CN115326378A - 粘滑检测系统以及方法 - Google Patents
粘滑检测系统以及方法 Download PDFInfo
- Publication number
- CN115326378A CN115326378A CN202210452790.1A CN202210452790A CN115326378A CN 115326378 A CN115326378 A CN 115326378A CN 202210452790 A CN202210452790 A CN 202210452790A CN 115326378 A CN115326378 A CN 115326378A
- Authority
- CN
- China
- Prior art keywords
- stick
- limit position
- unit
- slip
- upper limit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M13/00—Testing of machine parts
- G01M13/003—Machine valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K37/00—Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
- F16K37/0075—For recording or indicating the functioning of a valve in combination with test equipment
- F16K37/0083—For recording or indicating the functioning of a valve in combination with test equipment by measuring valve parameters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B19/00—Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
- F15B19/005—Fault detection or monitoring
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N19/00—Investigating materials by mechanical methods
- G01N19/02—Measuring coefficient of friction between materials
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/43—Programme-control systems fluidic
- G05B19/44—Programme-control systems fluidic pneumatic
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0218—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
- G05B23/0224—Process history based detection method, e.g. whereby history implies the availability of large amounts of data
- G05B23/0227—Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions
- G05B23/0235—Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions based on a comparison with predetermined threshold or range, e.g. "classical methods", carried out during normal operation; threshold adaptation or choice; when or how to compare with the threshold
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/80—Other types of control related to particular problems or conditions
- F15B2211/87—Detection of failures
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Fluid Mechanics (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Testing And Monitoring For Control Systems (AREA)
- Indication Of The Valve Opening Or Closing Status (AREA)
Abstract
本发明的粘滑检测系统以及方法容易地反映对阀等诊断对象的专家的知识。粘滑检测系统具备:运转数据积存部(1),其积存第一状态量与第二状态量之比即粘滑指标,所述第一状态量基于作为诊断对象的阀的阀轴位移而得,所述第二状态量基于位移而得;异常诊断部(3),其根据粘滑指标判定诊断对象中是否发生了粘滑现象;以及诊断动作控制部(42),其在作为诊断对象的阀的中间开度处检测到控制指令值的阶跃变化时,使异常诊断部(3)的判定动作停止。
Description
技术领域
本发明涉及一种检测阀门等诊断对象的粘滑的粘滑检测系统以及方法,尤其涉及一种抑制粘滑的误检测的技术。
背景技术
阀的粘滑是阀轴的停止(粘滞)和滑行(滑动)反复进行的现象。作为检测粘滑的方法,有专利文献1所公开的方法。在专利文献1所公开的方法中,根据阀轴的位移xi,如式(1)、式(2)那样计算出阀轴速度的绝对值的平均值X和阀轴速度的均方根Y(N是在状态量的计算中使用的位移数据的数量),并计算出Y除以X得到的值SSpv。
[式1]
SSpv具有随着阀的粘滑现象增加而变大的特征。在专利文献1所公开的方法中,在粘滑指标SSpv为阈值以上时,判定为粘滑。
然而,在专利文献1所公开的方法中,有时即使阀中未发生异常,在阀轴位移的控制指令值自身发生较大变化时,阀轴位移的测定值的举动也与粘滑的状态相同,从而有误判断为粘滑状态的情况。
在此,提出了粘滑的误检测抑制的方法(参照专利文献2)。在专利文献2所公开的方法中,不仅针对阀轴位移的测定值,对于阀轴位移的控制指令值,也通过式(1)、式(2)计算出阀轴速度的绝对值的平均值X和均方根Y,并计算Y除以X得到的值SSsp。并且,仅在阀轴位移的测定值的粘滑指标SSpv和控制指令值的粘滑指标SSsp满足式(3)的情况下,判定是否发生了粘滑现象,由此实现粘滑的误检测抑制。
SSpv>SSsp····(3)
另外,对于上述的粘滑误检测抑制方法,提出了不是一律用SSpv和SSsp进行判定、而是通过如式(4)那样对式(3)导入设定参数α、β来设定进行判定的SSpv的范围的方法(参照专利文献3)。
SSpv>α·SSsp+β····(4)
如上所述,利用式(4)的设定参数α、β,能够设定进行判定的范围。但是,由于粘滑指标SSpv、SSsp是复杂计算后的值,因此难以将进行某个特定动作时的数据从判定中排除等的、针对阀的专家的知识反映到式(4)中。因此,需要能够容易地反映专家的知识的粘滑误检测抑制方法。
现有技术文献
专利文献
专利文献1日本专利第3254624号公报
专利文献2日本专利第5571346号公报
专利文献3日本专利第5824333号公报
发明内容
发明要解决的问题
本发明是为了解决上述问题而完成的,其目的在于,提供一种能够容易地反映对于阀等诊断对象的专家的知识的粘滑检测系统及方法。
解决问题的技术手段
本发明的粘滑检测系统的特征在于,具备:积存部,其构成为积存第一状态量与第二状态量之比即粘滑指标,所述第一状态量基于具备可动部的诊断对象中的所述可动部的位移而得,所述可动部具有接触滑动部,所述第二状态量基于所述位移而得;异常诊断部,其构成为根据所述粘滑指标判定所述诊断对象中是否发生了粘滑现象;以及诊断动作控制部,其构成为在检测到用于控制所述可动部的位置的信号的阶跃变化时,使所述异常诊断部的判定动作停止。
另外,本发明的粘滑检测系统的一个构成例的特征在于,在所述可动部的位置为上限位置与下限位置之间的中间位置、且检测到用于控制所述可动部的位置的控制指令值的阶跃变化时,所述诊断动作控制部使所述异常诊断部的判定动作停止。
另外,本发明的粘滑检测系统的一个构成例的特征在于,还具备变化量判定部,其构成为,通过比较用于控制所述可动部的位置的所述控制指令值的变化量与规定的变化量阈值,来判定是否所述可动部处于所述中间位置且所述控制指令值阶跃变化。
另外,本发明的粘滑检测系统的一个构成例的特征在于,在所述可动部移动到上限位置时、所述可动部移动到下限位置时、所述可动部从所述上限位置向所述下限位置的方向开始移动时、所述可动部从所述下限位置向所述上限位置的方向开始移动时中的任一个时间,所述诊断动作控制部使所述异常诊断部的判定动作停止。
另外,本发明的粘滑检测系统的一个构成例的特征在于,所述诊断对象是阀,所述可动部是阀轴,还具备全开闭判定部,其构成为,根据控制所述阀的开度的定位器向电空转换器输出的控制信号,判定是否为所述可动部移动到上限位置时、所述可动部移动到下限位置时、所述可动部从所述上限位置向所述下限位置的方向开始移动时、所述可动部从所述下限位置向所述上限位置的方向开始移动时中的某一个时间。
另外,本发明的粘滑检测系统的一个构成例的特征在于,还具备全开闭判定部,其构成为,根据用于控制所述可动部的位置的控制指令值,判定是否为所述可动部移动到上限位置时、所述可动部移动到下限位置时、所述可动部从所述上限位置向所述下限位置的方向开始移动时、所述可动部从所述下限位置向所述上限位置的方向开始移动时中的某一个时间。
另外,本发明的粘滑检测系统的一个构成例的特征在于,还具备粘滑指标计算部,其构成为计算所述粘滑指标。
另外,在本发明的粘滑检测系统的一个构成例中,所述第一状态量是所述可动部的位移的一阶差分值的绝对值的平均,所述第二状态量是所述可动部的位移的一阶差分值的均方根。
运转数据积存部另外,本发明的粘滑检测方法的特征在于,包括:第一步骤,积存第一状态量与第二状态量之比即粘滑指标,所述第一状态量基于具备可动部的诊断对象中的所述可动部的位移而得,所述可动部具有接触滑动部,所述第二状态量基于所述位移而得;第二步骤,根据所述粘滑指标判定所述诊断对象中是否发生了粘滑现象;以及第三步骤,在检测到用于控制所述可动部的位置的信号的阶跃变化时,使所述第二步骤的判定动作停止。
另外,本发明的粘滑检测方法的一个构成例的特征在于,所述第三步骤包括以下步骤,即:在所述可动部的位置为上限位置与下限位置之间的中间位置、且检测到用于控制所述可动部的位置的控制指令值的阶跃变化时,使所述第二步骤的判定动作停止。
另外,本发明的粘滑检测系统的一个构成例的特征在于,所述第三步骤包括以下步骤,即:通过比较用于控制所述可动部的位置的所述控制指令值的变化量与规定的变化量阈值,来判定是否所述可动部处于所述中间位置且所述控制指令值阶跃变化。
另外,本发明的粘滑检测方法的一个构成例的特征在于,所述第三步骤包括以下步骤:在所述可动部移动到上限位置时、所述可动部移动到下限位置时、所述可动部从所述上限位置向所述下限位置的方向开始移动时、所述可动部从所述下限位置向所述上限位置的方向开始移动时中的任一个时间,使所述第二步骤的判定动作停止。
另外,本发明的粘滑检测方法的一个构成例的特征在于,所述诊断对象是阀,所述可动部是阀轴,还包括以下步骤,即:根据控制所述阀的开度的定位器向电空转换器输出的控制信号,判定是否为所述可动部移动到上限位置时、所述可动部移动到下限位置时、所述可动部从所述上限位置向所述下限位置的方向开始移动时、所述可动部从所述下限位置向所述上限位置的方向开始移动时中的某一个时间。
另外,本发明的粘滑检测方法的一个构成例的特征在于,所述第三步骤包括以下步骤:根据用于控制所述可动部的位置的控制指令值,判定是否为所述可动部移动到上限位置时、所述可动部移动到下限位置时、所述可动部从所述上限位置向所述下限位置的方向开始移动时、所述可动部从所述下限位置向所述上限位置的方向开始移动时中的某一个时间。
另外,本发明的粘滑检测方法的一个构成例的特征在于,还包括第四步骤,计算所述粘滑指标。
另外,在本发明的粘滑检测方法的一个构成例中,所述第一状态量是所述可动部的位移的一阶差分值的绝对值的平均,所述第二状态量是所述可动部的位移的一阶差分值的均方根。
发明的效果
根据本发明,能够将专家对诊断对象的知识容易地反映于粘滑检测方法。另外,在本发明中,能够进行长期的使用所引起的诊断对象的经年变化也可应对的数据排除,从而长期使用同一基准的比较、判断成为可能。
附图说明
图1是表示本发明的实施例所涉及的粘滑检测系统的构成的框图。
图2是说明本发明的实施例所涉及的粘滑检测系统的动作的流程图。
图3是说明本发明的实施例所涉及的粘滑检测系统的动作的流程图。
图4是表示阀的全闭动作时、以及从全闭状态开始打开时的控制指令值、阀开度的测定值、控制信号的例子的图。
图5是表示阀的全开动作时、以及从全开状态开始关闭时的控制指令值、阀开度的测定值、控制信号的例子的图。
图6是说明本发明的实施例所涉及的粘滑检测系统的变化量判定部的判定动作的图。
图7是表示在阀的中间开度下控制指令值阶跃变化的例子的图。
图8是表示在阀的中间开度下控制指令值阶跃变化时的控制指令值的变化量与粘滑指标的关系的图。
图9是表示实现本发明的实施例所涉及的粘滑检测系统的计算机的构成例的框图。
具体实施方式
[发明的原理]
在判断阀中是否发生了粘滑现象时,经验丰富的维护人员具有以下知识:在控制指令值自身变化大的情况下,往往会作出错误的判断。并且,能够根据测量值确认控制指令值发生了较大变化。本发明提出以下方法:基于维护人员所具有的知识,在根据与控制指令值的变化量相关的信息而排除了引起粘滑现象的误判定的数据的基础上,判断是否发生了粘滑现象。
作为有可能引起粘滑现象的误判定的某个控制指令值的变化量较大的数据,例如阀动作至全开位置的全开动作时、动作至全闭位置的全闭动作时、从全开状态开始关闭时、从全闭状态开始打开时的数据是相符的。在这些时候,由于控制指令值阶跃变化,所以阀轴的位移也阶跃变化,从而较大地计算出粘滑指标SSpv的值。在全开动作时、全闭动作时、从全开状态开始关闭时、从全闭状态开始打开时,可以通过使用设置在阀上的定位器向电空转换器输出的控制量来检测。在此,在这些时间的区间包含在粘滑指标SSpv的计算范围内的情况下,从粘滑的判定中排除对象的粘滑指标SSpv。
在中间开度下,有时也会因控制指令值的变化而使阀轴的位移阶跃变化,从而较大地计算出粘滑指标SSpv的值。中间开度下的阶跃变化是使用微小区间中的控制指令值的变化量检测出的。在粘滑指标SSpv的计算区间内包含超过设定的阈值的变化量的微小区间的情况下,从判定中排除对象的粘滑指标SSpv。另外,此处设定的阈值是针对能够通过目视确认变化的控制指令值的值,因此能够容易地实施反映阀的动作状况的阈值设定。
通过以上的方法,实现了能够容易地反映阀的知识的粘滑的误检测抑制方法。
[实施例1]
下面,参照附图对本发明的实施例进行说明。图1是表示本发明的实施例所涉及的粘滑检测系统的构成的框图。粘滑检测系统具备:运转数据积存部1,其积存具备具有接触滑动部的可动部(例如阀轴)的诊断对象(例如阀)的数据;粘滑指标计算部2,其计算基于可动部的位移(阀轴位移)的第一状态量与基于可动部的位移的第二状态量之比即粘滑指标;异常诊断部3,其根据积存在运转数据积存部1中的粘滑指标来判断诊断对象中是否发生了粘滑现象;排除判定部4,其在可动部位于上限位置(全开)与下限位置(全闭)之间的中间位置(中间开度)且用于控制可动部的控制指令值阶跃变化时,在可动部移动到上限位置时、可动部移动到下限位置时、可动部从上限位置向下限位置的方向开始移动时、可动部从下限位置向上限位置的方向开始移动时中的任一时刻,使异常诊断部3的判定动作停止;诊断结果输出部5,其输出诊断结果;以及数据取得部6,其从外部的定位器等取得诊断对象的数据。
排除判定部4由全开闭判定部40、变化量判定部41和诊断动作控制部42构成。
在本实施例中,说明了计算第一状态量的第一状态量计算部7、计算第二状态量的第二状态量计算部8、以及计算粘滑指标的粘滑指标计算部2设置在粘滑检测系统的外部的装置(例如控制作为诊断对象的阀的开度的定位器)中的例子,但也可以是在设置有运转数据积存部1、异常诊断部3、排除判定部4以及诊断结果输出部5的装置内设置有第一状态量计算部7、第二状态量计算部8和粘滑指标计算部2的构成。
图2、图3是说明本实施例的粘滑检测系统的动作的流程图。
第一状态量计算部7计算由定位器(未图示)检测到的作为诊断对象的阀的阀轴位移xi的一阶差分值的绝对值的平均X(式(1))作为第一状态量(图2的步骤S100)。
第二状态量计算部8计算阀轴位移xi的一阶差分值的均方根Y(式(2))作为第二状态量(图2的步骤S101)。
第一状态量计算部7和第二状态量计算部8针对阀轴位移xi的每一次采样进行第一状态量X、第二状态量Y的计算。
粘滑指标计算部2计算第二状态量Y除以与该第二状态量Y相同时刻的第一状态量X而得到的粘滑指标SSpv(图2的步骤S102)。粘滑指标计算部2针对第一状态量X和第二状态量Y的每一次采样进行这样的计算。
SSpv=Y/X···(5)
数据取得部6取得第一状态量X、第二状态量Y、粘滑指标SSpv、提供给定位器的阀开度的控制指令值(设定开度)SP、由定位器检测出的阀轴位移xi、定位器向电空转换器输出的控制信号MV(EPM驱动信号)的各时序数据,并积存到运转数据积存部1中(图2的步骤S103)。众所周知,定位器将与控制指令值SP对应的控制信号MV输出到电空转换器,电空转换器将控制信号MV转换为气压输出到操作器,操作器驱动阀。在第一状态量X、第二状态量Y、控制指令值SP、阀轴位移xi、控制信号MV的各数据中附加有时刻的信息。时刻的信息可以在定位器侧附加,也可以由数据取得部6附加。
另一方面,排除判定部4的全开闭判定部40根据积存在运转数据积存部1中的数据,判定作为诊断对象的阀是否处于动作到全开位置的全开动作时、动作到全闭位置的全闭动作时、从全开状态开始关闭时、从全闭状态开始打开时中的某一个时间(图3的步骤S104)。关于作为诊断对象的阀是否处于全开动作时、全闭动作时、从全开状态开始关闭时、从全闭状态开始打开时中的某一个时间,可以根据定位器向电空转换器输出的控制信号MV来判断。当阀处于全开状态或全闭状态时,控制信号MV成为100%以上或0%以下的超出范围的值。另外,控制信号MV在阀为中间开度时成为50%附近的值。全开闭判定部40针对控制信号MV的每一次采样进行以上那样的判定。
在全开闭判定部40判定作为诊断对象的阀处于全开动作时、全闭动作时、从全开状态开始关闭时、从全闭状态开始打开时中的某一种状态的情况下(步骤S104中为“是”),排除判定部4的诊断动作控制部42对异常诊断部3进行指示,以不使用将这些某一种状态的时刻范围包含在计算范围内的粘滑指标SSpv进行判定。根据来自诊断动作控制部42的指示,异常诊断部3不实施后述的判定(图3的步骤S105)。
图4是表示阀的全闭动作时、以及从全闭状态开始打开时的控制指令值SP、阀开度的测定值PV、控制信号MV的例子的图。图5是表示阀的全开动作时、以及从全开状态开始关闭时的控制指令值SP、阀开度的测定值PV、控制信号MV的例子的图。
另一方面,排除判定部4的变化量判定部41判定在作为诊断对象的阀的中间开度下控制指令值SP是否为阶跃变化时(图3的步骤S106)。中间开度是指全闭、全闭以外的所有开度。关于在中间开度下控制指令值SP是否为阶跃变化时,可以通过每一定时间(一定的采样数量)的控制指令值SP的变化量是否超过规定的变化量阈值来判断。
图6是说明变化量判定部41的判定动作的图。变化量判定部41提取控制指令值SP的连续数据的一定采样数量的区间,在该区间计算控制指令值SP的变化量。在本实施例中,将区间宽度设为5个样本,将变化量阈值设为10。另外,将一定采样数量的区间中的控制指令值SP的最大值与最小值之差作为该区间中的变化量。另外,在本实施例中,将区间宽度设为5个样本,将变化量阈值设为10,但这些是一例,当然也可以设定为其他值。
在图6的例子中,区间t1、t2中的控制指令值SP的变化量小于变化量阈值(=10)。另一方面,在区间t3中,控制指令值SP的最大值SPmax与最小值SPmin之差比变化量阈值大,因此变化量判定部41判定为控制指令值SP阶跃变化。变化量判定部41针对控制指令值SP的每一次采样进行以上那样的判定。
另外,虽然在上述内容中定义了控制指令值SP的变化量,但也可以将变化量的计算变更为其他计算方法(例如将5份样本中每1个样本的SP的差分相加而得的和等)来实施。
由于变化量阈值是针对能够通过目视确认变化的控制指令值SP的值,所以与现有技术的设定参数α、β相比,能够容易地实施反映阀的动作状况的设定。
在变化量判定部41判定在作为诊断对象的阀的中间开度下控制指令值SP处于阶跃变化的状态的情况下(步骤S106中为“是”),排除判定部4的诊断动作控制部42对异常诊断部3进行指示,以不使用将该状态的时刻范围包含在计算范围内的粘滑指标SSpv进行判定。根据来自诊断动作控制部42的指示,异常诊断部3不实施后述的判定(图3的步骤S105)。
图7是表示在阀的中间开度下控制指令值SP阶跃变化的例子的图。图8是表示控制指令值SP像图7所示的区间那样阶跃变化时的控制指令值SP的变化量与粘滑指标SSpv的关系的图。图8的700所示的点是与图7所示的区间对应的值。
接着,异常诊断部3通过比较由粘滑指标计算部2计算出的粘滑指标SSpv与规定的指标阈值Th,进行作为诊断对象的阀的异常诊断(图3的步骤S107)。异常诊断部3在粘滑指标SSpv大于指标阈值Th时,判定为在作为诊断对象的阀中发生了粘滑现象,在粘滑指标SSpv为指标阈值Th以下时,判定为在作为诊断对象的阀中未发生粘滑现象。异常诊断部3针对粘滑指标SSpv的每一次采样进行这样的判定。
另外,虽然在本实施例中异常诊断部3比较粘滑指标SSpv与指标阈值Th来进行作为诊断对象的阀的异常诊断,但不限于此,也可以根据粘滑指标SSpv计算出另一指标,根据该指标进行阀的异常诊断。
诊断结果输出部5输出异常诊断部3的诊断结果(图3的步骤S108)。作为输出方法,有诊断结果的显示、或示出诊断结果的信息向外部的发送等。
如上所述,异常诊断部3在有来自排除判定部4的诊断动作控制部42的指示时停止判定动作。在作为粘滑指标SSpv的根据的第一状态量X和第二状态量Y的计算中使用的N个阀轴位移xi的时刻(粘滑指标SSpv的计算范围)中包含阀为全开动作时、全闭动作时、从全开状态开始关闭时、从全闭状态开始打开时中的任一时刻的至少一部分时,异常诊断部3根据来自诊断动作控制部42的指示停止判定动作。同样地,在粘滑指标SSpv的计算范围中包含控制指令值SP的变化量超过变化量阈值的区间的时刻的至少一部分时,异常诊断部3根据来自诊断动作控制部42的指示停止判定动作。
这样一来,在本实施例中,能够将阀的专家所具有的知识容易地反映于粘滑检测方法。另外,在本实施例中,由于能够灵活地变更指标阈值、变化量阈值,所以也能够应对长期的阀使用所引起的经年变化的数据排除,从而长期使用同一基准的比较、判断成为可能。
另外,关于作为诊断对象的阀是否处于全开动作时、全闭动作时、从全开状态开始关闭时、从全闭状态开始打开时中的某一个时间,全开闭判定部40也可以根据控制指令值SP来判定。
在本实施例中说明的运转数据积存部1、异常诊断部3、排除判定部4、诊断结果输出部5和数据取得部6能够通过具备CPU(Central Processing Unit)、存储装置以及接口的计算机和控制这些硬件资源的程序来实现。该计算机的构成例在图9中示出。
计算机具备CPU 200、存储装置201和接口装置(I/F)202。在I/F 202上连接有诊断结果输出部5的硬件、定位器等。用于实现本发明的粘滑检测方法的程序被存储在存储装置201中。CPU 200按照存储在存储装置201中的程序执行本实施例中说明的处理。
如上所述,第一状态量计算部7、第二状态量计算部8和粘滑指标计算部2可以通过与运转数据积存部1、异常诊断部3、排除判定部4、诊断结果输出部5及数据取得部6相同的计算机来实现,也可以通过另一计算机(例如定位器的微型计算机)来实现。
[工业上的可利用性]
本发明可应用于检测阀的粘滑的技术。
[符号说明]
1:运转数据积存部,2:粘滑指标计算部,3:异常诊断部,4:排除判定部,5:诊断结果输出部,6:数据取得部,7:第一状态量计算部,8:第二状态量计算部,40:全开闭判定部,41:变化量判定部,42:诊断动作控制部。
Claims (10)
1.一种粘滑检测系统,其特征在于,具备:
积存部,其构成为积存第一状态量与第二状态量之比即粘滑指标,所述第一状态量基于具备可动部的诊断对象中的所述可动部的位移而得,所述可动部具有接触滑动部,所述第二状态量基于所述位移而得;
异常诊断部,其构成为根据所述粘滑指标判定所述诊断对象中是否发生了粘滑现象;以及
诊断动作控制部,其构成为在检测到用于控制所述可动部的位置的信号的阶跃变化时,使所述异常诊断部的判定动作停止。
2.根据权利要求1所述的粘滑检测系统,其特征在于,
在所述可动部的位置为上限位置与下限位置之间的中间位置、且检测到用于控制所述可动部的位置的控制指令值的阶跃变化时,所述诊断动作控制部使所述异常诊断部的判定动作停止。
3.根据权利要求2所述的粘滑检测系统,其特征在于,
还具备变化量判定部,所述变化量判定部构成为,通过比较所述控制指令值的变化量与规定的变化量阈值,来判定是否所述可动部处于所述中间位置且所述控制指令值阶跃变化。
4.根据权利要求1所述的粘滑检测系统,其特征在于,
在所述可动部移动到上限位置时、所述可动部移动到下限位置时、所述可动部从所述上限位置向所述下限位置的方向开始移动时、所述可动部从所述下限位置向所述上限位置的方向开始移动时中的任一个时间,所述诊断动作控制部使所述异常诊断部的判定动作停止。
5.根据权利要求4所述的粘滑检测系统,其特征在于,
还具备全开闭判定部,所述全开闭判定部构成为,根据用于控制所述可动部的位置的控制指令值,判定是否为所述可动部移动到上限位置时、所述可动部移动到下限位置时、所述可动部从所述上限位置向所述下限位置的方向开始移动时、所述可动部从所述下限位置向所述上限位置的方向开始移动时中的某一个时间。
6.一种粘滑检测方法,其特征在于,包括:
第一步骤,积存第一状态量与第二状态量之比即粘滑指标,所述第一状态量基于具备可动部的诊断对象中的所述可动部的位移而得,所述可动部具有接触滑动部,所述第二状态量基于所述位移而得;
第二步骤,根据所述粘滑指标判定所述诊断对象中是否发生了粘滑现象;以及
第三步骤,在检测到用于控制所述可动部的位置的信号的阶跃变化时,使所述第二步骤的判定动作停止。
7.根据权利要求6所述的粘滑检测方法,其特征在于,
所述第三步骤包括以下步骤,即:在所述可动部的位置为上限位置与下限位置之间的中间位置、且检测到用于控制所述可动部的位置的控制指令值的阶跃变化时,使所述第二步骤的判定动作停止。
8.根据权利要求7所述的粘滑检测方法,其特征在于,
所述第三步骤包括以下步骤,即:通过比较所述控制指令值的变化量与规定的变化量阈值,来判定是否所述可动部处于所述中间位置且所述控制指令值阶跃变化。
9.根据权利要求6所述的粘滑检测方法,其特征在于,
所述第三步骤包括以下步骤,即:在所述可动部移动到上限位置时、所述可动部移动到下限位置时、所述可动部从所述上限位置向所述下限位置的方向开始移动时、所述可动部从所述下限位置向所述上限位置的方向开始移动时中的任一个时间,使所述第二步骤的判定动作停止。
10.根据权利要求9所述的粘滑检测方法,其特征在于,
所述第三步骤包括以下步骤,即:根据用于控制所述可动部的位置的控制指令值,判定是否为所述可动部移动到上限位置时、所述可动部移动到下限位置时、所述可动部从所述上限位置向所述下限位置的方向开始移动时、所述可动部从所述下限位置向所述上限位置的方向开始移动时中的某一个时间。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-079520 | 2021-05-10 | ||
JP2021079520A JP2022173675A (ja) | 2021-05-10 | 2021-05-10 | スティックスリップ検出システムおよび方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115326378A true CN115326378A (zh) | 2022-11-11 |
Family
ID=83901321
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210452790.1A Pending CN115326378A (zh) | 2021-05-10 | 2022-04-27 | 粘滑检测系统以及方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20220356962A1 (zh) |
JP (1) | JP2022173675A (zh) |
CN (1) | CN115326378A (zh) |
-
2021
- 2021-05-10 JP JP2021079520A patent/JP2022173675A/ja active Pending
-
2022
- 2022-04-19 US US17/723,895 patent/US20220356962A1/en active Pending
- 2022-04-27 CN CN202210452790.1A patent/CN115326378A/zh active Pending
Also Published As
Publication number | Publication date |
---|---|
JP2022173675A (ja) | 2022-11-22 |
US20220356962A1 (en) | 2022-11-10 |
KR20220152933A (ko) | 2022-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2420778C2 (ru) | Машинное определение состояния устройства управления процессом с использованием характеристических кривых | |
EP0708389B1 (en) | Method and apparatus for detecting a fault of a control valve assembly in a control loop | |
US6782344B2 (en) | Method and apparatus for diagnosing abnormality and estimating degradation in valve apparatus | |
EP1978223B1 (en) | Determining bleed valve failures in gas turbine engines | |
EP1206732A1 (en) | Statistical determination of estimates of process control loop parameters | |
EP3360018B1 (en) | Actuator and method of operating the actuator | |
JP2013002110A (ja) | 開閉体制御装置 | |
JP5571346B2 (ja) | スティックスリップ検出装置および検出方法 | |
RU2745235C1 (ru) | Система и способ для обнаружения износа регулирующего клапана | |
JP5824333B2 (ja) | スティックスリップ検出装置および検出方法 | |
CN109399413B (zh) | 电梯门运行性能检测诊断装置 | |
JP2000065246A (ja) | 電動弁の異常診断装置 | |
CN115326378A (zh) | 粘滑检测系统以及方法 | |
CN112528227A (zh) | 一种基于数理统计的传感器异常数据识别方法 | |
KR102725405B1 (ko) | 스틱-슬립 검출 시스템 및 방법 | |
CN111271137B (zh) | 一种汽机静态阀门关闭时间测试系统及方法 | |
US20110224949A1 (en) | Stick-slip detecting device and detecting method | |
JPH07280705A (ja) | 弁のオンライン診断装置 | |
KR101576350B1 (ko) | 온라인 변수 식별 기법을 이용한 실시간 e―액츄에이터 오류 검출 방법 | |
EP3926771B1 (en) | Switching equipment diagnostic device | |
EP4008605A1 (en) | Method and device for diagnosing a railroad switch with a point machine | |
CN111648689A (zh) | 一种自动门的防夹控制方法、控制装置和自动门 | |
JPH0473477A (ja) | 摺動部の異常検知方法及びその装置 | |
CN114509245B (zh) | 检测可能的夹持的方法和设备 | |
KR102668033B1 (ko) | 밸브 건전성 진단 시스템 및 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |