可以包括:第一控制模块41、确定模块42和第二控制模块43。其中:
第一控制模块41,用于根据第一电感器对通电线圈的感应数据,控制机器人运行至第一电感器位于中间边上的中间位置;
确定模块42,用于根据第二电感器、第三电感器对通电线圈的感应数据,确定第二电感器和通电线圈之间的第一距离以及第三电感器与通电线圈之间的第二距离;
第二控制模块43,用于根据第一距离和第二距离,控制机器人从中间位置返回充电桩。
进一步的,在本发明实施例一种可能的实现方式中,第一控制模块41,具体用于:
在根据第一电感器对通电线圈的感应数据确定第一电感器位于通电线圈的覆盖区域,且根据第一距离和第二距离确定机器人满足预设回桩条件时,控制机器人向靠近中间位置的方向旋转至中间位置。
进一步的,在本发明实施例一种可能的实现方式中,第一控制模块41,具体还用于:
在根据第一电感器对通电线圈的感应数据确定第一电感器位于通电线圈的覆盖区域,且根据第一距离和第二距离确定机器人不满足预设回桩条件时,控制机器人:
第一步:向靠近中间位置的方向旋转至中间位置或者覆盖区域外;
第二步:前进预设距离并向靠近中间位置的方向旋转至中间位置;
第三步:在确定机器人满足预设的后退条件时,后退出覆盖区域并再次进入覆盖区域;
第四步:重复第一步至第三步直到不满足后退条件。
进一步的,在本发明实施例一种可能的实现方式中,后退条件包括:后退次数小于等于预设次数阈值,和/或,第一距离或者第二距离小于等于第一预设距离阈值。
进一步的,在本发明实施例一种可能的实现方式中,预设回桩条件包括:机器人与中间位置之间的角度小于等于预设角度阈值;
其中,机器人与中间位置之间的角度的确定方式为,根据第一距离、第二距离、以及第二电感器和第三电感器之间的距离,确定第二电感器和第三电感器的连线与中间位置之间的角度;根据预设角度数值、以及连线与中间位置之间的角度,确定机器人与中间位置之间的角度。
进一步的,在本发明实施例一种可能的实现方式中,第二控制模块42,具体用于:
控制机器人前进,并获取第一距离和第二距离的差值;
根据差值确定机器人的旋转角度;
控制机器人旋转该旋转角度。
进一步的,在本发明实施例一种可能的实现方式中,机器人为割草机。
需要说明的是,前述对机器人的返回充电桩的方法实施例的解释说明也适用于该实施例的机器人的返回充电桩的装置,此处不再赘述。
本发明实施例提出的机器人的返回充电桩的装置,根据第一电感器对通电线圈的感应数据,控制机器人运行至第一电感器位于中间边上的中间位置,根据第二电感器、第三电感器对通电线圈的感应数据,确定第二电感器和通电线圈之间的第一距离以及第三电感器与通电线圈之间的第二距离,根据第一距离和第二距离,控制机器人从中间位置返回充电桩。由于仅根据电感器对通电线圈的感应数据,即可实现机器人的自主回桩,降低了机器人回桩的硬件设计复杂度和软件算法复杂度,从而降低了成本,且回桩成功率高。
为了实现上述实施例,本发明实施例还提出一种机器人2。
图19是本申请实施例提供的一种机器人的结构图。
如图19所示,该机器人2的第一端中间位置设置有第一电感器11、第二电感器12和第三电感器13;第一电感器11垂直于地面设置;第二电感器12和第三电感器13平行于地面设置,且横向对称地设置在第一电感器11的两侧,机器人2还可包括至少一个处理器21(图中以一个处理器为例进行示意)、与至少一个处理器21通信连接的存储器22,存储器存储有可被至少一个处理器21执行的指令,指令被至少一个处理器21执行,以使至少一个处理器21能够执行实现如上述实施例所示的机器人的返回充电桩的方法。
为了实现上述实施例,本发明实施例还提出一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行,以实现如上述实施例所示的机器人的返回充电桩的方法。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (16)

1.一种机器人的返回充电桩的方法,其特征在于,所述机器人的第一端中间位置设置有第一电感器、第二电感器和第三电感器;所述第一电感器垂直于地面设置;所述第二电感器和所述第三电感器平行于地面设置,且横向对称地设置在所述第一电感器的两侧,所述充电桩上设置有矩形通电线圈,所述矩形通电线圈上存在对准所述充电桩的中间线的中间边,所述方法包括:
根据所述第一电感器对所述通电线圈的感应数据,控制所述机器人运行至所述第一电感器位于所述中间边上的中间位置;
根据所述第二电感器、所述第三电感器对所述通电线圈的感应数据,确定所述第二电感器和所述通电线圈之间的第一距离以及所述第三电感器与所述通电线圈之间的第二距离;
根据所述第一距离和所述第二距离,控制所述机器人从所述中间位置返回所述充电桩。
2.根据权利要求1所述的机器人的返回充电桩的方法,其特征在于,所述根据所述第一电感器对所述通电线圈的感应数据,控制所述机器人运行至所述第一电感器位于所述中间边上的中间位置,包括:
在根据所述第一电感器对所述通电线圈的感应数据确定所述第一电感器位于所述通电线圈的覆盖区域,且根据所述第一距离和所述第二距离确定所述机器人满足预设回桩条件时,控制所述机器人向靠近所述中间位置的方向旋转至所述中间位置。
3.根据权利要求1或2所述的机器人的返回充电桩的方法,其特征在于,所述根据所述第一电感器对所述通电线圈的感应数据,控制所述机器人运行至所述第一电感器位于所述中间边上的中间位置,包括:
在根据所述第一电感器对所述通电线圈的感应数据确定所述第一电感器位于所述通电线圈的覆盖区域,且根据所述第一距离和所述第二距离确定所述机器人不满足预设回桩条件时,控制所述机器人:
第一步:向靠近所述中间位置的方向旋转至所述中间位置或者所述覆盖区域外;
第二步:前进预设距离并向靠近所述中间位置的方向旋转至所述中间位置;
第三步:在确定所述机器人满足预设的后退条件时,后退出所述覆盖区域,并再次进入所述覆盖区域;
第四步:重复所述第一步至所述第三步直到不满足所述后退条件。
4.根据权利要求3所述的机器人的返回充电桩的方法,其特征在于,所述后退条件包括:后退次数小于等于预设次数阈值,和/或,所述第一距离或者所述第二距离小于等于第一预设距离阈值。
5.根据权利要求2或3所述的机器人的返回充电桩的方法,其特征在于,所述预设回桩条件包括:所述机器人与所述中间位置之间的角度小于等于预设角度阈值;
其中,所述机器人与所述中间位置之间的角度的确定方式为,根据所述第一距离、所述第二距离、以及所述第二电感器和所述第三电感器之间的距离,确定所述第二电感器和所述第三电感器的连线与所述中间位置之间的角度;根据预设角度数值、以及所述连线与所述中间位置之间的角度,确定所述机器人与所述中间位置之间的角度。
6.根据权利要求1所述的机器人的返回充电桩的方法,其特征在于,所述根据所述第一距离和所述第二距离,控制所述机器人从所述中间位置返回所述充电桩,包括:
控制所述机器人前进,并获取所述第一距离和所述第二距离的差值;
根据所述差值确定所述机器人的旋转角度;
控制所述机器人旋转所述旋转角度。
7.根据权利要求1至6任一项所述的机器人的返回充电桩的方法,其特征在于,所述机器人为割草机。
8.一种机器人的返回充电桩的装置,其特征在于,所述机器人的第一端中间位置设置有第一电感器、第二电感器和第三电感器;所述第一电感器垂直于地面设置;所述第二电感器和所述第三电感器平行于地面设置,且横向对称地设置在所述第一电感器的两侧,所述充电桩上设置有矩形通电线圈,所述矩形通电线圈上存在对准所述充电桩的中间线的中间边,所述装置包括:
第一控制模块,用于根据所述第一电感器对所述通电线圈的感应数据,控制所述机器人运行至所述第一电感器位于所述中间边上的中间位置;
确定模块,用于根据所述第二电感器、所述第三电感器对所述通电线圈的感应数据,确定所述第二电感器和所述通电线圈之间的第一距离以及所述第三电感器与所述通电线圈之间的第二距离;
第二控制模块,用于根据所述第一距离和所述第二距离,控制所述机器人从所述中间位置返回所述充电桩。
9.根据权利要求8所述的机器人的返回充电桩的装置,其特征在于,所述第一控制模块,具体用于:
在根据所述第一电感器对所述通电线圈的感应数据确定所述第一电感器位于所述通电线圈的覆盖区域,且根据所述第一距离和所述第二距离确定所述机器人满足预设回桩条件时,控制所述机器人向靠近所述中间位置的方向旋转至所述中间位置。
10.根据权利要求8或9所述的机器人的返回充电桩的装置,其特征在于,所述第一控制模块,具体还用于:
在根据所述第一电感器对所述通电线圈的感应数据确定所述第一电感器位于所述通电线圈的覆盖区域,且根据所述第一距离和所述第二距离确定所述机器人不满足预设回桩条件时,控制所述机器人:
第一步:向靠近所述中间位置的方向旋转至所述中间位置或者所述覆盖区域外;
第二步:前进预设距离并向靠近所述中间位置的方向旋转至所述中间位置;
第三步:在确定所述机器人满足预设的后退条件时,后退出所述覆盖区域并再次进入所述覆盖区域;
第四步:重复所述第一步至所述第三步直到不满足所述后退条件。
11.根据权利要求10所述的机器人的返回充电桩的装置,其特征在于,所述后退条件包括:后退次数小于等于预设次数阈值,和/或,所述第一距离或者所述第二距离小于等于第一预设距离阈值。
12.根据权利要求9或10所述的机器人的返回充电桩的装置,其特征在于,所述预设回桩条件包括:所述机器人与所述中间位置之间的角度小于等于预设角度阈值;
其中,所述机器人与所述中间位置之间的角度的确定方式为,根据所述第一距离、所述第二距离、以及所述第二电感器和所述第三电感器之间的距离,确定所述第二电感器和所述第三电感器的连线与所述中间位置之间的角度;根据预设角度数值、以及所述连线与所述中间位置之间的角度,确定所述机器人与所述中间位置之间的角度。
13.根据权利要求8所述的机器人的返回充电桩的装置,其特征在于,所述第二控制模块,具体用于:
控制所述机器人前进,并获取所述第一距离和所述第二距离的差值;
根据所述差值确定所述机器人的旋转角度;
控制所述机器人旋转所述旋转角度。
14.根据权利要求8至13任一项所述的机器人的返回充电桩的装置,其特征在于,所述机器人为割草机。
15.一种机器人,其特征在于,所述机器人的第一端中间位置设置有第一电感器、第二电感器和第三电感器;所述第一电感器垂直于地面设置;所述第二电感器和所述第三电感器平行于地面设置,且横向对称地设置在所述第一电感器的两侧,所述机器人还包括:
至少一个处理器;以及
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行权利要求1-7中任一项所述的机器人的返回充电桩的方法。
16.一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1-7中任一项所述的机器人的返回充电桩的方法。
CN202110540622.3A 2021-05-18 2021-05-18 机器人的返回充电桩的方法、装置、机器人及存储介质 Active CN115373375B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110540622.3A CN115373375B (zh) 2021-05-18 2021-05-18 机器人的返回充电桩的方法、装置、机器人及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110540622.3A CN115373375B (zh) 2021-05-18 2021-05-18 机器人的返回充电桩的方法、装置、机器人及存储介质

Publications (2)

Publication Number Publication Date
CN115373375A true CN115373375A (zh) 2022-11-22
CN115373375B CN115373375B (zh) 2023-08-18

Family

ID=84059803

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110540622.3A Active CN115373375B (zh) 2021-05-18 2021-05-18 机器人的返回充电桩的方法、装置、机器人及存储介质

Country Status (1)

Country Link
CN (1) CN115373375B (zh)

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011048776A (ja) * 2009-08-28 2011-03-10 Shin Kobe Electric Mach Co Ltd 電磁誘導式電動走行車
US20120029754A1 (en) * 2010-07-28 2012-02-02 Thompson Jeffrey S Robotic Mower Boundary Sensing System
CN102692922A (zh) * 2011-03-21 2012-09-26 苏州宝时得电动工具有限公司 自驱动装置引导系统的控制方法
US20140012418A1 (en) * 2012-07-09 2014-01-09 Deere & Company Boundary Sensor Assembly for a Robotic Lawn Mower, Robotic Lawn Mower and Robotic Lawn Mower System
CN103507067A (zh) * 2012-06-15 2014-01-15 华硕电脑股份有限公司 机器人装置以及导引机器人返回基站的方法
CN103699123A (zh) * 2013-12-02 2014-04-02 北京工业大学 一种基于三电磁传感器的机器人导航方法
CN103948354A (zh) * 2014-05-05 2014-07-30 苏州爱普电器有限公司 一种地面清洁机器人及其控制方法
CN104298241A (zh) * 2013-07-18 2015-01-21 联润科技股份有限公司 自走式移动设备回充导引方法
EP2939514A1 (en) * 2014-04-30 2015-11-04 LG Electronics, Inc. Lawn mower robot and control method thereof
EP2959348A1 (en) * 2013-02-20 2015-12-30 Husqvarna AB A robotic work tool system and method comprising a charging station
CN106843198A (zh) * 2015-12-07 2017-06-13 北京奇虎科技有限公司 扫地机器人自动返回充电方法、扫地机器人和充电座
CN107134836A (zh) * 2017-07-13 2017-09-05 湖南万为智能机器人技术有限公司 机器人自动充电对准方法
CN107272712A (zh) * 2017-08-18 2017-10-20 广东工业大学 一种移动机器人及面向移动机器人的线圈对位方法、装置
CN108089575A (zh) * 2016-11-23 2018-05-29 苏州宝时得电动工具有限公司 自移动设备定位装置和方法
CN108120434A (zh) * 2017-12-20 2018-06-05 东风汽车集团有限公司 一种agv轨迹纠偏方法、系统及双导航系统
CN108664014A (zh) * 2017-03-29 2018-10-16 苏州宝时得电动工具有限公司 一种自动行走设备回归充电的控制方法及装置
CN109245202A (zh) * 2018-09-07 2019-01-18 深圳拓邦股份有限公司 智能机器设备回充方法、装置及设备
CN111146826A (zh) * 2018-11-05 2020-05-12 苏州宝时得电动工具有限公司 自移动设备、无线充电站、自动工作系统及其充电方法
CN111474928A (zh) * 2020-04-02 2020-07-31 上海高仙自动化科技发展有限公司 机器人控制方法、机器人、电子设备和可读存储介质
CN111781930A (zh) * 2020-07-10 2020-10-16 广州今甲智能科技有限公司 一种智能机器人精准定位充电桩的方法及智能机器人
CN112394718A (zh) * 2019-07-31 2021-02-23 深圳赤马人工智能有限公司 移动机器人回桩充电系统及其方法
CN212989950U (zh) * 2020-06-10 2021-04-16 纳恩博(北京)科技有限公司 电移动装置和充电桩
CN112748726A (zh) * 2019-10-31 2021-05-04 珠海市一微半导体有限公司 一种机器人的正面上座充电的控制方法、芯片及机器人
CN112783146A (zh) * 2019-11-11 2021-05-11 苏州宝时得电动工具有限公司 自移动设备引导方法、装置和自移动设备
CN112792820A (zh) * 2021-03-16 2021-05-14 千里眼(广州)人工智能科技有限公司 机器人自动回充方法、装置及机器人系统
CN114355889A (zh) * 2021-12-08 2022-04-15 上海擎朗智能科技有限公司 控制方法、机器人、机器人充电座及计算机可读存储介质

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011048776A (ja) * 2009-08-28 2011-03-10 Shin Kobe Electric Mach Co Ltd 電磁誘導式電動走行車
US20120029754A1 (en) * 2010-07-28 2012-02-02 Thompson Jeffrey S Robotic Mower Boundary Sensing System
CN102692922A (zh) * 2011-03-21 2012-09-26 苏州宝时得电动工具有限公司 自驱动装置引导系统的控制方法
CN103507067A (zh) * 2012-06-15 2014-01-15 华硕电脑股份有限公司 机器人装置以及导引机器人返回基站的方法
US20140012418A1 (en) * 2012-07-09 2014-01-09 Deere & Company Boundary Sensor Assembly for a Robotic Lawn Mower, Robotic Lawn Mower and Robotic Lawn Mower System
EP2959348A1 (en) * 2013-02-20 2015-12-30 Husqvarna AB A robotic work tool system and method comprising a charging station
CN104298241A (zh) * 2013-07-18 2015-01-21 联润科技股份有限公司 自走式移动设备回充导引方法
CN103699123A (zh) * 2013-12-02 2014-04-02 北京工业大学 一种基于三电磁传感器的机器人导航方法
EP2939514A1 (en) * 2014-04-30 2015-11-04 LG Electronics, Inc. Lawn mower robot and control method thereof
CN103948354A (zh) * 2014-05-05 2014-07-30 苏州爱普电器有限公司 一种地面清洁机器人及其控制方法
CN106843198A (zh) * 2015-12-07 2017-06-13 北京奇虎科技有限公司 扫地机器人自动返回充电方法、扫地机器人和充电座
CN108089575A (zh) * 2016-11-23 2018-05-29 苏州宝时得电动工具有限公司 自移动设备定位装置和方法
CN108664014A (zh) * 2017-03-29 2018-10-16 苏州宝时得电动工具有限公司 一种自动行走设备回归充电的控制方法及装置
CN107134836A (zh) * 2017-07-13 2017-09-05 湖南万为智能机器人技术有限公司 机器人自动充电对准方法
CN107272712A (zh) * 2017-08-18 2017-10-20 广东工业大学 一种移动机器人及面向移动机器人的线圈对位方法、装置
CN108120434A (zh) * 2017-12-20 2018-06-05 东风汽车集团有限公司 一种agv轨迹纠偏方法、系统及双导航系统
CN109245202A (zh) * 2018-09-07 2019-01-18 深圳拓邦股份有限公司 智能机器设备回充方法、装置及设备
CN111146826A (zh) * 2018-11-05 2020-05-12 苏州宝时得电动工具有限公司 自移动设备、无线充电站、自动工作系统及其充电方法
CN112394718A (zh) * 2019-07-31 2021-02-23 深圳赤马人工智能有限公司 移动机器人回桩充电系统及其方法
CN112748726A (zh) * 2019-10-31 2021-05-04 珠海市一微半导体有限公司 一种机器人的正面上座充电的控制方法、芯片及机器人
CN112783146A (zh) * 2019-11-11 2021-05-11 苏州宝时得电动工具有限公司 自移动设备引导方法、装置和自移动设备
CN111474928A (zh) * 2020-04-02 2020-07-31 上海高仙自动化科技发展有限公司 机器人控制方法、机器人、电子设备和可读存储介质
CN212989950U (zh) * 2020-06-10 2021-04-16 纳恩博(北京)科技有限公司 电移动装置和充电桩
CN111781930A (zh) * 2020-07-10 2020-10-16 广州今甲智能科技有限公司 一种智能机器人精准定位充电桩的方法及智能机器人
CN112792820A (zh) * 2021-03-16 2021-05-14 千里眼(广州)人工智能科技有限公司 机器人自动回充方法、装置及机器人系统
CN114355889A (zh) * 2021-12-08 2022-04-15 上海擎朗智能科技有限公司 控制方法、机器人、机器人充电座及计算机可读存储介质

Also Published As

Publication number Publication date
CN115373375B (zh) 2023-08-18

Similar Documents

Publication Publication Date Title
US20220187829A1 (en) An autonomous working system, an autonomous vehicle and a turning method thereof
EP3438778B1 (en) Automatic traveling device and steering method thereof
EP2412223B1 (en) Robotic mower area coverage system and robotic mower
EP2558918B1 (en) Robotic garden tool following wires at a distance using multiple signals
EP2829937B1 (en) Robotic working apparatus for a limited working area
EP2572566B1 (en) Robotic mower with a boundary sensing system
EP2413215B1 (en) Robotic mower home finding system and robotic mower
EP2551739B1 (en) Robotic mower launch point system
US20230071262A1 (en) Robotic mower and method, system and device of path planning thereof
CN115373375A (zh) 机器人的返回充电桩的方法、装置、机器人及存储介质
CN113448327B (zh) 一种自动行走设备的运行控制方法及自动行走设备
CN112904857A (zh) 自动引导车控制方法、装置及自动引导车
CN115933624A (zh) 机器人的返回充电桩的方法、装置、机器人及存储介质
CN113031509A (zh) 遍历方法、系统,机器人及可读存储介质
US20240122100A1 (en) Transversal Method and System, Robot and Readable Storage Medium
WO2022242667A1 (zh) 巡线传感器、机器人的返回充电桩的方法及装置
CN214151499U (zh) 自动割草机的路径规划设备
CN112060086B (zh) 机器人行走的控制方法、装置、存储介质及行走机器人
CN209928277U (zh) 自移动机器人系统
CN114166212A (zh) 机器人系统及机器人避障方法
WO2021244593A1 (zh) 自动割草机及其路径规划方法、系统和设备
KR102529217B1 (ko) 복귀 제어기능을 갖는 모바일 로봇과 그 복귀 제어 방법, 그리고 그 모바일 로봇 군집 제어 시스템과 그 복귀 제어 방법
WO2020228742A1 (zh) 自动工作系统及其工作方法、自行走设备
JP2018088846A (ja) 自走式車両の制御装置、および、自走式車両とその制御システム
CN112486157B (zh) 自动工作系统及其转向方法、自移动设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant