CN115368126A - 一种叠层复合磁介基板材料及其制备方法 - Google Patents

一种叠层复合磁介基板材料及其制备方法 Download PDF

Info

Publication number
CN115368126A
CN115368126A CN202210920417.4A CN202210920417A CN115368126A CN 115368126 A CN115368126 A CN 115368126A CN 202210920417 A CN202210920417 A CN 202210920417A CN 115368126 A CN115368126 A CN 115368126A
Authority
CN
China
Prior art keywords
dielectric
ceramic
magnetic
ferrite
laminated composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210920417.4A
Other languages
English (en)
Inventor
苏桦
杨钊
荆玉兰
唐晓莉
李元勋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202210920417.4A priority Critical patent/CN115368126A/zh
Publication of CN115368126A publication Critical patent/CN115368126A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明属于电子材料技术领域,涉及一种叠层复合磁介基板材料及其制备方法。本发明通过将铁氧体陶瓷膜片和介电陶瓷膜片按比例交替堆叠构成叠层结构,采用叠层复合的方式,在磁性层中形成连续不开气隙的磁路,使得磁导率几乎不受影响,因此本发明叠层复合磁介基板材料的磁导率可达到采用铁氧体磁性材料的磁导率乘上磁性层总厚度与基板总厚度之比,大大高于传统采用粉体混合得到磁介复合材料的磁导率,给调控磁介基板材料的磁性和介电性能提供了更大的实施空间。本发明的叠层复合磁介基板材料,其适用频率可覆盖1MHz~5GHz,并可通过灵活调控复合材料的磁介电性能来实现具体的应用频率调控;且提供了简单易行成熟的制备工艺。

Description

一种叠层复合磁介基板材料及其制备方法
技术领域
本发明属于电子材料技术领域,涉及一种叠层复合磁介基板材料及其制备方法,通过流延叠层复合方式实现。
背景技术
众所周知,软磁铁氧体陶瓷不仅具有磁性能(有磁导率和磁损耗),同时也具有介电性能(有介电常数和介电损耗)。单纯软磁铁氧体陶瓷的磁性能可以通过材料配方、工艺和掺杂等技术进行灵活调节并进行性能优化,但是,其介电性能的可变程度却很小。铁氧体的介电常数一般都在10~15之间,且介电损耗相比介电陶瓷而言也明显偏大,介电性能的可调节性及介电性能都较差。因此,在需要兼顾磁介性能的应用领域,一般采取将软磁铁氧体材料与介电材料(如介电陶瓷、有机介电材料)等进行复合的方式,以更好的优化材料的磁性和介电性能。该类磁介材料一个比较重要的应用场景就是作为天线的基板材料。
目前大部分天线基板材料都是采用介电材料来实现,但根据天线谐振频率关系式
Figure BDA0003777308320000011
可知,提高天线介质基板的有效磁导率μeff,同样也可达到降低天线基板尺寸的效果,并且还不易激起表面波并有利于天线能量的辐射。此外,由于微带天线的带宽主要受基板介电常数大小的影响,而与磁导率大小无关,介电常数越小越有利于提高天线带宽。因此,在同等尺寸下,采取磁介材料制备的天线也比采用纯介电材料制备的天线具有更宽的带宽。这说明,将磁介材料应用到天线基板上具有十分重要的现实意义;此外,在一些吸波材料应用领域,也需要灵活调控复合材料的磁介特性,因此,如何更有效的调控复合材料的磁介特性,具有非常重要的意义。
为了更好的调控复合材料的磁介性能,采取将软磁铁氧体材料与介电材料(包括介电陶瓷,有机介电材料等)进行复合是一种有效的方式。最常用的磁介复合的方式主要有两种,第一种就是将铁氧体陶瓷的预烧粉料与介电陶瓷材料的粉料在二次球磨时进行混合,然后再将混合粉料进行压制成型和烧结,制备成磁介复合陶瓷;第二种方式是将制备好的铁氧体陶瓷研磨成粉料,然后填充到有机介电材料中,再通过热压等有机介电材料的加工方式加工成复合磁介基板材料。这两种方式都可以通过适当调整铁氧体粉料跟介电材料的比例,以及铁氧体和介电材料各自的磁性和介电性能,在一定程度上调节复合材料的磁介性能。
但是,采取如上方式制备磁介材料,面临的一个突出问题就是复合磁介材料的磁导率下降非常厉害。由于在复合过程中,软磁铁氧体材料的磁路被非磁性的介电陶瓷或有机介电材料隔断,相当于在磁通回路上开了很多的气隙,根据有效磁导率的计算公式可知,在磁路上开气隙会导致材料的有效磁导率大幅度下降。举个简单的例子,假如铁氧体软磁的磁导率为100,让其与具有相同密度的非磁性的介电陶瓷按1:1的比例进行复合的话,复合材料的介电常数大致等于两者介电常数的平均值,但复合材料的有效磁导率计算下来仅有2左右了,即便将铁氧体陶瓷粉料的比例提高到80%,复合材料的有效磁导率也只能达到3左右。因此,采用常规粉料复合的方式来实现磁介材料,材料磁导率很难提升,因此给复合材料磁介性能的调控带了很大的不便,适用性大打折扣。
发明内容
针对上述存在问题或不足,为解决现有复合磁介材料磁导率难以提升调控的问题,本发明提供了一种叠层复合磁介基板材料及其制备方法,采用流延叠层共烧的方式制备三明治结构的复合磁介基板材料,由于不用阻断中间磁性层的磁路结构,因此软磁铁氧体的磁性能能够得到最大程度的保留,仅需调整磁性层和非磁性介电层的厚度比例,以及铁氧体和介电材料各自本身的磁性能和介电性能,就可以非常灵活的在比较大的范围内调节复合材料的磁介特性,具有很强的适用性。
一种叠层复合磁介基板材料,是由铁氧体陶瓷膜片和介电陶瓷膜片按比例交替堆叠构成的叠层结构。
所述比例是指两层铁氧体陶瓷生瓷膜片间的介电陶瓷生瓷膜片层数,和/或两层介电陶瓷生瓷膜片间的铁氧体陶瓷生瓷膜片层数。
所述铁氧体陶瓷膜片和介电陶瓷膜片的单层厚度为20~200μm,两者的总厚度比例视叠层复合磁介基板材料期望达到的磁、介性能而定。
进一步的,所述铁氧体陶瓷膜片与介电陶瓷膜片交替叠层时的比例,可以先叠一层铁氧体陶瓷生瓷膜片,然后叠一层介电陶瓷生瓷膜片,再叠一层铁氧体陶瓷生瓷膜片,如此循环;也可以先叠一层铁氧体陶瓷生瓷膜片,再叠多层介电陶瓷生瓷膜片,之后再叠一层铁氧体陶瓷生瓷膜片的方式。具体两种陶瓷膜片的厚度比例视叠层复合磁介基板材料期望达到的磁、介性能而定。
上述叠层复合磁介基板材料的制备方法,具体步骤如下:
步骤1、分别配制铁氧体陶瓷粉料和介电陶瓷粉料;
步骤2、将步骤1配制的铁氧体陶瓷粉料和介电陶瓷粉料,分别流延成厚度20~200μm的铁氧体陶瓷生瓷膜片和介电陶瓷生瓷膜片;
步骤3、将步骤2所得铁氧体陶瓷生瓷膜片与介电陶瓷生瓷膜片按比例进行交替叠层堆叠,然后经过热等静压后得到需要的基板厚度(注:该厚度还需考虑烧结过程中出现的收缩,即如果最终基板厚度要求为1mm,可能在此处考虑材料的烧结收缩率,厚度需要叠到1.2mm左右),得到叠层复合磁介基板生料。
步骤4、将步骤3所得的叠层复合磁介基板生料再经排胶、烧结,即得叠层复合磁介基板材料。
进一步的,所述步骤1制备的铁氧体陶瓷粉料和介电陶瓷粉料经掺杂改性,使得两种陶瓷粉料的最终烧结温度和收缩率均趋于一致,以确保铁氧体陶瓷生瓷膜片与介电陶瓷生瓷膜片共烧匹配度,防止制备的叠层复合磁介基板材料出现翘曲和/或开裂的问题。
进一步的,所述步骤1制备的铁氧体陶瓷粉料和介电陶瓷粉料粒径为0.8~3μm,以利于后续流延工艺。
进一步的,所述步骤3中铁氧体陶瓷生瓷膜片与介电陶瓷生瓷膜片交替叠层时的比例为两种类型膜片轮流交替叠层的方式:先叠一层铁氧体陶瓷生瓷膜片,然后叠一层介电陶瓷生瓷膜片,再叠一层铁氧体陶瓷生瓷膜片,如此循环;以更好的平抑铁氧体陶瓷层和介电陶瓷层烧结收缩率不一致导致叠层复合磁介基板材料出现翘曲、开裂的问题。
本发明主要是能够显著提升复合磁介材料的磁导率,至于如何改善复合材料的磁、介电损耗,则主要通过改善磁性材料和介电陶瓷材料本身的性能来实现。本发明的叠层复合磁介基板材料,其适用频率可覆盖1MHz~5GHz,并可通过灵活调控复合材料的磁介电性能来实现具体的应用频率调控。
由于本发明采用叠层复合的方式,在磁性层中形成的是连续不开气隙的磁路,因此其磁导率几乎不受影响,这种复合磁介材料的磁导率大致可达到采用铁氧体磁性材料本身的磁导率乘上磁性层总厚度与基板总厚度之比。即假如采用铁氧体材料的磁导率为100,铁氧体膜层总厚度占了基板总厚度一半的话(如铁氧体和介电陶瓷密度相同,相当于两种粉料各用了50%),复合基板材料的磁导率可以达到100*1/2=50左右,这可以大大高于传统采用粉体混合得到磁介复合材料的磁导率(采用粉体复合得到材料的磁导率只能达到2左右),因此给调控磁介基板材料的磁性和介电性能提供了更大的实施空间。
并且本发明提供的制备工艺也简单易行,无论是粉体的制备,还是生瓷膜片的流延,都可以采取目前常规成熟的工艺方案去实施即可,只是需要调节好两种粉料的烧结特性(可通过调整掺杂方案、预烧温度等方式来进行调控),让其烧结温度和收缩率能尽量接近即可。
综上所述,本发明提供的叠层复合磁介基板材料,有效解决了现有复合磁介材料的磁导率难以提升调控的问题,其适用频率可覆盖1MHz~5GHz,并可通过灵活调控复合材料的磁介电性能来实现具体的应用频率调控;且提供了简单易行成熟的制备工艺。
附图说明
图1为本发明的制备流程图。
具体实施方式
下面以两种基于本发明工艺制备的叠层复合磁介基板材料为实施例对本发明做进一步的详细说明,本发明可采用的铁氧体和介电陶瓷材料的类型、性能均不仅限于此。
实施例1:
步骤1、分别配制铁氧体陶瓷粉料和介电陶瓷粉料;
铁氧体陶瓷粉料:按照常规铁氧体陶瓷的制备工艺,根据Ni0.65Cu0.05Zn0.3Fe1.98O4的铁氧体分子式,采用NiO、ZnO、CuO、Fe2O3原料进行配料,然后经过一次球磨、900度预烧工艺后,再经二次球磨磨成平均粒径D50约为1.2um的铁氧体粉料,烘干过筛备用。
介电陶瓷粉料:按照常规介电陶瓷的制备工艺,根据Li2ZnTi3O8的介电陶瓷分子式,采用Li2CO3、ZnO、TiO2原料进行配料,先后经过然后经过一次球磨、900度预烧工艺后,再经二次球磨磨成平均粒径D50约为1.2um的介电陶瓷粉料,烘干过筛备用。
步骤2、将步骤1配制的铁氧体陶瓷粉料和介电陶瓷粉料,分别流延成厚度120μm的铁氧体陶瓷生瓷膜片和介电陶瓷生瓷膜片;
铁氧体陶瓷生瓷膜片:将步骤1制备的铁氧体陶瓷粉料,按照常规的流延方案,添加溶剂、增塑剂、去泡剂等有机溶剂,制备成流延浆料,再在流延机上流延成厚度120μm的生瓷膜片。
介电陶瓷生瓷膜片:将步骤1制备的介电陶瓷粉料,按照常规的流延方案,添加溶剂、增塑剂、去泡剂等有机溶剂,制备成流延浆料,再在流延机上流延成厚度120μm的生瓷膜片。
步骤3、将步骤2所得铁氧体陶瓷生瓷膜片与介电陶瓷生瓷膜片按轮流交替叠层的方式(即比例):一片铁氧体陶瓷生瓷膜片,一片介电陶瓷生瓷膜片的方式轮流交替叠层5个周期,然后热等静压得到叠层复合磁介基板生料。
步骤4、将步骤3所得的叠层复合磁介基板生料再经排胶,1200度保温2小时烧结,随炉降至常温,即得叠层复合磁介基板材料。
将本实施例的样品进行检测,该叠层复合磁介基板材料在1~100MHz,磁导率均在20左右,磁损耗系数低于0.03.介电常数在19左右,介电损耗系数低于0.01。
实施例2:
步骤1、分别配制铁氧体陶瓷粉料和介电陶瓷粉料;
铁氧体陶瓷粉料:按照常规铁氧体陶瓷的制备工艺,根据(Ba0.5Sr0.5)3Co2Fe24O41的铁氧体分子式,采用BaCO3、SrCO3、Co2O3、Fe2O3原料进行配料,然后经过一次球磨、1200度预烧工艺后,二次球磨时掺杂1wt%H3BO3,再经二次球磨磨成平均粒径D50约为1.2um的铁氧体粉料,烘干过筛备用。
介电陶瓷粉料:按照常规介电陶瓷的制备工艺,根据CaMg0.9Cu0.1Si2O6的介电陶瓷分子式,采用CaCO3、MgO、CuO、SiO2原料进行配料,先后经过然后经过一次球磨、1000度预烧工艺后,再经二次球磨磨成平均粒径D50约为1.2um的介电陶瓷粉料,烘干过筛备用。
步骤2、将步骤1配制的铁氧体陶瓷粉料和介电陶瓷粉料,分别流延成厚度120μm的铁氧体陶瓷生瓷膜片和介电陶瓷生瓷膜片;
铁氧体陶瓷生瓷膜片:将步骤1制备的铁氧体陶瓷粉料,按照常规的流延方案,添加溶剂、增塑剂、去泡剂等有机溶剂,制备成流延浆料,再在流延机上流延成厚度120μm的生瓷膜片。
介电陶瓷生瓷膜片:将步骤1制备的介电陶瓷粉料,按照常规的流延方案,添加溶剂、增塑剂、去泡剂等有机溶剂,制备成流延浆料,再在流延机上流延成厚度120μm的生瓷膜片。
步骤3、将步骤2所得铁氧体陶瓷生瓷膜片与介电陶瓷生瓷膜片按轮流交替叠层的方式(即比例):一片铁氧体陶瓷生瓷膜片,一片介电陶瓷生瓷膜片的方式轮流交替叠层5个周期,然后热等静压得叠层复合磁介基板生料。
步骤4、将步骤3所得的叠层复合磁介基板生料再经排胶,1100度保温2小时烧结,随炉降至常温,即得叠层复合磁介基板材料。
将本实施例的样品进行检测,该叠层复合磁介基板材料在10~1500MHz,磁导率均在6左右,磁损耗系数低于0.2,介电常数在8左右,介电损耗系数低于0.05。
通过以上两组实施例可见:本发明通过将铁氧体陶瓷膜片和介电陶瓷膜片按比例交替堆叠构成叠层结构,采用叠层复合的方式,在磁性层中形成连续不开气隙的磁路,使得磁导率几乎不受影响,因此本发明叠层复合磁介基板材料的磁导率可达到采用铁氧体磁性材料的磁导率乘上磁性层总厚度与基板总厚度之比,大大高于传统采用粉体混合得到磁介复合材料的磁导率,给调控磁介基板材料的磁性和介电性能提供了更大的实施空间。本发明的叠层复合磁介基板材料,其适用频率可覆盖1MHz~5GHz,并可通过灵活调控复合材料的磁介电性能来实现具体的应用频率调控;且提供了简单易行成熟的制备工艺。

Claims (5)

1.一种叠层复合磁介基板材料,其特征在于:是由铁氧体陶瓷膜片和介电陶瓷膜片按比例交替堆叠构成的叠层结构;
所述比例是指两层铁氧体陶瓷生瓷膜片间的介电陶瓷生瓷膜片层数,和/或两层介电陶瓷生瓷膜片间的铁氧体陶瓷生瓷膜片层数;
所述铁氧体陶瓷膜片和介电陶瓷膜片的单层厚度为20~200μm,两者的总厚度比例视叠层复合磁介基板材料期望达到的磁、介性能而定。
2.如权利要求1所述叠层复合磁介基板材料的制备方法,其特征在于,包括以下步骤:
步骤1、分别配制铁氧体陶瓷粉料和介电陶瓷粉料;
步骤2、将步骤1配制的铁氧体陶瓷粉料和介电陶瓷粉料,分别流延成厚度20~200μm的铁氧体陶瓷生瓷膜片和介电陶瓷生瓷膜片;
步骤3、将步骤2所得铁氧体陶瓷生瓷膜片与介电陶瓷生瓷膜片按比例进行交替叠层堆叠,然后热等静压后得到需要的基板厚度,得叠层复合磁介基板生料;
步骤4、将步骤3所得的叠层复合磁介基板生料再经排胶、烧结,即得叠层复合磁介基板材料。
3.如权利要求2所述叠层复合磁介基板材料的制备方法,其特征在于:所述步骤1制备的铁氧体陶瓷粉料和介电陶瓷粉料经掺杂改性,使得两种陶瓷粉料的最终烧结温度和收缩率均趋于一致,以确保铁氧体陶瓷生瓷膜片与介电陶瓷生瓷膜片共烧匹配度,防止制备的叠层复合磁介基板材料出现翘曲和/或开裂的问题。
4.如权利要求2所述叠层复合磁介基板材料的制备方法,其特征在于:所述步骤1制备的铁氧体陶瓷粉料和介电陶瓷粉料粒径为0.8~3μm,以利于后续流延工艺。
5.如权利要求2所述叠层复合磁介基板材料的制备方法,其特征在于:
所述步骤3中铁氧体陶瓷生瓷膜片与介电陶瓷生瓷膜片交替叠层时的比例为两种类型膜片轮流交替叠层的方式:先叠一层铁氧体陶瓷生瓷膜片,然后叠一层介电陶瓷生瓷膜片,再叠一层铁氧体陶瓷生瓷膜片,如此循环;以更好的平抑铁氧体陶瓷层和介电陶瓷层烧结收缩率不一致导致叠层复合磁介基板材料出现翘曲、开裂的问题。
CN202210920417.4A 2022-08-02 2022-08-02 一种叠层复合磁介基板材料及其制备方法 Pending CN115368126A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210920417.4A CN115368126A (zh) 2022-08-02 2022-08-02 一种叠层复合磁介基板材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210920417.4A CN115368126A (zh) 2022-08-02 2022-08-02 一种叠层复合磁介基板材料及其制备方法

Publications (1)

Publication Number Publication Date
CN115368126A true CN115368126A (zh) 2022-11-22

Family

ID=84063782

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210920417.4A Pending CN115368126A (zh) 2022-08-02 2022-08-02 一种叠层复合磁介基板材料及其制备方法

Country Status (1)

Country Link
CN (1) CN115368126A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62264638A (ja) * 1987-04-21 1987-11-17 Toto Ltd 静電チヤツク基盤の製造方法
JPH07263280A (ja) * 1994-03-25 1995-10-13 Mitsubishi Materials Corp チップ型lc複合部品
US20040164269A1 (en) * 2003-02-25 2004-08-26 Chaby Hsu Low temperature co-fired ferrite-ceramic composite and the process for manufacturing it
CN101514102A (zh) * 2009-03-30 2009-08-26 电子科技大学 一种铁氧体与陶瓷材料低温匹配共烧方法
CN102863222A (zh) * 2012-06-28 2013-01-09 深圳市固电电子有限公司 陶瓷材料及其与铁氧体材料低温叠层共烧方法
CN204918385U (zh) * 2015-06-03 2015-12-30 西南应用磁学研究所 高温烧制铁氧体-陶瓷一体化基板
CN106653356A (zh) * 2016-11-30 2017-05-10 广东风华邦科电子有限公司 一种叠层片式磁珠的制备方法
KR101920887B1 (ko) * 2017-06-30 2018-11-21 (주)알엔투테크놀로지 유전체층 및 금속 페라이트 자성체층을 소결 접합한 소결 구조체 및 이의 제조방법
CN110342922A (zh) * 2019-06-11 2019-10-18 深圳顺络电子股份有限公司 一种复合铁氧体材料及其制备方法、叠层电感

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62264638A (ja) * 1987-04-21 1987-11-17 Toto Ltd 静電チヤツク基盤の製造方法
JPH07263280A (ja) * 1994-03-25 1995-10-13 Mitsubishi Materials Corp チップ型lc複合部品
US20040164269A1 (en) * 2003-02-25 2004-08-26 Chaby Hsu Low temperature co-fired ferrite-ceramic composite and the process for manufacturing it
CN101514102A (zh) * 2009-03-30 2009-08-26 电子科技大学 一种铁氧体与陶瓷材料低温匹配共烧方法
CN102863222A (zh) * 2012-06-28 2013-01-09 深圳市固电电子有限公司 陶瓷材料及其与铁氧体材料低温叠层共烧方法
CN204918385U (zh) * 2015-06-03 2015-12-30 西南应用磁学研究所 高温烧制铁氧体-陶瓷一体化基板
CN106653356A (zh) * 2016-11-30 2017-05-10 广东风华邦科电子有限公司 一种叠层片式磁珠的制备方法
KR101920887B1 (ko) * 2017-06-30 2018-11-21 (주)알엔투테크놀로지 유전체층 및 금속 페라이트 자성체층을 소결 접합한 소결 구조체 및 이의 제조방법
CN110342922A (zh) * 2019-06-11 2019-10-18 深圳顺络电子股份有限公司 一种复合铁氧体材料及其制备方法、叠层电感

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. KULAWIK等: "Magnetic, magnetoelectric and dielectric behavior of CoFe2O4-Pb(Fe1/2Nb1/2)O3 particulate and layered composites" *
刘向春;邓军平;: "ZnTiO_3陶瓷与NiZnCu铁氧体叠层复合材料的低温共烧" *

Similar Documents

Publication Publication Date Title
US8470194B2 (en) Ni—Zn—Cu ferrite particles, green sheet comprising the Ni—Zn—Cu ferrite particles and Ni—Zn—Cu ferrite sintered ceramics
Su et al. Low-loss magneto-dielectric materials: Approaches and developments
CN108503349B (zh) 一种耐大电流低温烧结NiCuZn铁氧体材料及其制备方法
JP2011073937A (ja) 多結晶磁性セラミック、マイクロ波磁性体及びこれを用いた非可逆回路素子
CN115385680B (zh) 一种高介低线宽微波旋磁铁氧体材料及其制备方法
CN112321291A (zh) 一种高饱和低温烧结旋磁Ni系尖晶石铁氧体材料及其制备方法
CN108610037B (zh) 一种宽温高叠加高居里温度的锰锌高磁导率材料及其制备方法
CN105236948A (zh) Ka波段环行器用NiCuZn铁氧体厚膜材料制备方法
WO2020162295A1 (ja) 軟磁性組成物、焼結体、複合体、ペースト、コイル部品、及び、アンテナ
CN114874010A (zh) 一种微波陶瓷材料DyVO4及其制备方法
CN113603472B (zh) 一种基于LTCC技术的NiCuZn铁氧体制备方法
US5772820A (en) Process for fabricating a microwave power device
Luo et al. Effect of Y2O3-doping on the electromagnetic properties of Ni-Zn-Co ferrite
JP2002068830A (ja) 六方晶y型酸化物磁性材料およびインダクタ素子
CN113078429A (zh) 一种准平面化复合基板微带环形器
CN115057697B (zh) 一种低线宽的w型六角晶系微波铁氧体材料的制备方法
CN115368126A (zh) 一种叠层复合磁介基板材料及其制备方法
CN114702310B (zh) 低损耗尖晶石微波铁氧体材料及其制备方法
CN108774057B (zh) 一种用于LTCC环形器的NiCuZn旋磁铁氧体材料及其制备方法
CN110342922A (zh) 一种复合铁氧体材料及其制备方法、叠层电感
CN109714015A (zh) 一种基于磁介复合材料的叠层低通滤波器
CN111646796B (zh) 低温烧结低介微波陶瓷材料Sr2VxO7及其制备方法
JPH1126239A (ja) 薄型電源用磁気素子
Huo et al. Microstructure, magnetic, and power loss characteristics of low‐sintered NiCuZn ferrites with La2O3‐Bi2O3 additives
CN113461414A (zh) 适用于毫米波微带环形器的铁氧体及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20221122

RJ01 Rejection of invention patent application after publication