CN115304366A - 一种尖晶石型镓酸锌长余辉发光透明陶瓷的制备方法 - Google Patents

一种尖晶石型镓酸锌长余辉发光透明陶瓷的制备方法 Download PDF

Info

Publication number
CN115304366A
CN115304366A CN202110499676.XA CN202110499676A CN115304366A CN 115304366 A CN115304366 A CN 115304366A CN 202110499676 A CN202110499676 A CN 202110499676A CN 115304366 A CN115304366 A CN 115304366A
Authority
CN
China
Prior art keywords
solution
sintering
metal ion
hours
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110499676.XA
Other languages
English (en)
Other versions
CN115304366B (zh
Inventor
李江
毛新宇
刘强
李晓英
陈鹏辉
刘欣
刘子玉
陈昊鸿
谢腾飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Ceramics of CAS
Original Assignee
Shanghai Institute of Ceramics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Ceramics of CAS filed Critical Shanghai Institute of Ceramics of CAS
Priority to CN202110499676.XA priority Critical patent/CN115304366B/zh
Publication of CN115304366A publication Critical patent/CN115304366A/zh
Application granted granted Critical
Publication of CN115304366B publication Critical patent/CN115304366B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • C09K11/621Chalcogenides
    • C09K11/623Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • C04B2235/3243Chromates or chromites, e.g. aluminum chromate, lanthanum strontium chromite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/763Spinel structure AB2O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种尖晶石型镓酸锌长余辉发光透明陶瓷的制备方法,其中尖晶石型镓酸锌长余辉发光透明陶瓷粉体的制备方法包括:按照Zn(Ga1‑xMx)2O4配置含有金属离子Zn2+、Ga3+、M3+的金属离子盐溶液,混合得到金属离子混合溶液,其中M为Cr3+、Eu3+、Bi3+、Dy3+中的至少一种;将所述金属离子混合溶液与沉淀剂溶液混合沉淀,得到pH=6~8的沉淀液;将沉淀液经过洗涤、干燥、过筛后,在700℃~1300℃下煅烧0.1~24小时,得到所述尖晶石型镓酸锌长余辉发光透明陶瓷粉体。

Description

一种尖晶石型镓酸锌长余辉发光透明陶瓷的制备方法
技术领域
本发明涉及一种尖晶石型镓酸锌长余辉发光透明陶瓷的制备方法,具体涉及共沉淀法制备发光离子掺杂镓酸锌基纳米粉体,并采用预烧结合HIP后处理作为烧结工艺,成功将该材料体系透明陶瓷化,属于透明陶瓷制备技术领域。
背景技术
自人类发现长余辉发光材料以来,由于其独特的光存储和发光机理,人们对其研究从未停止,先后发现和研究了许多长余辉材料体系,包括硫化物、铝酸盐、硅酸盐、镓酸盐等。尖晶石ZnGa2O4具有宽频带隙(4.4~5.0eV)和较高的化学稳定性和热稳定性,而长余辉发光材料在实际应用过程中,会面临紫外线、太阳光的照射,或处于潮湿、高温、低温等恶劣环境中,从而导致器件损坏余辉性能下降甚至消失,例如铕掺杂的铝酸盐体系虽然具有优异的余辉亮度和发光持续时间,但是由于其抗水性差和粉体的比表面积大的原因,在应用过程中经常会有水解的倾向。长余辉陶瓷制品因其强度高、耐高温、耐磨损、耐酸碱腐蚀、耐水等特性,具有更广泛的应用场景,并且长余辉透明陶瓷外部激发光可以穿透样品,从而诱导透明陶瓷内部形成载体。Xu等通过固态反应和真空烧结制备了不同厚度的YAGG:Ce3+,Cr3 +透明陶瓷。与YAGG:Ce3+,Cr3+荧光粉相比,由于透明材料典型的“体积效应”,在蓝光激发(460nm)停止后,透明陶瓷较荧光粉表现出更明亮的连续发射。所以,基于ZnGa2O4具有很大的应用潜力和发展前景,ZnGa2O4陶瓷化使其可以更好的器件,加工成所需的形状,充分发挥透明陶瓷的优点。可以预见的是,这无疑将会使长余辉材料不仅覆盖主要以荧光粉形式应用的低端弱光显示,装饰装潢等方面,而且在高端的生物医疗、光催化、下转换以及用于信息写入和读出的成像板、传感器、光存储器和高能射线探测器等方面获得突破。
发明内容
本发明采用液相共沉淀法制备ZnGa2O4基纳米粉体,通过选择合适的沉淀剂并调整其用量,得到ZnGa2O4基纳米粉体。并在此基础上,采用合适的成型和烧结工艺(空气烧结结合热静压后处理)制备出具有一定长余辉性能的ZnGa2O4基透明陶瓷。
第一方面,本发明提供了一种尖晶石型镓酸锌长余辉发光透明陶瓷粉体的制备方法,包括:按照Zn(Ga1-xMx)2O4配置含有金属离子Zn2+、Ga3+、M3+的金属离子盐溶液,混合得到金属离子混合溶液,其中M为Cr3+、Eu3+、Bi3+、Dy3+中的至少一种;将所述金属离子混合溶液与沉淀剂溶液混合沉淀,得到pH=6~8的沉淀液;将沉淀液经过洗涤、干燥、过筛后,在700℃~1300℃下煅烧0.1~24小时,得到所述尖晶石型镓酸锌长余辉发光透明陶瓷粉体。
液相共沉淀法制备的粉体组分均匀、粒径小、分散性好。本发明所述制备方法制备的粉体烧结驱动力高,并且可以促进陶瓷内气孔的排除。
不同元素的掺杂是为了实现余辉发光波段不同,例如Cr3+发光为红光或近红外,Eu3+发光波段为615nm左右,Bi3+的发光为近似白色,Dy离子的发光也近似白色。
优选地,所述金属离子混合溶液与沉淀剂溶液混合的方式包括:将金属离子溶液加入含分散剂的沉淀剂溶液中,或将含有分散剂的沉淀剂溶液加入到金属离子混合溶液中。
在将含有分散剂的沉淀剂溶液加入金属离子混合溶液过程中,随着pH的升高,Ga离子首先沉淀形核,诱导Zn离子附着成核,最终形成共同沉淀;在将金属离子混合溶液加入含有分散剂的沉淀剂溶液过程中,体系pH相对很高,能够实现两者同时达到过饱和状态而从溶液体系中共同沉降出来。因此,更优选将金属离子混合溶液加入含有分散剂的沉淀剂溶液。
优选地,溶液加入的速度为10~40mL/min。不同的滴定速度下,滴定过程中达到的最大pH值不同的情况下,制备粉体的成分会受到影响。本发明所述滴定速度可确保制备的粉体纯相,粒径细小,利于后续透明陶瓷的制备。
所述分散剂为聚乙二醇、聚乙烯亚胺、聚丙烯酸铵和硫酸铵中的至少一种,所述分散剂占沉淀剂溶液的含量为0.1wt.%~10wt.%;所述沉淀剂为氨水、碳酸铵和碳酸氢铵,所述沉淀剂溶液的浓度为0.01~2.0mol/L。
优选地,沉淀结束后,将沉淀液在0~30℃下陈化不超过30小时。本发明中无陈化步骤确实可同样获得沉淀液。但是采用陈化也并不仅仅是使反应更加充分,陈化时间会对最终粉体的成分、形貌、分散性能等产生影响。陈化时间较短时,金属离子溶液与沉淀剂反应不充分,造成产率的下降;陈化时间过长时,会引起组分的偏析和相的分离,降低前驱体的均匀性,因此陈化时间应择优选择(不超过30小时为宜)。
优选地,所述干燥包括:在30~150℃下干燥10~100小时。
第二方面,本发明提供了所述制备方法得到的尖晶石型镓酸锌长余辉发光透明陶瓷粉体,所述陶瓷粉体的尺寸为40~60nm。
第三方面,本发明提供了一种制备尖晶石型镓酸锌长余辉发光透明陶瓷的方法,包括:将上述镓酸锌纳米陶瓷粉体成型制成陶瓷素坯;将所得陶瓷素坯进行预烧结后,再于900~1500℃下热等静压烧结,压力为20~250MPa,时间为0.1~50小时,最终得到尖晶石型镓酸锌长余辉发光透明陶瓷。
本发明陶瓷素坯采用的成型工艺可以减少素坯内部空洞的产生。预烧结结合热等静压烧结的烧结工艺,一方面是为了避免Ga组分的挥发问题,另一方面热等静压烧结可以进一步压缩陶瓷内的气孔,有利于陶瓷致密化、透明化。
优选地,所述预烧结的方式为空气气氛烧结、氧气气氛烧结、热压烧结、氨气气氛烧结,氢气气氛烧结和氩气气氛烧结中的一种;所述预烧结的温度为900~1500℃,时间为0.1~100小时。本发明的预烧结是为了获得合适的晶粒尺寸,气孔类型,气孔大小。以便于后续HIP处理可以将气孔去除,陶瓷进一步致密化。
优选地,所述空气烧结的温度为900~1500℃,时间为0.1~100小时;所述氧气气氛烧结的温度为900℃~1500℃,时间为0.1~100小时,所述热压烧结的温度为900℃~1500℃,时间为0.1~100小时,压力为10~100MPa。所述氨气气氛烧结的温度为900~1500℃,时间为0.1~100小时;所述氢气气氛烧结的温度为900~1500℃,时间为0.1~100小时;所述氩气气氛烧结的温度为900℃~1500℃,时间为0.1~100小时。
有益效果:
1、本发明采用共沉淀法制备的陶瓷粉体粒径细小,组分均匀性高,具有一定的成型性能,利于后续陶瓷的成型烧结。
2、本发明制备透明陶瓷采用的烧结方法可有效避免组分中Ga3+组分的挥发,保证了陶瓷的结构完整。预烧获得合适的晶粒尺寸,将大部分气孔排除。以便于后续HIP处理可以将气孔去除,陶瓷进一步致密化。
附图说明
图1是实施例1制备的Zn(Ga0.995Cr0.005)2O4纳米粉体的XRD图谱;
图2是实施例1制备的Zn(Ga0.995Cr0.005)2O4纳米粉体的SEM形貌照片;
图3是实施例1制备的Zn(Ga0.995Cr0.005)2O4透明陶瓷的实物照片;
图4是实施例1制备的Zn(Ga0.995Cr0.005)2O4透明陶瓷(厚度为1.3mm)的直线透过率曲线;
图5是实施例1制备的Zn(Ga0.995Cr0.005)2O4透明陶瓷的激发和发射光谱;
图6是实施例1制备的Zn(Ga0.995Cr0.005)2O4透明陶瓷的余辉衰减曲线;
图7是实施例6制备的Zn(Ga0.995Bi0.005)2O4透明陶瓷(厚度为1.3mm)的直线透过率曲线;
图8是实施例7制备的Zn(Ga0.98Dy0.02)2O4透明陶瓷的实物照片;
图9是实施例7制备的Zn(Ga0.98Dy0.02)2O4透明陶瓷(厚度为1.3mm)的直线透过率曲线;
图10是实施例7制备的Zn(Ga0.98Dy0.02)2O4透明陶瓷的发射光谱;
图11是实施例7制备的Zn(Ga0.98Dy0.02)2O4透明陶瓷的余辉衰减曲线。
具体实施方式
以下结合附图和下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。
本发明先通过共沉淀法制备得到分散性能较好的Zn(Ga1-xMx)2O4(M为Cr3+、Eu3+、Dy3 +或Bi3+中的一种)纳米粉体,再采用预烧结和热等静压烧结相结合作为烧结工艺制备得到ZnGa2O4基透明陶瓷。本方法可得到烧结活性好的纳米原料粉体,后续热等静压烧结工艺有效排出陶瓷内部的残余气孔,从而提高透明陶瓷的光学质量,与此同时材料的长余辉性能也得以保留。本发明首次制备出镓酸锌长余辉透明陶瓷,且其在可见光波段具有国内最高的直线透过率。
以下示例性地说明本发明所述尖晶石型镓酸锌长余辉发光透明陶瓷粉体的制备方法,包括:
配置金属离子混合溶液。分别配置含有金属离子Zn2+、Ga3+、M(M包括Cr3+、Eu3+、Bi3 +、Dy3+等)的金属离子盐溶液,然后按照Zn(Ga1-xMx)2O4(M为Cr3+、Eu3+、Dy3+或Bi3+中的一种)的化学计量配比量取溶液,均匀搅拌混合后得到金属离子混合溶液。
金属离子混合离子溶液与沉淀剂溶液滴定,得到沉淀液。将金属离子混合溶液加入含有分散剂的沉淀剂溶液中,或将含有分散剂沉淀剂溶液加入金属离子混合溶液中,充分搅拌后得到沉淀液。将金属离子混合溶液加入含有分散剂的沉淀剂溶液方式得到的前驱体中Zn、Ga元素分布均匀,是一种优选的方式。
陈化、洗涤、干燥。滴定结束后,将沉淀液在0~30℃下陈化不超过30小时。可采用去离子水和无水乙醇对沉淀物进行洗涤,去离子水洗涤次数1~5次,无水乙醇洗涤次数1~5次。将洗涤后的沉淀物在30~150℃下干燥10~100小时,所述干燥方式包括但不限于烘箱干燥、微波干燥和冷冻干燥。
煅烧。前驱体可在700~1300℃下煅烧0.1~24小时,所述煅烧气氛包括但不限于空气、氢气、氨气、氩气、氧气或混合气,可以利用不同气氛进行多次煅烧,还可以将粉体成型后再进行煅烧。
以下示例性地说明本发明所述尖晶石型镓酸锌长余辉发光透明陶瓷的制备方法,包括:
成型。所述的成型方式包括但不限于干压、冷等静压、流延成型、注浆成型、凝胶注模或电泳沉积,亦可将多种成型方法结合,如采用干压成型结合冷等静压成型。
预烧结。将上述镓酸锌纳米陶瓷粉体成型制成陶瓷素坯,进行预烧结。所述预烧结的方式可为空气气氛烧结、氧气气氛烧结、热压烧结、氨气气氛烧结,氢气气氛烧结和氩气气氛烧结中的一种;所述预烧结的温度为900~1500℃,时间为0.1~100小时。
