WO2020228742A1 - 自动工作系统及其工作方法、自行走设备 - Google Patents

自动工作系统及其工作方法、自行走设备 Download PDF

Info

Publication number
WO2020228742A1
WO2020228742A1 PCT/CN2020/090048 CN2020090048W WO2020228742A1 WO 2020228742 A1 WO2020228742 A1 WO 2020228742A1 CN 2020090048 W CN2020090048 W CN 2020090048W WO 2020228742 A1 WO2020228742 A1 WO 2020228742A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
self
propelled
magnetic
detection module
Prior art date
Application number
PCT/CN2020/090048
Other languages
English (en)
French (fr)
Inventor
多尔夫•达维德
康蒂•伊曼纽尔
泰斯托林•费德里科
陈硕欢
Original Assignee
苏州宝时得电动工具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州宝时得电动工具有限公司 filed Critical 苏州宝时得电动工具有限公司
Publication of WO2020228742A1 publication Critical patent/WO2020228742A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • G05D1/0263Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means using magnetic strips

Definitions

  • the invention relates to the field of self-propelled equipment, in particular to an automatic working system and a working method thereof, and self-propelled equipment.
  • the existing self-propelled equipment When the existing self-propelled equipment reaches the boundary during walking, it can only perform steering at random angles, which may cause the self-propelled equipment to walk multiple times in some work areas, but almost never in some work areas. Walking, resulting in the machine being unable to work evenly in the same working area. Furthermore, the self-propelled equipment can only randomly bump into each other, so in a narrow area, it takes a long time to leave the passage, and it is even impossible to leave the passage.
  • the embodiments of the present application provide an automatic working system, a working method thereof, and a self-propelled device that can realize uniform working and shorten the passage time through narrow passages.
  • An automatic working system comprising: a self-propelled device and a magnetic field detection module, the self-propelled device moves within a working area defined by a boundary, and the boundary is at least partially a magnetic device;
  • the magnetic field detection module includes at least two magnetic field sensors, the magnetic field detection module is configured to be installed on the self-propelled device, and the magnetic field detection module is configured to detect the static magnetic field signal of the self-propelled device during walking;
  • the self-propelled equipment includes:
  • a rack the rack has a longitudinal axis, and the longitudinal axis divides the self-propelled equipment into two parts, a left side and a right side;
  • the walking module is installed on the frame and used to drive the self-propelled equipment to move;
  • the control module is used to control the self-propelled device to move according to the detected static magnetic field signal
  • the self-propelled equipment When the self-propelled equipment is driving toward the magnetic device, when a static magnetic field signal that meets the preset requirements is detected, the self-propelled equipment and the magnetic device are determined according to the static magnetic field signal that meets the preset requirements And control the self-propelled equipment to steer away from the magnetic device;
  • the control module controls the steering of the self-propelled equipment according to the received signal indicating that one side of the self-propelled equipment is closer to the magnetic device; if the left side of the self-propelled equipment is closer to the magnetic device, Control the self-propelled equipment to turn clockwise; if the right side is closer to the magnetic device, control the self-propelled equipment to turn counterclockwise.
  • the static magnetic field signal that meets the preset requirement includes: the detected static magnetic field intensity rises to greater than or equal to a predetermined intensity threshold.
  • the static magnetic field signal that meets a preset requirement includes: detecting a peak value of the static magnetic field strength.
  • the self-propelled device when the distance between the self-propelled device and the magnetic device is less than a predetermined distance threshold, the self-propelled device detects a static magnetic field signal that meets a preset requirement.
  • the longitudinal axis is a central axis extending in the longitudinal direction of the frame, and the magnetic field detection module is arranged on both sides of the central axis.
  • the magnetic field detection module is arranged at the front end and/or below the rack.
  • the magnetic field detection module is symmetrically arranged on both sides of the central axis.
  • the magnetic device includes a magnetic strip.
  • the magnetic field detection module includes a geomagnetic sensor.
  • the self-propelled device determines the self-propelled device according to the time difference of the static magnetic field signals received by the at least two magnetic field sensors, the moving speed of the self-propelled device, and the distance between the at least two magnetic field sensors. The positional relationship between the walking device and the boundary.
  • a working method of an automatic working system comprising: a self-propelled device and a magnetic field detection module, the self-propelled device moves within a working area defined by a boundary, and the boundary is at least partially a magnetic device;
  • the magnetic field detection module includes at least two magnetic field sensors, the magnetic field detection module is configured to be installed on the self-propelled device, and the magnetic field detection module is configured to detect the static magnetic field signal of the self-propelled device during walking;
  • the self-propelled equipment includes:
  • a rack the rack has a longitudinal axis, and the longitudinal axis divides the self-propelled equipment into two parts, a left side and a right side;
  • the walking module is installed on the frame and used to drive the self-propelled equipment to move;
  • the control module is used to control the self-propelled device to move according to the detected static magnetic field signal
  • the positional relationship between the self-propelled equipment and the magnetic device is determined according to the static magnetic field signal that meets the preset requirements, and the self-propelled equipment is controlled to turn away from the place.
  • the control module controls the steering of the self-propelled equipment according to the received signal indicating that one side of the self-propelled equipment is closer to the magnetic device;
  • the automatic working system, its working method, and the self-propelled equipment provided in this application have the following beneficial effects: when the self-propelled equipment is driving to the boundary of the magnetic device, when a static magnetic field signal that meets the preset requirements is detected, the self-propelled equipment is controlled to turn Drive away from the magnetic device. When it is detected that the left side of the self-propelled equipment is closer to the magnetic device, the self-propelled equipment is controlled to turn clockwise; if the right side is closer to the magnetic device, the self-propelled equipment is controlled to turn counterclockwise.
  • the defect of repeatedly walking to the same area caused by random turning can be avoided; at the same time, when the self-propelled equipment is walking in a narrow area, it can quickly drive out of the narrow area, which can shorten the self-propelled The time that the equipment passes through the narrow passage allows the self-propelled equipment to pass through the passage quickly.
  • Fig. 1 is an automatic working system provided by an embodiment of the present invention
  • Figure 2 (a) is a schematic structural diagram of an automatic lawn mower provided by an embodiment of the present invention.
  • Figure 2 (b) is a schematic structural diagram of another automatic lawn mower provided by the embodiment of the present invention.
  • Figure 2(c) is a schematic structural diagram of another automatic lawn mower provided by the embodiment of the present invention.
  • FIG. 3 is a schematic diagram of walking of another automatic lawn mower provided by the embodiment of the present invention.
  • FIG. 4 is a scene diagram when an automatic lawn mower 20 encounters an interference source 44 according to an embodiment of the present invention
  • FIG. 5 is a scene diagram of another automatic lawn mower 20 provided by an embodiment of the present invention when encountering an interference source 44;
  • FIG. 6 is a scene diagram of another automatic lawn mower 20 provided by the embodiment of the present invention when encountering an interference source 44;
  • FIG. 7 is a schematic diagram of path selection of an automatic lawn mower provided by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of path selection of another automatic lawn mower provided by the embodiment of the present invention.
  • FIG. 9 is a schematic diagram of path selection of another automatic lawn mower provided by the embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a walking path of an automatic lawn mower provided by an embodiment of the present invention in a narrow passage;
  • Fig. 11 is a schematic diagram of a walking path of another automatic lawn mower provided by an embodiment of the present invention in a narrow passage.
  • the automatic working system of the specific embodiment may include: a self-mobile device 10, a boundary 8, and a charging station 5.
  • the self-mobile device 1 moves and works within the working area 7 defined by the boundary 8, and the charging station 5 can be used for returning and supplementing energy when the self-mobile device is insufficient.
  • the boundary 8 may be the periphery of the entire working area, which may be called the outer boundary, and is usually connected end to end to enclose the working area 7.
  • the part is the work area.
  • the boundary can be electronic or physical.
  • the physical boundary can only be the natural physical boundary formed by the boundary between the working area 7 and the non-working area, for example: the natural boundary between grass and non-grass, or the boundary formed by walls, fences, pools or flower beds; electronic
  • the boundary can be achieved by laying wires around the working area 7 and using virtual boundary signals, such as electromagnetic signals, acoustic signals or optical signals, from the boundary signal generator connected to the wires.
  • the above-mentioned boundary can also be one or more passive magnetic devices, such as permanent magnets.
  • the magnetic devices are arranged in non-working areas, such as pools or flower beds 6, and a static magnetic field signal is sent to the surroundings through the magnetic device, and the magnetic device is used to generate The static magnetic field state or permanent magnetic field is used as the magnetic field boundary.
  • the magnetic device may be in the form of a strip of magnetic material, such as a magnetic strip.
  • the magnetic device is used as a boundary for description. It is worth noting that in some of the following embodiments, for convenience of description, magnetic strips are used to describe the magnetic device.
  • the magnetic device can be laid on any boundary 8, since the price of the magnetic device is relatively high and the magnetic device is susceptible to interference from external signals, in general, the boundary of the working area is a wire or no boundary line is laid. form. Only for some areas with a small area, a magnetic device is used to lay a boundary line, such as the inner boundary in Figure 1.
  • the above-mentioned magnetic device is laid at a distance (for example: 30cm) from the physical boundary in the working area, so as to leave a distance of inertial movement for the lawnmower. After the lawnmower detects the magnetic device, it still remains Can continue to move a certain distance without leaving the real work area.
  • the self-moving device 1 may be an automatic lawn mower, a sweeping robot, an automatic snow sweeper, and other equipment suitable for unattended operation. They automatically walk on the surface of the work area to perform grass cutting, dust collection or snow removal work.
  • the self-moving equipment is not limited to automatic lawn mowers, sweeping robots, and automatic snow sweepers, and may also be other equipment suitable for unattended operation, which is not limited in this application.
  • the automatic working system is an automatic lawn mower system, that is, the self-moving device 1 is an automatic lawn mower 20 as an example for detailed description.
  • the boundary 7 defines the working area of the automatic lawn mower 20, and the boundary 7 may be a physical boundary or an electronic boundary.
  • the automatic lawn mower 20 includes a frame 25 with a longitudinal axis.
  • the front of the lawn mower 20 (also referred to as the walking direction of the lawn mower) is taken as the front.
  • the axis divides the lawn mower into two parts, the left side and the right side, that is, the left direction of the longitudinal axis 33 in FIG. 3 is the left side of the lawn mower, and correspondingly, the right direction is the right side of the lawn mower.
  • the automatic lawn mower 20 may also include a walking module, a working module, a control module, and an energy module.
  • the control module connects and controls the walking module and the working module to realize the automatic walking and working of the automatic lawn mower 20.
  • the walking module may include a wheel set and a walking motor driving a wheel set.
  • the wheel set includes a driving wheel 27 driven by the walking motor and an auxiliary wheel 26 that assists in supporting the frame.
  • the walking module may also be a crawler. structure.
  • the walking motor can be directly connected to the driving wheel, and the right driving wheel and the left driving wheel are each equipped with a walking motor (not shown) to realize the differential output to control the steering; in another embodiment, the walking motor It is also possible to set a transmission device, that is, the same motor drives the right drive wheel and the left drive wheel through different transmission devices to realize the differential output to control the steering.
  • the working module is the mowing module, including: a cutting blade 28, which can be driven by a cutting motor 29 to work.
  • the center of the working module is located on the longitudinally extending central axis of the frame of the lawn mower 20, is located below the frame, between the auxiliary wheel and the driving wheel, and can also be offset to the left or right side of the housing.
  • the energy module is fixed or detachably installed in the housing, and can be a battery pack. During operation, the battery pack releases electric energy to keep the lawn mower 20 working and walking. When it is not working, the battery can be connected to an external power source to supplement the electric energy; the automatic lawn mower 20 can also automatically search for the charging station 5 to supplement the electric energy when it detects that the electricity is insufficient.
  • the lawn mower 20 may include a communication module, which may be used for communication between the lawn mower 20 and a client or server.
  • the control module may be a controller, which can control the walking, turning and automatic operation of the automatic lawn mower 20 according to a preset program or received instructions.
  • the lawn mower 20 may further include a magnetic field detection module 35, which may be used to detect the static magnetic field of the lawn mower 20 during walking.
  • the magnetic field detection module 35 is a separate module detachably installed on the lawnmower 20, and the magnetic field detection module 35 is symmetrically arranged on the two central axes. Side, and located at the front and below the frame 25.
  • the magnetic field detection module can be installed at the front end and/or below the rack, such as the lowest position of the rack, so that the magnetic field detection module can detect the magnetic field generated by the magnetic strip more timely and accurately when the lawn mower 20 is walking.
  • the magnetic field detection module can also be installed in the middle or rear of the lawn mower 20 to increase the accuracy of the magnetic field detection module identification, which is not limited in this application.
  • the magnetic field detection module 35 can be placed in the cavity 353, and the cover plate 354 can be covered after the magnetic field detection module 35 is placed in the cavity 353, and covered by the cover plate 354
  • the magnetic field sensor can also prevent water vapor or dust from contacting the magnetic field detection module to avoid damage to the magnetic field detection module.
  • the magnetic field detection module can be installed in a position where there is no shielding caused by any metal objects under the machine to prevent the signal from the magnetic field from being interfered. Therefore, a cover plate 354 with a magnetic permeability close to 1 can be selected to cover the magnetic field sensor 13 .
  • the magnetic field detection module can be installed far away from any motor in the automatic lawn mower, for example: a motor used to drive movement or cutting work, to prevent the signal detected by the magnetic field detection module If disturbed, as shown in FIG. 2(a) and FIG. 2(b), the magnetic field detection module 35 is installed at the front end of the machine, which is far away from the cutting motor 29 and the like.
  • a filter may also be provided in the lawn mower for filtering the static magnetic field signal detected by the magnetic field detection module to eliminate electromagnetic noise.
  • the magnetic field detection module 35 may include a Hall sensor or a three-axis geomagnetic sensor.
  • the magnetic field sensor includes a three-axis geomagnetic sensor.
  • the detection distance of the three-axis geomagnetic sensor is greatly increased.
  • the Hall detection device induces a 0/1 signal change within the detection range of 5cm, while the three-axis geomagnetic sensor can be at 16cm
  • the magnetic field change is detected within the effective distance of, and by configuring the magnetic field detection module 35 as a three-axis geomagnetic sensor, not only the detection range of the magnetic field detection module 35 is effectively increased, but the detection radius can be adjusted by software according to actual application requirements.
  • a differential algorithm can be used to process the magnetic field signal detected by the three-axis geomagnetic sensor to obtain the determined magnetic field signal, thereby reducing or eliminating the electromagnetic field in the surrounding environment when the magnetic field sensor detects the magnetic field signal. Noise interference.
  • the automatic lawn mower 20 may include at least two magnetic field sensors 35, and the at least two magnetic field sensors 35 may be arranged in a straight line or a triangular arrangement for detecting the static magnetic field signal generated by the magnetic stripe. Since the magnetic field sensor is far away from the magnetic field, the magnetic field signal received by the magnetic field sensor will decrease exponentially. When a magnetic field interference source appears in the lawn mower system, the magnetic field interference of the interference source to the magnetic field sensor will also exponentially decrease . Therefore, when the automatic lawn mower contains multiple magnetic field sensors, if one of the magnetic field sensors closer to the interference source 44 is interfered, the other magnetic field sensors that are farther away receive less interference, so it can be ensured that other distances are used. The result obtained when the remote magnetic field sensor detects the magnetic field signal is more accurate, that is, the magnetic field detection module can detect more accurate results, which improves the robustness of the magnetic field detection module in the automatic lawnmower.
  • FIGS. 4 to 6 The scene diagrams when the automatic lawn mower 20 encounters the interference source 44 as shown in FIGS. 4 to 6.
  • FIG. 4 there are two magnetic field sensors 350 and 351 arranged in the vertical direction of the frame. Since the magnetic field sensor 350 is close to the interference source 44 in front of the lawn mower 20, the magnetic field sensor 350 is in the process of detecting the magnetic field generated by the magnetic stripe. It will be greatly interfered. Therefore, in this scenario, the control module can shield the magnetic field signal from the magnetic field sensor 350, and control the movement of the machine through the magnetic field signal from the magnetic field sensor 351.
  • FIG. 5 there are two magnetic field sensors 350 and 351 arranged in the horizontal direction of the rack.
  • the control module can shield the magnetic field signal from the magnetic field sensor 350, and control the movement of the machine through the magnetic field signal from the magnetic field sensor 351.
  • the control module can shield the magnetic field signals from the magnetic field sensor 350 and the magnetic field sensor 352, and only control by the magnetic field signal from the magnetic field sensor 351 The machine moves.
  • the magnetic field detection module can detect the static magnetic field signal of the mower during walking, and transmit the detected static magnetic field signal to the control module, and the control module controls the automatic cutting according to the received static magnetic field signal.
  • the grass machine moves and/or works within the working area defined by the boundary.
  • the automatic lawn mower walks and cuts the grass in the working area limited by the magnetic strip. Normally, the automatic lawn mower walks in a straight line until it hits the magnetic strip. After hitting the magnetic strip, turn the steering back into the working area and continue walking in a straight line until it encounters the magnetic strip again. The lawn mower completes the mowing work by constantly turning back and forth in the work area.
  • the lawn mower performs the mowing work by the above-mentioned random turning and turning back method, which will result in frequent mowing of certain areas limited by the magnetic strip, and the defects of almost never mowing in some areas, so it can be achieved by efficient turning methods. Realize that the lawn mower fully covers the working area limited by the magnetic strip, thereby improving the work efficiency of the lawn mower.
  • an automatic mowing system is proposed in the embodiment of the present invention.
  • the mowing system when the mower is driving toward the magnetic strip, when a static magnetic field signal that meets the preset requirements is detected, the mowing is The machine can judge its positional relationship with the magnetic stripe according to the static magnetic field signal that meets the preset requirements, and control it to turn away from the magnetic stripe; the control module can according to the received signal indicating that one side of the lawnmower is closer to the magnetic stripe, Control the turning of the lawnmower; if the left side of the lawnmower is closer to the magnetic stripe, you can control the lawnmower to turn clockwise; if the right side is closer to the magnetic stripe, you can control the lawnmower to turn counterclockwise.
  • the positional relationship between the lawnmower and the magnetic stripe can be the angular relationship between the lawnmower and the magnetic stripe, the distance between the lawnmower and the magnetic stripe, or which side of the lawnmower is closer to the magnetic stripe, or It can be multiple of the above content, which is not limited in this application.
  • the above-mentioned static magnetic field signal that meets the preset requirements relates to the start condition of the turning of the lawn mower.
  • the turning timing of the lawn mower when driving toward the magnetic strip can be determined in the following manner.
  • the lawnmower when the strength of the static magnetic field detected by the magnetic detection module rises to be greater than or equal to the predetermined strength threshold when the lawnmower is driving toward the magnetic stripe, the lawnmower is controlled to turn away from the magnetic stripe .
  • the control module controls the lawn mower to start turning. When the lawn mower is turning, it will continue to decelerate forward due to inertia, and may cause the lawn mower to hit the magnetic strip or cross the magnetic strip.
  • the aforementioned predetermined intensity threshold may be the static magnetic field intensity value detected when the magnetic detection device is located directly above the magnetic strip; or it may be the static magnetic field intensity value detected at a certain position when the magnetic detection device is not directly above the magnetic strip.
  • the user can set the predetermined intensity threshold or automatically set the system automatically based on the multiple magnetic field strengths detected when the lawnmower is driving toward the magnetic strip, which is not limited in this application.
  • the lawnmower when the magnetic detection module detects the peak value of the magnetic field intensity when the lawnmower is driving toward the magnetic strip, the lawnmower is controlled to turn away from the magnetic strip. Specifically, when the lawnmower is driving toward the magnetic stripe, the detected static magnetic field strength gradually increases. When it increases until the magnetic field strength reaches its peak and starts to decrease, that is, when the magnetic field detection module reaches directly above the magnetic stripe, the control The module controls the turning of the lawn mower. During the turning process, the lawn mower will continue to decelerate forward and cross the magnetic strip due to inertia.
  • the working modules in the lawn mower will not cross the boundary, and thus will not harm pedestrians or animals.
  • the magnetic detection module detects a magnetic field signal that meets a preset condition, it is also possible to control the lawn mower to retreat for a certain distance and then turn, which is not limited in this application.
  • the lawnmower when the lawnmower approaches the magnetic stripe non-vertically, when the lawnmower is moving toward the magnetic stripe, when the magnetic field detection module detects a static magnetic field signal that meets a preset condition, the The static magnetic field signal that meets the preset requirements determines its positional relationship with the magnetic stripe and sends it to the control module.
  • the control module can control the turning of the lawnmower according to the received signal that one of the sides is closer to the magnetic stripe.
  • the positional relationship between the lawn mower and the magnetic stripe can be determined according to which side of the magnetic field sensor in the magnetic field detection module first receives the static magnetic field signal that meets the preset requirements. If the magnetic field sensor on the left first receives the magnetic field signal that meets the preset requirements, it means that the left side is closer to the magnetic strip, and the lawnmower is controlled to turn clockwise; otherwise, if the magnetic field sensor on the right first receives the magnetic field that meets the preset requirements The signal indicates that the right side is closer to the magnetic stripe, and the lawnmower is controlled to turn counterclockwise.
  • the control module can control the mower to rotate in the direction of reducing the acute or right angle formed by the longitudinal axis and one side of the magnetic strip, and always ensure that the longitudinal axis of the mower is at an acute or right angle to one side of the magnetic strip. , Wherein the other side of the magnetic strip is at an obtuse or right angle to the lawn mower at the beginning of turning.
  • the distance between the lawn mower and the magnetic stripe can also be determined according to the detected static magnetic field signal, and the steering direction can be determined according to the distance, which will not be repeated in this application.
  • FIGs 7 to 9 are schematic diagrams of path selection after the lawnmower encounters the magnetic stripe.
  • the automatic lawn mower 20 runs in the same direction, and when it hits the magnetic strip 13, the longitudinal axis 33 extends in the same direction, but the magnetic strip 13 extends in different directions in each figure, so the lawn mower turns The direction and result are different.
  • the dotted lines passing through the automatic lawn mower 20 in each figure are the walking trajectories of the automatic lawn mower 20.
  • the longitudinal axis of the frame may not include the central axis, and the magnetic field detection device may not be symmetrically arranged on the frame.
  • the lawn mower 20 can be drawn in the form of axisymmetric and a central axis 33, wherein magnetic fields are provided on both sides of the central axis 33 Detection device.
  • the magnetic field detection device may be symmetrically arranged on both sides of the central axis 33, so that it is convenient to control its steering and other operations according to the detected data.
  • the magnetic field detection device may also be arranged asymmetrically or not on both sides of the central axis 33, which is not limited in this application.
  • the central axis 33 of the automatic lawn mower 20 and the magnetic strip 13 have an intersection 41.
  • the magnetic strip 13 may be curved as a whole, but at a specific intersection point.
  • the nearby magnetic strip 13 can be regarded as a straight line. Therefore, in this application, for the convenience of description, the included angle between the central axis 33 and the magnetic strip 13 may refer to the straight line or the extension direction or the tangent at the intersection of the central axis 33 and the central axis 33 of the mower and the magnetic strip 13 The angle between directions.
  • the control module can determine whether the lawn mower is moving from the left side of the intersection 41 of the magnetic strip 13 and the lawn mower 20 to the magnetic strip 13 according to the first received static magnetic field signal on the left side.
  • the central axis 33 of the lawn mower 20 forms an acute angle with the magnetic strip on the left side of the intersection 41. After determining the driving direction of the lawn mower 20, the control module can determine the turning direction of the lawn mower 20. That is, in the scene shown in FIG.
  • the control module controls the lawnmower to turn clockwise.
  • the steering angle is fixed, which is greater than or equal to 90 degrees but less than 180 degrees, so as to ensure that the turned lawn mower moves into the working area.
  • the extending direction of the magnetic strip 13 is different from that of Fig. 7, so although the two walking directions are the same, the direction after turning is different.
  • the magnetic field sensor 35 on its right side will first contact the magnetic strip, that is, the magnetic field sensor 35 on the right will first detect a static magnetic field signal that meets the preset requirements. , And send it to the control module.
  • the control module can determine whether the lawn mower is driving from the right side of the intersection 41 of the magnetic strip 13 and the lawn mower 20 to the magnetic strip 13, based on the first receiving the static magnetic field signal on the right side.
  • the central axis 33 of 20 forms an acute angle with the magnetic strip on the right side of the intersection 41.
  • the control module can determine the turning direction of the lawn mower 20. That is, in the scene shown in FIG. 8, when the lawn mower detects a static magnetic field signal that meets the preset requirements, the control module controls the lawn mower to turn counterclockwise.
  • the extension direction of the magnetic strip 13 is different from that of Figs. 7 and 8. Specifically, the lawn mower runs perpendicular to the magnetic strip. Therefore, the control module can receive the static magnetic field signals from the left and right sides at the same time. When the control module receives two magnetic field signals at the same time, it can determine that the lawn mower is driving vertically toward the magnetic strip 13, so it can control the lawn mower. Choose a direction to perform the turn.
  • the determination of the position relationship between the lawn mower and the magnetic strip by the magnetic field detection module can be qualitative or quantitative.
  • the angle ⁇ between the lawnmower and the magnetic stripe can be determined by the following methods, including: the lawnmower can be based on the time difference between the static magnetic field signals received by at least two magnetic field sensors and the lawnmower The moving speed and the distance between the two magnetic field sensors 35 determine the angle between the lawn mower and the magnetic stripe.
  • the angle ⁇ between the lawn mower and the magnetic strip can also be determined in the following ways, including: the lawn mower can receive the magnetic field that meets the preset requirements according to the left magnetic field sensor 35 and the right magnetic field sensor 35. The displacement difference during the signal and the distance between the two magnetic field sensors 35 determine the angle between the mower and the magnetic stripe.
  • the angle between the lawn mower and the magnetic strip when a magnetic field signal that meets the preset requirements is detected can be calculated according to the following formula:
  • ⁇ -the angle between the lawnmower and the magnetic strip V-the walking speed of the lawnmower; t1-the first time when the left magnetic field sensor 35 receives a magnetic field signal that meets the preset requirements; t2-the right magnetic field The second time when the sensor 35 receives the magnetic field signal that meets the preset requirements; L-the distance between the two magnetic field sensors.
  • the first time when the magnetic field detected by the left magnetic field sensor is equal to the static magnetic field that meets the preset requirements can be obtained respectively, and the first time detected by the right magnetic field sensor
  • the second time when the magnetic field is equal to the static magnetic field that meets the preset requirements, and the walking speed of the mower according to the first time, second time, walking speed and the distance between the two magnetic field sensors, the mower and the magnetic stripe
  • the aforementioned distance can be measured by inertial navigation equipment, ultrasonic sensors, radar, or the like.
  • the steering angle of the self-propelled device can be controlled according to the angle ⁇ between the lawn mower and the magnetic stripe. Specifically, the steering angle of the self-propelled device is not greater than the included angle ⁇ . Since the included angle ⁇ is the angle between the travel direction of the lawn mower and the extending direction of the magnetic strip, when the steering angle of the lawn mower is controlled to be not greater than the included angle ⁇ , the lawn mower is not easy to collide with the inner wall of the narrow passage. By adopting the above method, random collisions of the lawn mower in a narrow area can be avoided, so the time for the lawn mower to pass through the narrow passage can be shortened, and the lawn mower can pass through quickly.
  • Figure 10 shows a schematic diagram of the path of the lawn mower using this path planning method in a narrow passage, where the dashed line is the walking path. It can be clearly seen that when using this path planning method, the lawn mower walks with directionality and can leave the narrow passage after a limited number of turns.
  • the lawnmower when the lawnmower detects a static magnetic field signal that meets the preset requirements, the lawnmower can be controlled to turn to the direction along the extension line of the magnetic stripe. , And perform the steering operation after walking a certain distance along the magnetic strip, which can also speed up the lawn mower away from the narrow passage.
  • the foregoing distance may be a preset length such as 20 cm, or may be a preset walking time, which is not limited in this application.
  • the control module determines the angle between the mower and the magnetic stripe according to the above-mentioned embodiment, and adjusts the walking direction of the mower according to the angle, so that the mower and the magnetic stripe
  • the direction of the extension line is approximately parallel, that is, the magnetic field sensor that originally detected the static magnetic field signal that meets the preset requirements can be controlled to be outside the magnetic strip, and the other magnetic field sensor returns to the working area, and the magnetic field detected by the magnetic field sensors on both sides is guaranteed
  • the signals are roughly the same, that is, the static magnetic field signals received by the magnetic field sensors on both sides have the same magnitude and opposite directions.
  • the above-mentioned substantially the same may be that the magnetic field signals detected by the magnetic field sensors on both sides are completely the same, or the detected magnetic field signals are not completely consistent due to machine asymmetry or measurement errors.
  • the magnitudes of the static magnetic field signals are the same and the directions are opposite, so that the lawn mower can walk straight.
  • the lawnmower when the lawnmower keeps walking for a certain distance in a straight line, the lawnmower can be controlled to continue to turn in the original turning direction. After turning, the lawnmower will continue to walk forward and collide with another magnetic stripe. The same way can be used to control the lawn mower to quickly pass through the narrow passage.
  • the lawnmower when the width of the narrow passage is narrow and roughly equal to the width of the body of the lawnmower, the lawnmower can be directly controlled to quickly pass through the passage when the magnetic field sensors on both sides can receive roughly equal magnetic field signals.
  • the self-propelled equipment when the self-propelled equipment is driving toward the boundary of the magnetic device, when a static magnetic field signal that meets the preset requirements is detected, the self-propelled equipment is controlled to turn away from the magnetic device.
  • the self-propelled equipment is controlled to turn clockwise; if the right side is closer to the magnetic device, the self-propelled equipment is controlled to turn counterclockwise.
  • the defect of repeatedly walking to the same area caused by random turning can be avoided; at the same time, when the self-propelled equipment is walking in a narrow area, it can quickly drive out of the narrow area, which can shorten the self-propelled The time that the equipment passes through the narrow passage allows the self-propelled equipment to pass through the passage quickly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Guiding Agricultural Machines (AREA)

Abstract

一种自动工作系统及其工作方法、自行走设备,自动工作系统包括:自行走设备、磁场检测模块(35),磁场检测模块(35)安装在自行走设备上,用于检测自行走设备在行走过程中的静态磁场;自行走设备驶向磁性装置的过程中,当检测到满足预设要求的静态磁场信号时,根据满足预设要求的静态磁场信号判断自行走设备与磁性装置的位置关系,控制自行走设备转向,驶离磁性装置;若自行走设备的左侧更接近磁性装置,则控制自行走设备顺时针转向;若右侧更接近磁性装置,则控制自行走设备逆时针转向。采用该方式能够缩短自行走设备通过狭窄通道的时间。

Description

自动工作系统及其工作方法、自行走设备
本申请要求了申请日为2019年5月13日,申请号为201910393065.X的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及自行走设备领域,尤其涉及一种自动工作系统及其工作方法、自行走设备。
背景技术
现有的自行走设备在行走过程中到达边界时,只能以随机的角度执行转向,因而可能会导致自行走设备在某些工作区域中多次行走,而在某些工作区域中几乎从未行走,从而导致机器无法在同一工作区域中均匀工作。进一步的,自行走设备只能随机的乱撞,因此在狭窄的区域内,离开该通道的时间较长,甚至无法离开该通道。
因此,有必要提出一种自动工作系统及其工作方法、自行走设备,以克服上述缺陷。
发明内容
有鉴于此,本申请实施方式提供了一种能够实现均匀工作以及缩短通过狭窄通道时间的自动工作系统及其工作方法、自行走设备。
本发明的上述目的可采用下列技术方案来实现:
一种自动工作系统,所述自动工作系统包括:自行走设备、磁场检测模块,所述自行走设备在边界限定的工作区域内移动,所述边界至少部分为磁性装置;
磁场检测模块,包括至少两个磁场传感器,所述磁场检测模块用于安装在所述自行走设备上,所述磁场检测模块用于检测所述自行走设备在行走过程中的静态磁场信号;
所述自行走设备包括:
机架,所述机架具有纵向轴线,所述纵向轴线将所述自行走设备分为左侧和右侧两部分;
行走模块,安装在所述机架上,用于带动所述自行走设备移动;
控制模块,用于控制所述自行走设备根据检测到的静态磁场信号移动;
当所述自行走设备驶向所述磁性装置的过程中,检测到满足预设要求的静态磁场信号时,根据所述满足预设要求的静态磁场信号判断所述自行走设备与所述磁性装置的位置关系,并控制所述自行走设备转向驶离所述磁性装置;
所述控制模块根据接收到的表征所述自行走设备其中一侧更接近所述磁性装置的信号,控制所述自行走设备转向;若所述自行走设备的左侧更接近所述磁性装置,则控制所述自行走设备顺时针转向;若右侧更接近所述磁性装置,则控制所述自行走设备逆时针转向。
在一个实施例中,所述满足预设要求的静态磁场信号包括:检测到的静态磁场强度上升至大于或等于预定强度阈值。
在一个实施例中,所述满足预设要求的静态磁场信号包括:检测到静态磁场强度的峰值。
在一个实施例中,当所述自行走设备与所述磁性装置的距离小于预定距离阈值时,所述自行走设备检测到满足预设要求的静态磁场信号。
在一个实施例中,所述纵向轴线为沿所述机架纵向延伸的中轴线,所述磁场检测模块设置于所述中轴线两侧。
在一个实施例中,所述磁场检测模块设置于所述机架的前端和/或下方。
在一个实施例中,所述磁场检测模块对称的设置于所述中轴线两侧。
在一个实施例中,所述磁性装置包括:磁条。
在一个实施例中,所述磁场检测模块包括:地磁传感器。
在一个实施例中,所述自行走设备根据所述至少两个磁场传感器接收到的静态磁场信号的时间差、所述自行走设备的移动速度以及至少两个磁场传感器之间的距离确定所述自行走设备与所述边界的位置关系。
本发明的上述目的还可采用下列技术方案来实现:
一种自动工作系统的工作方法,所述自动工作系统包括:自行走设备、磁场检测模块,所述自行走设备在边界限定的工作区域内移动,所述边界至少部分为磁性装置;
磁场检测模块,包括至少两个磁场传感器,所述磁场检测模块用于安装在所述自行走设备上,所述磁场检测模块用于检测所述自行走设备在行走过程中的静态磁场信 号;
所述自行走设备包括:
机架,所述机架具有纵向轴线,所述纵向轴线将所述自行走设备分为左侧和右侧两部分;
行走模块,安装在所述机架上,用于带动所述自行走设备移动;
控制模块,用于控制所述自行走设备根据检测到的静态磁场信号移动;
控制所述自行走设备在驶向所述磁性装置的过程中,检测静态磁场信号;
当检测到满足预设要求的静态磁场信号时,根据所述满足预设要求的静态磁场信号判断所述自行走设备与所述磁性装置的位置关系,并控制所述自行走设备转向驶离所述磁性装置;
所述控制模块根据接收到的表征所述自行走设备其中一侧更接近所述磁性装置的信号,控制所述自行走设备转向;
若所述自行走设备的左侧更接近所述磁性装置,则控制所述自行走设备顺时针转向;
若右侧更接近所述磁性装置,则控制所述自行走设备逆时针转向。
本申请提供的自动工作系统及其工作方法、自行走设备的有益效果是:自行走设备驶向磁性装置边界的过程中,当检测到满足预设要求的静态磁场信号时,控制自行走设备转向驶离磁性装置的方向。当检测到自行走设备的左侧更接近磁性装置,则控制自行走设备顺时针转向;若右侧更接近磁性装置,则控制自行走设备逆时针转向。通过控制自行走设备的转向方向,可以避免随机转向时所导致的重复多次行走至同一区域的缺陷;同时当自行走设备在狭窄区域内行走时,可以快速驶出狭窄区域,能缩短自行走设备通过狭窄通道的时间,使自行走设备能快速通过通道。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施方式所提供的一种的自动工作系统;
图2(a)是本发明实施方式所提供的一种的自动割草机的结构示意图;
图2(b)是本发明实施方式所提供的另一种的自动割草机的结构示意图;
图2(c)是本发明实施方式所提供的另一种的自动割草机的结构示意图;
图3是本发明实施方式所提供的另一种自动割草机的行走示意图;
图4是本发明实施方式所提供的一种自动割草机20遇到干扰源44时的场景图;
图5是本发明实施方式所提供的另一种自动割草机20遇到干扰源44时的场景图;
图6是本发明实施方式所提供的另一种自动割草机20遇到干扰源44时的场景图;
图7是本发明实施方式所提供的一种自动割草机的路径选择示意图;
图8是本发明实施方式所提供的另一种自动割草机的路径选择示意图;
图9是本发明实施方式所提供的另一种自动割草机的路径选择示意图;
图10是本发明实施方式所提供的一种自动割草机在狭窄通道行走的路径示意图;
图11是本发明实施方式所提供的另一种自动割草机在狭窄通道行走的路径示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示为本具体实施方式的自动工作系统,可以包括:自移动设备10、边界8、充电站5。其中,自移动设备1在边界8所限定的工作区域7内移动并工作,充电站5可以用于供自移动设备能源不足时返回补充能量。边界8可以是整个工作区域的外围,可以称为外边界,通常首尾相连,将工作区域7封闭。如图1所示,工作区域中也可以存在不适合自移动设备1工作的区域6,并以该区域6形成边界,如:花坛、水池、障碍等,可以称为内边界,该内边界以外的部分为工作区域。
边界可以是电子的或者物理的。物理的边界可以仅仅是工作区域7与非工作区域之间的交界等形成的天然物理边界,例如:草与非草之间的天然边界,或者墙壁、篱笆、水池或花坛等形成的边界;电子的边界可以通过在工作区域7四周铺设导线,并利用与导线相连的边界信号发生装置发出的虚拟界限信号,例如:电磁信号、声信号 或光信号等。上述边界也可以是一个或多个无源磁性装置,例如永久磁体,将磁性装置布设在非工作区域,例如:水池或花坛6的四周,通过磁性装置向周围发出静态磁场信号,利用磁性装置产生的静磁场态或永久磁场作为磁场边界。具体的,磁性装置可以呈磁性材料条带的形式,例如:磁条。在本申请的实施例中,均以磁性装置作为边界进行说明。值得说明的是,在下面的一些实施例中为了方便说明均以磁条来描述磁性装置。
在本申请的实施例中,虽然可以在任一边界8铺设磁性装置,但由于磁性装置价格较高且磁性装置易受外界信号干扰,因此一般情况下,工作区域的边界为导线或者不铺设边界线的形式。仅针对一些面积较小的区域采用磁性装置布设边界线的形式,如:图1中的内边界。
进一步的,上述磁性装置铺设在工作区域内距离物理边界一段距离(例如:30cm)的位置处,从而可以为割草机留下一段惯性移动的距离,割草机在检测到磁性装置之后,仍然可以继续移动一段距离而不会离开真正的工作区域。
自移动设备1可以是自动割草机、扫地机器人、自动扫雪机等适合无人值守的设备,它们自动行走于工作区域的表面,进行割草、吸尘或者扫雪工作。当然,自移动设备不限于自动割草机、扫地机器人、自动扫雪机,也可以为其它适合无人值守的设备,本申请对此不作限定。
在下面的具体实施例中,以自动工作系统为自动割草机系统,即,自移动设备1为自动割草机20为例进行详细说明。如图1所示,界限7限定自动割草机20的工作区域,界限7可以是物理界限也可以是电子界限。
如图2(a)所示,自动割草机20包括机架25,具有纵向轴线,以割草机20物理前部所指方向(也可以称为割草机行走方向)为前,该纵向轴线将割草机分为左侧和右侧两个部分,也就是图3中纵向轴线33左侧的方向为割草机左侧,相应的,右侧方向为割草机右侧。自动割草机20还可以包括行走模块、工作模块、控制模块、能量模块。控制模块连接并控制行走模块、工作模块,以实现自动割草机20的自动行走及工作。
具体的,行走模块可以包括轮组和驱动轮组的行走马达,通常轮组包括由行走马达驱动的驱动轮27和辅助支撑机架的辅助轮26,可以理解的是,行走模块也可以为履带结构。在一个实施例中,行走马达可以直接连接驱动轮,右驱动轮和左驱动轮各 自配接一个行走马达(图未示),以实现差速输出控制转向;在另一个实施例中,行走马达也可以通过设置传动装置,即同一个马达通过不同的传动装置驱动右驱动轮和左驱动轮,以实现差速输出控制转向。工作模块即为割草模块,包括:切割刀片28,可以由切割马达29驱动工作。工作模块的中心位于割草机20的机架沿纵向延伸的中轴线上,设置于机架下方,位于辅助轮和驱动轮之间,也可以偏置于壳体的左侧或右侧。能量模块固定或可拆卸的安装于壳体,可以为电池包等。在工作时,电池包释放电能以维持割草机20工作和行走。在非工作时,电池可以连接到外部电源以补充电能;自动割草机20也可以在探测到电量不足时,自动地寻找充电站5补充电能。割草机20可以包括:通讯模块,可以用于割草机20与客户端或服务器之间的通信。控制模块可以为控制器,可以根据预设程序或接受到的指令控制自动割草机20行走、转向以及自动工作。
在本申请的实施例中,割草机20中还可以包括:磁场检测模块35,磁场检测模块可以用于检测割草机20在行走过程中的静态磁场。如图2(b)或2(c)所示的轴对称割草机,磁场检测模块35为可拆卸的安装在割草机20上的单独模块,磁场检测模块35对称的设置在中轴线两侧,且位于机架25的前端和下方。优选的,可以将磁场检测模块安装在机架前端和/或下方例如机架的最低位置处,这样在割草机20行走过程中,磁场检测模块可以更加及时准确地检测到磁条产生的磁场信号,并采取相应措施,而不会使得割草机行走至磁条外导致伤害行人或动物。当然,除了上述安装位置外,磁场检测模块还可以安装在割草机20的中部或后方等位置,以增加磁场检测模块识别的准确性,本申请对此不作限定。
如图2(b)以及2(c)所示,可以将磁场检测模块35放入腔体353中,并在磁场检测模块35放入腔体353之后盖上盖板354,通过盖板354覆盖磁场传感器也可以防止水蒸气或灰尘等接触磁场检测模块,避免其对磁场检测模块造成损害。进一步的,磁场检测模块可以安装于不存在由于机器下方的任何金属物品造成屏蔽的位置,以防止来自磁场的信号被干扰,因此,可以选用磁导率接近于1的盖板354覆盖磁场传感器13。
进一步的,在本申请的一个实施例中,磁场检测模块可以安装于远离自动割草机中任何马达的位置,例如:用于驱动移动或切割工作的马达,以防止磁场检测模块检测到的信号被干扰,结合图2(a)以及图2(b)所示,磁场检测模块35安装于机器 前端,该位置距离切割马达29等的位置较远。进一步的,割草机中还可以设置有滤波器,用于对磁场检测模块检测到的静态磁场信号进行滤波以消除电磁噪声。
在本申请的一个实施例中,磁场检测模块35可以包括霍尔传感器或三轴地磁传感器等。优选的,磁场传感器包括三轴地磁传感器。相比于相关技术中的霍尔检测器件,三轴地磁传感器的探测距离大大增加,例如,霍尔检测器件在5cm探测范围内感应出0/1的信号变化,而三轴地磁传感器可以在16cm的有效距离内检测出磁场变化情况,通过将磁场检测模块35配置为三轴地磁传感器,不仅仅有效提升磁场检测模块35的探测范围,且其探测半径可以根据实际应用需求实现软件可调。进一步的,在本申请的实施例中,可以采用差分算法对三轴地磁传感器检测到的磁场信号进行处理得到确定后的磁场信号,从而可以降低或消除磁场传感器检测磁场信号时周围环境中的电磁噪声干扰。
在本申请的实施例中,自动割草机20可以包括至少两个磁场传感器35,至少两个磁场传感器35可以呈直线排列也可以呈三角排列,用于检测磁条所产生的静态磁场信号。由于磁场传感器与磁场距离较远时,磁场传感器接收到的磁场信号会呈指数级减小,当割草机系统中出现磁场干扰源时,干扰源对磁场传感器的磁场干扰也会呈指数级减少。因此,当自动割草机中包含多个磁场传感器时,若其中一个距离干扰源44较近的磁场传感器受到干扰,其他距离较远的磁场传感器受到的干扰较小,因而可以保证采用其他距离较远的磁场传感器检测磁场信号时得到的结果较为准确,即,磁场检测模块可以检测到更加准确的结果,提高自动割草机中磁场检测模块的鲁棒性。
如图4至图6所示的自动割草机20遇到干扰源44时的场景图。图4中存在沿机架竖直方向设置的两个磁场传感器350以及351,由于磁场传感器350距离割草机20前方干扰源44较近,因此在检测磁条所产生磁场的过程中磁场传感器350会受到较大干扰,因此,在这种场景下,控制模块可以屏蔽来自磁场传感器350的磁场信号,通过来自磁场传感器351的磁场信号控制机器移动。图5中存在沿机架水平方向设置的两个磁场传感器350以及351,由于磁场传感器350距离割草机20右侧干扰源44较近,因此检测磁条所产生磁场的过程中磁场传感器350会受到较大干扰,因此,在这种场景下,控制模块可以屏蔽来自磁场传感器350的磁场信号,通过来自磁场传感器351的磁场信号控制机器移动。图6中存在沿三角方向设置的三个磁场传感器350、352以及351,由于磁场传感器350以及磁场传感器352距离割草机前方以及右侧的 两个干扰源44较近,因此检测磁条所产生磁场的过程中这两个磁场传感器可能会受到较大干扰,因此,在这种场景下,控制模块可以屏蔽来自磁场传感器350以及磁场传感器352的磁场信号,仅通过来自磁场传感器351的磁场信号控制机器移动。
在本申请的实施例中,磁场检测模块可以检测割草机在行走过程中的静态磁场信号,并将检测到的静态磁场信号传输到控制模块,控制模块根据接收到的静态磁场信号控制自动割草机在边界限定的工作区域内移动和/或工作。
现简要介绍本申请中自动割草系统的工作方式。自动割草机在由磁条限定的工作区域内行走并割草,正常情况下,自动割草机直线行走,直到撞到磁条。当撞到磁条后,将转向折返回到工作区域内继续直线行走,直到再次遇到磁条。割草机通过在工作区域内不断折返的方式完成割草工作。
然而,割草机通过上述随机转向折返的方式执行割草工作会导致磁条限定的某些区域多次频繁割草,某些区域几乎从未割草的缺陷,因此可以通过高效的转向方式来实现割草机全面覆盖磁条限定的工作区域,从而提高割草机的工作效率。
基于此,本发明实施例中提出了一种自动割草系统,在该割草系统中,当割草机驶向磁条的过程中,检测到满足预设要求的静态磁场信号时,割草机可以根据满足预设要求的静态磁场信号判断其与磁条的位置关系,并控制其转向驶离磁条;控制模块可以根据接收到的表征割草机其中一侧更接近磁条的信号,控制割草机转向;若割草机的左侧更接近磁条,则可以控制割草机顺时针转向;若右侧更接近磁条,则可以控制割草机逆时针转向。上述割草机与磁条的位置关系可以是割草机与磁条的角度关系、割草机与磁条之间的距离或者也可以是割草机的哪一侧更接近磁条,或者也可以是上述内容中的多项,本申请对此不作限定。
上述满足预设要求的静态磁场信号涉及到割草机转向的启动条件,在本申请的实施例中,可以通过以下方式确定割草机在驶向磁条时的转向时机。
在本申请的一个实施例中,在割草机驶向磁条的过程中,当磁性检测模块检测到的静态磁场强度上升至大于或等于预定强度阈值时,控制割草机转向驶离磁条。具体的,在割草机朝向磁条行驶的过程中,所检测到的静态磁场强度逐渐增加,当增加到预定强度阈值时,控制模块控制割草机启动转向。当割草机转向的过程中,由于惯性会继续向前减速行驶,并可能会导致割草机撞到磁条或越过磁条。上述预定强度阈值可以是磁性检测装置位于磁条正上方时所检测到的静态磁场强度值;也可以是尚未到 达磁条正上方时所检测到的某一位置处的静态磁场强度值,其中,用户可以以割草机驶向磁条过程中所检测到的多个磁场强度为依据,对预定强度阈值进行设定或者系统自动设定,本申请对此不作限定。
在本申请的另一个实施例中,在割草机驶向磁条的过程中,当磁性检测模块检测到磁场强度的峰值时,控制割草机转向驶离磁条。具体的,在割草机朝向磁条行驶的过程中,所检测到的静态磁场强度逐渐增加,当增加到磁场强度达到峰值并开始减小时,也就是磁场检测模块到达磁条正上方时,控制模块控制割草机转向。在转向的过程中,割草机由于惯性会继续向前减速行驶并越过磁条。由于磁条铺设在工作区域内距离实际物理边界一段距离处,因此在上述两个实施例中,割草机中的工作模块不会越出边界,因而也不会伤害到行人或动物。当然也可以采用当磁性检测模块检测到满足预设条件的磁场信号时,控制割草机先后退一段距离然后再转向的方式,本申请对此不作限定。
割草机转向的具体过程中,在割草机非垂直接近磁条的情况下,必然存在割草机的左侧或右侧先接近磁条。在一个实施例中,当割草机非垂直接近磁条的情况下,割草机驶向磁条的过程中,当磁场检测模块检测到满足预设条件的静态磁场信号时,可以根据所述满足预设要求的静态磁场信号判断其与磁条的位置关系,并发送至控制模块,控制模块可以根据接收到的其中一侧更接近磁条的信号控制割草机转向。具体的,可以根据磁场检测模块中哪一侧的磁场传感器先接收到满足预设要求的静态磁场信号判断割草机与磁条的位置关系。若左侧的磁场传感器先接收到满足预设要求的磁场信号,说明左侧更接近磁条,则控制割草机顺时针转向;反之若右侧的磁场传感器先接收到满足预设要求的磁场信号,则说明右侧更接近磁条,则控制割草机逆时针转向。在另一个实施例中,割草机驶向磁条的过程中,若根据检测到的静态磁场信号确定机架中纵向轴线与磁条左侧成锐角或与磁条右侧成锐角,则可以控制割草机向减小该锐角夹角的方向转动时可以实现高效的转向。例如,控制模块可以控制割草机向减小纵向轴线与磁条的一侧边所成的锐角或直角方向转动,且始终保证割草机的纵向轴线与磁条的一侧边成锐角或直角,其中,该磁条的另一侧边在转向开始时与割草机成钝角或直角。在本申请的其他实施例中,也可以根据检测到的静态磁场信号确定割草机与磁条的距离,并根据该距离判断转向方向,本申请对此不再赘述。
图7至9是割草机遇到磁条后的路径选择示意图。在图7至图9中,自动割草机 20的行走方向相同,在撞向磁条13时纵向轴线33的延伸方向相同,但各图中磁条13的延伸方向不同,从而割草机转向的方向和结果不同。各图中穿过自动割草机20的虚线为自动割草机20的行走轨迹线。
需要说明的是,由于割草机的形状可能并不是绝对对称的,因此机架的纵向轴线中未必包含中轴线,磁场检测装置也未必可以对称设置机架上。但本申请中为了方便图示且实际的割草机也有为对称形式的产品,可以将割草机20绘制成轴对称且存在中轴线33的形式,其中,中轴线33的两侧设置有磁场检测装置。优选的,磁场检测装置可以是对称的设置在中轴线33两侧,从而方便根据检测到的数据控制其转向等操作。当然,磁场检测装置也可以是非对称设置,也可以不是设置在中轴线33两侧,本申请对此不作限定。
同时,在自动割草机20撞到磁条13时,自动割草机20的中轴线33和磁条13具有一个交点41,整体上看磁条13可能是弯曲的,但在具体的一个交点附近的磁条13可以视作是直线。因此,在本申请中,为方便描述,中轴线33和磁条13的夹角可以指的是中轴线33和割草机中轴线33与磁条13的交点处的直线段或者延伸方向或者切线方向之间的夹角。
下面通过多个具体的应用场景对本申请中割草机遇到磁条时的转向方向进行说明。
如图7所示,割草机20在向磁条13行走的过程中,其左侧的磁场传感器35会先接触到磁条,即左侧的磁场传感器35会先检测到满足预设要求的静态磁场信号,并发送给控制模块,控制模块根据先接收到左侧静态磁场信号的情况,可以判断割草机是从磁条13与割草机20交点41的左侧驶向磁条13,割草机20的中轴线33与交点41左侧的磁条成锐角。在确定上述割草机20的行驶方向之后,控制模块可以确定割草机20的转向方向。即,如图7所示的场景中,当割草机检测到满足预设要求的静态磁场信号时,控制模块控制割草机顺时针转向。在本申请中,转向的角度是固定的,大于等于90度而小于180度,从而可以保证转向后的割草机驶向工作区域内。
如图8所示,磁条13的延伸方向与图7不同,因此虽然二者行走方向相同,但转向后的方向不同。具体的,割草机20在向磁条13行走的过程中,其右边侧的磁场传感器35会先接触到磁条,即右侧的磁场传感器35会先检测到满足预设要求的静态磁场信号,并发送给控制模块,控制模块根据先接收到右侧静态磁场信号的情况,可 以判断割草机是从磁条13与割草机20交点41的右侧驶向磁条13,割草机20中轴线33与交点41右侧的磁条成锐角。在确定上述割草机20的行驶方向之后,控制模块可以确定割草机20的转向方向。即,如图8所示的场景中,当割草机检测到满足预设要求的静态磁场信号时,控制模块控制割草机逆时针转向。
如图9所示,磁条13的延伸方向与图7以及图8均不同,具体的,割草机是垂直向磁条行驶的。因此,控制模块可以同时接收到来自左右两侧的静态磁场信号,当控制模块同时接收到两个磁场信号时,可以判断割草机是垂直驶向磁条13的,因此可以控制割草机任选一个方向执行转向。
在上述转向过程中,磁场检测模块对于割草机与磁条位置关系的判断可以是定性的也可以是定量的。如图3所示,可以通过以下方式确定割草机与磁条之间的夹角值α,包括:割草机可以根据至少两个磁场传感器接收到的静态磁场信号的时间差、割草机的移动速度以及两个磁场传感器35之间的距离,确定割草机与磁条的夹角。类似的,也可以通过以下方式确定割草机与磁条之间的夹角值α,包括:割草机可以根据左侧磁场传感器35与右侧磁场传感器35分别接收到满足预设要求的磁场信号时的位移差、两个磁场传感器35之间的距离,确定割草机与磁条的夹角。
具体的,在本申请的一个实施例中,可以按照以下公式计算得到在检测到满足预设要求的磁场信号时,割草机与磁条的夹角:
(t2-t1)V*sinα=L*cosα,
其中,α-割草机与磁条的夹角;V-割草机的行走速度;t1-左侧磁场传感器35接收到满足预设要求的磁场信号时的第一时间;t2-右侧磁场传感器35接收到满足预设要求的磁场信号时的第二时间;L-两个磁场传感器之间的距离。
在本实施方式中,在控制割草机转向的过程中,可以分别获取左侧磁场传感器所检测的磁场与满足预设要求的静态磁场相等时的第一时间、以及右侧磁场传感器所检测的磁场与满足预设要求的静态磁场相等时的第二时间、以及割草机的行走速度,根据第一时间、第二时间、行走速度以及两个磁场传感器之间的距离割草机与磁条之间的夹角值α;或者,也可以分别获取左侧磁场传感器检测到满足预设要求的静态磁场以及右侧磁场传感器检测到满足预设要求的静态磁场时,割草机的行走距离,根据确定割草机与磁条的夹角α。具体的,上述距离可以通过惯性导航设备、超声波传感器或雷达等测得。
在本实施方式中,可以根据割草机与磁条的夹角α控制自行走设备的转向角度。具体地,使自行走设备的转向角度不大于夹角α。由于夹角α为割草机的行进方向与磁条延伸方向之间的角度,所以当控制割草机的转向角度不大于夹角α之后,割草机不易与狭窄通道的内壁相碰撞。通过采用上述方式,可以避免割草机备在狭窄区域内随机乱撞,因此能缩短割草机通过狭窄通道的时间,进而使割草机能快速通过。
如图10所示为采用本路径规划方式的割草机在狭窄通道行走的路径示意图,其中,虚线为行走路径。可以明显看出,使用本路径规划方式时,割草机的行走具有方向性,可以在有限次数的折返后离开狭窄通道。
进一步的,为了优化本申请中的方案,在另一个实施例中,可以在割草机检测到满足预设要求的静态磁场信号时,先控制割草机转向至沿着磁条延长线的方向,并且在沿着磁条行走一段距离之后再执行转向操作,从而也可以加速割草机驶离狭窄通道。具体的,上述一段距离可以是预先设定的如20cm等长度,也可以是预先设定的一段行走时间,本申请对此不作限定。
具体的,如图11所示的自动割草机在狭窄通道行走的路径示意图可知,割草机20在向磁条13行走的过程中,一侧的磁场传感器35会先接触到磁条,并发送给控制模块,控制模块根按照上述实施例中的方式判断割草机与磁条之间的夹角,并根据该夹角调整割草机的行走方向,使得割草机转向后与磁条延伸线方向大致平行,即,可以控制原本先检测到满足预设要求的静态磁场信号的磁场传感器在磁条外,另一个磁场传感器回到工作区域内,且保证两侧磁场传感器检测到的磁场信号大致相同,即两侧磁场传感器接收到的静态磁场信号大小相同方向相反。当达到上述位置时,控制割草机沿磁条直线行走。同样的,可以通过控制驱动行走轮的马达转速来实现割草机转向至与磁条延伸线大致平行的方向。
值得注意的是,上述大致相同可以是两侧磁场传感器检测到的磁场信号完全相同,也可以是由于机器非对称或测量误差导致的检测到的磁场信号并非完全一致的情形。通过控制割草机在行走过程中两侧磁场传感器所接收到的静态磁场信号大小相同方向相反,从而可以保证割草机的直线行走。如图11所示,当割草机保持直线行走一段距离之后,可以控制割草机按照原先的转向方向继续转向,割草机转向后继续向前行走,并与另外一条磁条相撞,之后可以采用相同的方式控制割草机快速通过该狭窄通道。
特别的,当狭窄通道的宽度较窄,和割草机机身宽度大致相等时,可以直接控制割草机在两侧磁场传感器可以接收到大致相等的磁场信号的情况下,快速通过该通道。
从图10以及图11可以看出,采用本申请提出的转向方式控制割草机转向,割草机均可以达到快速离开狭窄区域的技术效果。
本申请实施例中,自行走设备驶向磁性装置边界的过程中,当检测到满足预设要求的静态磁场信号时,控制自行走设备转向驶离磁性装置的方向。当检测到自行走设备的左侧更接近磁性装置,则控制自行走设备顺时针转向;若右侧更接近磁性装置,则控制自行走设备逆时针转向。通过控制自行走设备的转向方向,可以避免随机转向时所导致的重复多次行走至同一区域的缺陷;同时当自行走设备在狭窄区域内行走时,可以快速驶出狭窄区域,能缩短自行走设备通过狭窄通道的时间,使自行走设备能快速通过通道。
需要说明的是,在本发明的描述中,术语“第一”、“第二”等仅用于描述目的和区别类似的对象,两者之间并不存在先后顺序,也不能理解为指示或暗示相对重要性。此外,在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种自动工作系统,其特征在于,所述自动工作系统包括:自行走设备、磁场检测模块,所述自行走设备在边界限定的工作区域内移动,所述边界至少部分为磁性装置;
    磁场检测模块,包括至少两个磁场传感器,所述磁场检测模块用于安装在所述自行走设备上,所述磁场检测模块用于检测所述自行走设备在行走过程中的静态磁场信号;
    所述自行走设备包括:
    机架,所述机架具有纵向轴线,所述纵向轴线将所述自行走设备分为左侧和右侧两部分;
    行走模块,安装在所述机架上,用于带动所述自行走设备移动;
    控制模块,用于控制所述自行走设备根据检测到的静态磁场信号移动;
    当所述自行走设备驶向所述磁性装置的过程中,检测到满足预设要求的静态磁场信号时,根据所述满足预设要求的静态磁场信号判断所述自行走设备与所述磁性装置的位置关系,并控制所述自行走设备转向驶离所述磁性装置;
    所述控制模块根据接收到的表征所述自行走设备其中一侧更接近所述磁性装置的信号,控制所述自行走设备转向;若所述自行走设备的左侧更接近所述磁性装置,则控制所述自行走设备顺时针转向;若右侧更接近所述磁性装置,则控制所述自行走设备逆时针转向。
  2. 如权利要求1所述的自动工作系统,其特征在于,所述满足预设要求的静态磁场信号包括:检测到的静态磁场强度上升至大于或等于预定强度阈值。
  3. 如权利要求1所述的自动工作系统,其特征在于,所述满足预设要求的静态磁场信号包括:检测到静态磁场强度的峰值。
  4. 如权利要求1所述的自动工作系统,其特征在于,当所述自行走设备与所述磁性装置的距离小于预定距离阈值时,所述自行走设备检测到满足预设要求的静态磁场 信号。
  5. 如权利要求1所述的自动工作系统,其特征在于,所述纵向轴线为沿所述机架纵向延伸的中轴线,所述磁场检测模块设置于所述中轴线两侧。
  6. 如权利要求5所述的自动工作系统,其特征在于,所述磁场检测模块设置于所述机架的前端和/或下方。
  7. 如权利要求5所述的自动工作系统,其特征在于,所述磁场检测模块对称的设置于所述中轴线两侧。
  8. 如权利要求1所述的自动工作系统,其特征在于,所述磁性装置包括:磁条。
  9. 如权利要求1所述的自动工作系统,其特征在于,所述磁场检测模块包括:地磁传感器。
  10. 一种自动工作系统的工作方法,其特征在于,所述自动工作系统包括:自行走设备、磁场检测模块,所述自行走设备在边界限定的工作区域内移动,所述边界至少部分为磁性装置;
    磁场检测模块,包括至少两个磁场传感器,所述磁场检测模块用于安装在所述自行走设备上,所述磁场检测模块用于检测所述自行走设备在行走过程中的静态磁场信号;
    所述自行走设备包括:
    机架,所述机架具有纵向轴线,所述纵向轴线将所述自行走设备分为左侧和右侧两部分;
    行走模块,安装在所述机架上,用于带动所述自行走设备移动;
    控制模块,用于控制所述自行走设备根据检测到的静态磁场信号移动;
    控制所述自行走设备在驶向所述磁性装置的过程中,检测静态磁场信号;
    当检测到满足预设要求的静态磁场信号时,根据所述满足预设要求的静态磁场信 号判断所述自行走设备与所述磁性装置的位置关系,并控制所述自行走设备转向驶离所述磁性装置;
    所述控制模块根据接收到的表征所述自行走设备其中一侧更接近所述磁性装置的信号,控制所述自行走设备转向;
    若所述自行走设备的左侧更接近所述磁性装置,则控制所述自行走设备顺时针转向;
    若右侧更接近所述磁性装置,则控制所述自行走设备逆时针转向。
PCT/CN2020/090048 2019-05-13 2020-05-13 自动工作系统及其工作方法、自行走设备 WO2020228742A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910393065.XA CN111930107A (zh) 2019-05-13 2019-05-13 自行走设备及其控制方法和装置
CN201910393065.X 2019-05-13

Publications (1)

Publication Number Publication Date
WO2020228742A1 true WO2020228742A1 (zh) 2020-11-19

Family

ID=73282903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090048 WO2020228742A1 (zh) 2019-05-13 2020-05-13 自动工作系统及其工作方法、自行走设备

Country Status (2)

Country Link
CN (1) CN111930107A (zh)
WO (1) WO2020228742A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101482754A (zh) * 2009-02-04 2009-07-15 泰怡凯电器(苏州)有限公司 机器人制约系统及制约方法
CN102768534A (zh) * 2011-04-28 2012-11-07 苏州宝时得电动工具有限公司 自动工作系统、自动行走设备及其转向方法
US20160227704A1 (en) * 2015-02-10 2016-08-11 Honda Motor Co., Ltd. Control apparatus for autonomously navigating utility vehicle
US20160231749A1 (en) * 2015-02-10 2016-08-11 Honda Motor Co., Ltd. Control apparatus for autonomously navigating utility vehicle
CN105911981A (zh) * 2012-04-28 2016-08-31 苏州宝时得电动工具有限公司 自动工作系统、自动行走设备及其转向方法
CN107291071A (zh) * 2016-03-30 2017-10-24 苏州宝时得电动工具有限公司 自动工作系统、自动行走设备及其转向方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10591627B2 (en) * 2016-11-08 2020-03-17 Frederick Energy Products, Llc Managing vehicle movement in aisles by use of magnetic vectors

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101482754A (zh) * 2009-02-04 2009-07-15 泰怡凯电器(苏州)有限公司 机器人制约系统及制约方法
CN102768534A (zh) * 2011-04-28 2012-11-07 苏州宝时得电动工具有限公司 自动工作系统、自动行走设备及其转向方法
CN105911981A (zh) * 2012-04-28 2016-08-31 苏州宝时得电动工具有限公司 自动工作系统、自动行走设备及其转向方法
US20160227704A1 (en) * 2015-02-10 2016-08-11 Honda Motor Co., Ltd. Control apparatus for autonomously navigating utility vehicle
US20160231749A1 (en) * 2015-02-10 2016-08-11 Honda Motor Co., Ltd. Control apparatus for autonomously navigating utility vehicle
CN107291071A (zh) * 2016-03-30 2017-10-24 苏州宝时得电动工具有限公司 自动工作系统、自动行走设备及其转向方法

Also Published As

Publication number Publication date
CN111930107A (zh) 2020-11-13

Similar Documents

Publication Publication Date Title
EP2806325B1 (en) Domestic robotic system
CN110018686A (zh) 一种智能割草机的路径规划方法
CN102768535B (zh) 自动工作系统、自动行走设备及其转向方法
WO2017198222A1 (zh) 自动工作系统,自移动设备及其控制方法
WO2017166971A1 (zh) 自动工作系统、自动行走设备及其转向方法
KR101622693B1 (ko) 잔디 깎기 로봇 및 그 제어 방법
EP2413214B1 (en) Robotic mower boundary coverage system and robotic mower
JP2023500082A (ja) ロボット汎用の充電台帰還充電制御方法、チップ及びロボット
US20140379196A1 (en) Robotic mower navigation system
JP2019516199A (ja) ロボット及びロボット制御方法
WO2014071860A1 (zh) 自动工作系统
CN105911981A (zh) 自动工作系统、自动行走设备及其转向方法
WO2019223725A1 (zh) 自动割草机及其转向方法
CN108628316A (zh) 建立吸尘机器人栅格地图的方法
CN114322980A (zh) 获取位置坐标及绘制电子地图的方法、计算机可读存储介质和自主作业设备
JP2020042349A (ja) 自律走行台車及び移動制御方法
CN114052561A (zh) 自移动机器人
CN114355934A (zh) 一种避障方法及自动行走设备
WO2020228742A1 (zh) 自动工作系统及其工作方法、自行走设备
JP2014187951A (ja) 自律移動型芝刈機
KR101807560B1 (ko) 잔디절삭기를 이용한 골프장 잔디 관리 시스템 및 그 방법
CN114167852A (zh) 机器人系统及基于磁场信号的机器人避障方法
CN114166212A (zh) 机器人系统及机器人避障方法
EP4060449B1 (en) Work robot
CN112256013A (zh) 自动工作系统、自动行走设备及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20806440

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20806440

Country of ref document: EP

Kind code of ref document: A1