静等压烧结。将所得陶瓷素坯进行预烧结后于900~1500℃下热等静压烧结,压力为20~250MPa,时间为0.1~50小时,最终得到尖晶石型镓酸锌基长余辉发光透明陶瓷。
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容做出的一些非本质的改进和调整均属于本发明的保护范围。
实施例1
按Zn(Ga0.995Cr0.005)2O4的化学组成,分别量取67.8mL浓度为1.4731mol/L的Zn(NO3)2溶液、131.1mL浓度为1.5171mol/L的Ga(NO3)3溶液和2.0mL浓度为0.4898mol/L的Cr(NO3)3溶液倒入烧杯中,先加入少量去离子水均匀混合,最后加入去离子水定容到400mL。然后配制650mL浓度为0.5mol/L的碳酸铵沉淀剂溶液,该溶液抽滤后取600mL,并加入26.30g的硫酸铵作为分散剂。将金属离子混合溶液以20mL/min的滴速逐滴滴进碳酸铵沉淀剂中并充分搅拌,当金属离子溶液停止滴定后,继续搅拌10min,在25℃下陈化1小时。陈化后的浆料用去离子水洗涤2次,无水乙醇洗涤2次,洗涤后的沉淀物在烘箱中70℃干燥36h,干燥后的粉体过200目筛得到前驱体粉体。将前驱体粉体于空气中900℃煅烧4小时得到Zn(Ga0.995Cr0.005)2O4纳米粉体。将Zn(Ga0.995Cr0.005)2O4纳米粉体干压成型后冷等静压,于马弗炉中空气预烧,空气预烧的保温温度为1200℃,保温时间为5h。预烧结后的陶瓷样品再进行热等静压烧结处理,热等静压的保温温度为1100℃,保温时间为3h,炉内氩气氛压力为250MPa。最终将样品双面抛光得到Zn(Ga0.995Cr0.005)2O4透明陶瓷,本发明制备的透明陶瓷与长余辉粉体或长余辉玻璃进行比较,很显然透明陶瓷的力学性能是远优于玻璃和粉末的。
图1是本发明实施例1中制备的Zn(Ga0.995Cr0.005)2O4纳米粉体的XRD图谱,可以看出粉体中没有第二相存在。
图2是实施例1中制备的Zn(Ga0.995Cr0.005)2O4纳米粉体的SEM图谱,可以看出粉体的分散性能较好,没有明显的团聚现象,平均颗粒尺寸为30~40nm,通过BET测试方法测得其比表面积为22.869m2/g。
图3是实施例1制备的Zn(Ga0.995Cr0.005)2O4透明陶瓷的实物照片,能够清晰看到样品底下的英文字母,说明得到的Zn(Ga0.995Cr0.005)2O4陶瓷具有较高的光学透过率。
图4是实施例1制备的Zn(Ga0.995Cr0.005)2O4透明陶瓷的直线透过率曲线(厚度为1.3mm),在800nm波段范围内的直线透过率大于65%。
图5是实施例1制备的Zn(Ga0.995Cr0.005)2O4透明陶瓷的激发发射光谱,Zn(Ga0.995Cr0.005)2O4透明陶瓷陶瓷可以被紫外光和可见光有效激发,产生700nm为峰值的红光及近红外窄带发射。
图6是实施例1制备的Zn(Ga0.995Cr0.005)2O4透明陶瓷的余辉衰减曲线,用1000lx的光源激发Zn(Ga0.995Cr0.005)2O4透明陶瓷,15分钟后停止激发,陶瓷初始余辉亮度大于10mcd/m2,30min后余辉亮度仍然大于人眼可辩别的最低亮度0.32mcd/m2
实施例2
按Zn(Ga0.999Cr0.001)2O4化学组成,分别量取65.6mL浓度为1.5228mol/L的Zn(NO3)2溶液、131.6mL浓度为1.5171mol/L的Ga(NO3)3溶液和0.4mL浓度为0.4898mol/L的Cr(NO3)3溶液倒入烧杯中,先加入少量去离子水均匀混合,最后加入去离子水定容到400mL。然后配制650ml浓度为0.5mol/L的碳酸铵沉淀剂溶液,该溶液抽滤后取600mL,并加入26.29g的硫酸铵作为分散剂。将金属离子混合溶液以20mL/min的滴速逐滴滴进碳酸铵沉淀剂中并充分搅拌,当金属离子溶液停止滴定后,继续搅拌10min,在25℃下陈化1小时。陈化后的浆料用去离子水洗涤2次,无水乙醇洗涤2次,洗涤后的沉淀物在烘箱中70℃干燥36h,干燥后的粉体过200目筛得到前驱体粉体。将前驱体粉体于空气中900℃煅烧4小时得到Zn(Ga0.999Cr0.001)2O4纳米粉体。将Zn(Ga0.999Cr0.001)2O4纳米粉体干压成型后冷等静压,于马弗炉中空气预烧,空气预烧的保温温度为1150℃,保温时间为5h。预烧结后的陶瓷样品再进行热等静压烧结处理,热等静压的保温温度为1100℃,保温时间为3h,炉内氩气氛压力为250MPa。最终将样品双面抛光得到Zn(Ga0.999Cr0.001)2O4透明陶瓷。
实施例3
按Zn(Ga0.9975Cr0.0025)2O4的化学组成,分别量取65.6mL浓度为1.5171mol/L的Zn(NO3)2溶液、131.5mL浓度为1.5171mol/L的Ga(NO3)3溶液和1.0mL浓度为0.4898mol/L的Cr(NO3)3溶液倒入烧杯中,先加入少量去离子水均匀混合,最后加入去离子水定容到400mL。然后配制650mL浓度为0.6mol/L的碳酸铵沉淀剂溶液,并加入26.30g的硫酸铵作为分散剂。将金属离子混合溶液以20mL/min的滴速逐滴滴进碳酸铵沉淀剂中并充分搅拌,当金属离子溶液停止滴定后,继续搅拌10min,在25℃下陈化2小时。陈化后的浆料用去离子水洗涤2次,无水乙醇洗涤2次,洗涤后的沉淀物在烘箱中70℃干燥24h,干燥后的粉体过200目筛得到前驱体粉体。将前驱体粉体于空气中900℃煅烧4小时得到Zn(Ga0.9975Cr0.0025)2O4纳米粉体。将Zn(Ga0.9975Cr0.0025)2O4纳米粉体干压成型后冷等静压,于马弗炉中空气预烧,空气预烧的保温温度为1150℃,保温时间为5h。预烧结后的陶瓷样品再进行热等静压烧结处理,热等静压的保温温度为1100℃,保温时间为3h,炉内氩气氛压力为250MPa。最终将样品双面抛光得到Zn(Ga0.9975Cr0.0025)2O4透明陶瓷。
实施例4
按Zn(Ga0.99Cr0.01)2O4的化学组成,分别量取67.8mL浓度为1.4731mol/L的Zn(NO3)2溶液、130.5mL浓度为1.5171mol/L的Ga(NO3)3溶液和4.0mL浓度为0.4898mol/L的Cr(NO3)3溶液倒入烧杯中,先加入少量去离子水均匀混合,最后加入去离子水定容到400mL。然后配制650mL浓度为0.5mol/L的碳酸铵沉淀剂溶液,并加入26.30g的硫酸铵作为分散剂。将金属离子混合溶液以20mL/min的滴速逐滴滴进碳酸铵沉淀剂中并充分搅拌,当金属离子溶液停止滴定后,继续搅拌5min,在25℃下陈化1小时。陈化后的浆料用去离子水洗涤2次,无水乙醇洗涤2次,洗涤后的沉淀物在烘箱中70℃干燥36h,干燥后的粉体过200目筛得到前驱体粉体。将前驱体粉体于空气中900℃煅烧4小时得到Zn(Ga0.99Cr0.01)2O4纳米粉体。将Zn(Ga0.99Cr0.01)2O4纳米粉体干压成型后冷等静压,于马弗炉中空气预烧,空气预烧的保温温度为1175℃,保温时间为5h。预烧结后的陶瓷样品再进行热等静压烧结处理,热等静压的保温温度为1250℃,保温时间为3h,炉内氩气氛压力为200MPa。最终将样品双面抛光得到Zn(Ga0.99Cr0.01)2O4透明陶瓷。最终将样品双面抛光得到Zn(Ga0.99Cr0.01)2O4透明陶瓷。
实施例5
按Zn(Ga0.995Eu0.005)2O4的化学组成,分别量取65.6mL浓度为1.5228mol/L的Zn(NO3)2溶液、131.1mL浓度为1.5171mol/L的Ga(NO3)3溶液和0.9mL浓度为1.0136mol/L的Eu(NO3)3溶液倒入烧杯中,先加入少量去离子水均匀混合,最后加入去离子水定容到400mL。然后配制650ml浓度为0.45mol/L的氨水沉淀剂溶液,并加入0.5g的柠檬酸铵作为分散剂。将金属离子混合溶液以20mL/min的滴速逐滴滴进碳酸铵沉淀剂中并充分搅拌,当金属离子溶液停止滴定后,继续搅拌10min,在25℃下陈化1小时。陈化后的浆料用去离子水洗涤2次,无水乙醇洗涤2次,洗涤后的沉淀物在烘箱中70℃干燥48h,干燥后的粉体过200目筛得到前驱体粉体。将前驱体粉体于空气中900℃煅烧4小时得到ZnGa1.99Eu0.01O4纳米粉体。ZnGa1.99Eu0.01O4纳米粉体干压成型后冷等静压,于马弗炉中空气预烧,空气预烧的保温温度为1100℃,保温时间为5h。预烧结后的陶瓷样品再进行热等静压烧结处理,热等静压的保温温度为1000℃,保温时间为3h,炉内氩气氛压力为200MPa。最终将样品双面抛光得到Zn(Ga0.995Eu0.005)2O4透明陶瓷。
实施例6
按Zn(Ga0.995Bi0.005)2O4的化学组成,分别量取65.6mL浓度为1.5228mol/L的Zn(NO3)2溶液、131.8mL浓度为1.5171mol/L的Ga(NO3)3溶液和0.1mL浓度为0.5122mol/L的Bi(NO3)3溶液倒入烧杯中,先加入少量去离子水均匀混合,最后加入去离子水定容到400mL。然后配制650ml浓度为0.5mol/L的碳酸铵沉淀剂溶液,并加入26.29g的硫酸铵作为分散剂。将金属离子混合溶液以20mL/min的滴速逐滴滴进碳酸铵沉淀剂中并充分搅拌,当金属离子溶液停止滴定后,继续搅拌10min,在25℃下陈化1.5小时。陈化后的浆料用去离子水洗涤3次,无水乙醇洗涤2次,洗涤后的沉淀物在烘箱中70℃干燥24h,干燥后的粉体过200目筛得到前驱体粉体。将前驱体粉体于空气中850℃煅烧3小时得到Zn(Ga0.995Bi0.005)2O4纳米粉体。将Zn(Ga0.995Bi0.005)2O4纳米粉体干压成型后冷等静压,于马弗炉中空气预烧,空气预烧的保温温度为1000℃,保温时间为3h。预烧结后的陶瓷样品再进行热等静压烧结处理,热等静压的保温温度为1000℃,保温时间为3h,炉内氩气氛压力为200MPa。最终将样品双面抛光得到Zn(Ga0.995Bi0.005)2O4透明陶瓷。图7是实施例6制备的Zn(Ga0.995Bi0.005)2O4透明陶瓷(厚度为1.3mm)的直线透过率曲线。
实施例7
按Zn(Ga0.98Dy0.02)2O4的化学组成,分别量取65.6mL浓度为1.5228mol/L的Zn(NO3)2溶液、129.1mL浓度为1.5171mol/L的Ga(NO3)3溶液和13.8mL浓度为0.2882mol/L的Dy(NO3)3溶液倒入烧杯中,先加入少量去离子水均匀混合,最后加入去离子水定容到400mL。然后配制650mL浓度为0.5mol/L的碳酸铵沉淀剂溶液,并加入20g的硫酸铵作为分散剂。将金属离子混合溶液以20mL/min的滴速逐滴滴进碳酸铵沉淀剂中并充分搅拌,当金属离子溶液停止滴定后,继续搅拌10min,在25℃下陈化1小时。陈化后的浆料用去离子水洗涤2次,无水乙醇洗涤2次,洗涤后的沉淀物在烘箱中70℃干燥36h,干燥后的粉体过200目筛得到前驱体粉体。将前驱体粉体于空气中900℃煅烧4小时得到Zn(Ga0.98Dy0.02)2O4纳米粉体。将Zn(Ga0.98Dy0.02)2O4纳米粉体干压成型后冷等静压,于马弗炉中空气预烧,空气预烧的保温温度为1000℃,保温时间为5h。预烧结后的陶瓷样品再进行热等静压烧结处理,热等静压的保温温度为1000℃,保温时间为3h,炉内氩气氛压力为200MPa。最终将样品双面抛光得到Zn(Ga0.98Dy0.02)2O4透明陶瓷,其中Dy掺杂过量,Dy离子没有全部进入晶格。
图8是实施例7制备的Zn(Ga0.98Dy0.02)2O4透明陶瓷的实物照片;图9是实施例7制备的Zn(Ga0.98Dy0.02)2O4透明陶瓷(厚度为1.3mm)的直线透过率曲线。图10是实施例7制备的Zn(Ga0.98Dy0.02)2O4透明陶瓷的发射光谱。图11是实施例7制备的Zn(Ga0.98Dy0.02)2O4透明陶瓷的余辉衰减曲线。

Claims (9)

1.一种尖晶石型镓酸锌长余辉发光透明陶瓷粉体的制备方法,其特征在于,所述制备方法包括:按照Zn(Ga1-xMx)2O4配置含有金属离子Zn2+、Ga3+、M3+的金属离子盐溶液,混合得到金属离子混合溶液,其中M为 Cr3+、Eu3+、Bi3+、Dy3+中的至少一种;将所述金属离子混合溶液与沉淀剂溶液混合沉淀,得到pH=6~8的沉淀液;将沉淀液经过洗涤、干燥后,在700℃~1300℃下煅烧0.1~24小时,得到所述尖晶石型镓酸锌基长余辉透明陶瓷粉体。
2.根据权利要求1所述的制备方法,其特征在于,所述金属离子混合溶液与沉淀剂溶液混合的方式包括:将金属离子溶液加入含分散剂的沉淀剂溶液中,或将含有分散剂的沉淀剂溶液加入到金属离子混合溶液中;优选将金属离子溶液加入含分散剂的沉淀剂溶液中。
3.根据权利要求2所述的制备方法,其特征在于,所述溶液加入的速度为10~40mL/min。
4.根据权利要求1-3中任一项所述的制备方法,其特征在于,所述分散剂为聚乙二醇、聚乙烯亚胺、聚丙烯酸铵和硫酸铵中的至少一种,所述分散剂占沉淀剂溶液的含量为0.1wt.%~10wt.%;所述沉淀剂为氨水、碳酸铵和碳酸氢铵,所述沉淀剂溶液的浓度为0.01~2.0mol/L。
5.根据权利要求1-4中任一项所述的制备方法,其特征在于,沉淀结束后,将沉淀液在0~30℃下陈化不超过30小时。
6.根据权利要求1-5中任一项所述的制备方法,其特征在于,所述干燥包括:在30~150℃下干燥10~100小时。
7.一种根据权利要求1-6中任一项所述制备方法得到的尖晶石型镓酸锌长余辉发光透明陶瓷,其特征在于,陶瓷粉体的平均尺寸为40~60 nm。
8.一种制备尖晶石型镓酸锌长余辉发光透明陶瓷的方法,其特征在于,包括:将权利要求6所述的镓酸锌纳米陶瓷粉体成型制成陶瓷素坯;将所得陶瓷素坯进行预烧结后,再于900~1500℃下热等静压烧结,压力为20~250MPa,时间为0.1~50小时,最终得到尖晶石型镓酸锌长余辉发光透明陶瓷。
9.根据权利要求8所述的方法,其特征在于,所述预烧结的方式为空气气氛烧结、氧气气氛烧结、热压烧结、氨气气氛烧结,氢气气氛烧结和氩气气氛烧结中的一种;所述预烧结的温度为900~1500℃,时间为0.1~100小时。
CN202110499676.XA 2021-05-08 2021-05-08 一种尖晶石型镓酸锌长余辉发光透明陶瓷的制备方法 Active CN115304366B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110499676.XA CN115304366B (zh) 2021-05-08 2021-05-08 一种尖晶石型镓酸锌长余辉发光透明陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110499676.XA CN115304366B (zh) 2021-05-08 2021-05-08 一种尖晶石型镓酸锌长余辉发光透明陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN115304366A true CN115304366A (zh) 2022-11-08
CN115304366B CN115304366B (zh) 2023-11-10

Family

ID=83853271

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110499676.XA Active CN115304366B (zh) 2021-05-08 2021-05-08 一种尖晶石型镓酸锌长余辉发光透明陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN115304366B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116376546A (zh) * 2023-03-15 2023-07-04 有研稀土新材料股份有限公司 一种近红外荧光粉及包含该荧光粉的光学装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101460880A (zh) * 2006-05-05 2009-06-17 博达公司 用于显示系统和装置的磷光体组合物和其它荧光材料
JP2014009150A (ja) * 2012-07-03 2014-01-20 Sumitomo Chemical Co Ltd 酸化亜鉛焼結体の製造方法
CN106278232A (zh) * 2016-07-26 2017-01-04 武汉理工大学 一种富铝锌尖晶石透明陶瓷的制备方法
CN111253937A (zh) * 2020-03-10 2020-06-09 武汉工程大学 Cr3+、Bi3+双掺杂镓酸盐长余辉荧光粉材料及其制备方法、应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101460880A (zh) * 2006-05-05 2009-06-17 博达公司 用于显示系统和装置的磷光体组合物和其它荧光材料
JP2014009150A (ja) * 2012-07-03 2014-01-20 Sumitomo Chemical Co Ltd 酸化亜鉛焼結体の製造方法
CN106278232A (zh) * 2016-07-26 2017-01-04 武汉理工大学 一种富铝锌尖晶石透明陶瓷的制备方法
CN111253937A (zh) * 2020-03-10 2020-06-09 武汉工程大学 Cr3+、Bi3+双掺杂镓酸盐长余辉荧光粉材料及其制备方法、应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DEEPAK HEBBAR N ET AL.: "Rapid annealing-transformed, intense-red-emitting Eu-doped ZnGa2O4 nanoparticles with high colour purity, for very-high-resolution display applications" *
刘作涛 等: "Cr3+掺杂对ZnGa2O4光催化性能影响的研究" *
阿不都卡德尔•阿不都克尤木 等: "Dy, Cr 共掺杂ZnGa2O4长余辉纳米粒子的制备及发光性能研究" *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116376546A (zh) * 2023-03-15 2023-07-04 有研稀土新材料股份有限公司 一种近红外荧光粉及包含该荧光粉的光学装置

Also Published As

Publication number Publication date
CN115304366B (zh) 2023-11-10

Similar Documents

Publication Publication Date Title
CN101641425B (zh) 由掺杂石榴石组成用于pcLED的磷光体
Park et al. Rapid visualization of latent fingerprints with Eu-doped La2Ti2O7
CA2660385A1 (en) Led conversion phosphors in the form of ceramic elements
JP4134314B2 (ja) 導電性粉末の製造方法
CN109609120B (zh) 一种长余辉发光气凝胶及其制备方法
CN102373059A (zh) 硅酸盐荧光材料及其制造方法
US20140151913A1 (en) Cost effective y2o3 synthesis and related functional nanocomposites
CN115304366B (zh) 一种尖晶石型镓酸锌长余辉发光透明陶瓷的制备方法
CN101338188B (zh) 一种具有高初始荧光强度的长余辉发光材料的制备方法
Sridhar et al. Cr-doped ZnGa2O4: Simple synthesis of intense red-NIR emitting nanoparticles with enhanced quantum efficiency
King et al. Phase and luminescence behaviour of Ce-doped zirconia nanopowders for latent fingerprint visualisation
Lu et al. Fabrication and characterization of transparent (Y0. 98− xTb0. 02Eux) 2O3 ceramics with color‐tailorable emission
Xu et al. Synthesis and luminescence of europium doped yttria nanophosphors via a sucrose-templated combustion method
Cha et al. Luminescence Characteristics of ZnGa 2 O 4: Mn 2+, Cr 3+ Phosphor and Thick Film
Potdevin et al. Influence of a chelating agent on optical and morphological properties of YAG: Tb 3+ phosphors prepared by the sol-gel process
CN100529012C (zh) 锶铟钛固溶红色荧光粉及其制备方法
JP5593492B2 (ja) 長残光蛍光体
Hsu et al. Photoluminescence of ZnGa2O4 phosphor prepared by a microencapsulation method
Li et al. Soft chemical synthesis and luminescence properties of red long-lasting phosphors Y 2 O 2 S: Sm 3+
CN109929551B (zh) 一种非化学计量比的钨酸锌红色荧光粉及其制备方法
Singh et al. Photoluminescence studies of cerium doped strontium aluminate nanophosphors (SrAl2O4: Ce)
US11097984B2 (en) Composite ceramic and preparation method therefor
JP2005179399A (ja) アルミン酸塩系微粒子蓄光粉末の製造方法
Zhang et al. Lu2O3: Eu3+ nanoparticles and processed ceramics: Structural and spectroscopic studies
CN111253152A (zh) 一种快衰减高光效闪烁材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant