CN115275526B - 一种网状孔高负载金属钴的锂硫电池用正极侧隔层的制备方法 - Google Patents

一种网状孔高负载金属钴的锂硫电池用正极侧隔层的制备方法 Download PDF

Info

Publication number
CN115275526B
CN115275526B CN202210949733.4A CN202210949733A CN115275526B CN 115275526 B CN115275526 B CN 115275526B CN 202210949733 A CN202210949733 A CN 202210949733A CN 115275526 B CN115275526 B CN 115275526B
Authority
CN
China
Prior art keywords
zif
interlayer
lithium
film
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210949733.4A
Other languages
English (en)
Other versions
CN115275526A (zh
Inventor
郑文姬
董志伟
李祥村
贺高红
代岩
阮雪华
焉晓明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN202210949733.4A priority Critical patent/CN115275526B/zh
Publication of CN115275526A publication Critical patent/CN115275526A/zh
Application granted granted Critical
Publication of CN115275526B publication Critical patent/CN115275526B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/474Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by their position inside the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/48Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by the material
    • H01M50/483Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明属于锂硫电池正极侧隔层领域,公开了一种网状孔高负载金属钴的锂硫电池用正极侧隔层的制备方法。隔层材料由聚丙烯腈、ZIF‑67、CNT为原料,将制备的铸膜液经正戊醇相转化,并经高温碳化制备了具有网状孔结构且高负载金属钴的隔层材料。该隔层整体充满的网状孔结构,有利于锂离子及电子的传递,网状孔表面高负载的金属钴能够有效促进多硫化物的吸附和催化转化,从而缓解锂硫电池的穿梭效应,提高电池循环稳定性、倍率性能和库伦效率。以该隔层材料制备的锂硫电池具有优异的储能性能,4C电流密度下能拥有974.9mA h g‑1初始容量,400圈后能维持在580.4m A g‑1

Description

一种网状孔高负载金属钴的锂硫电池用正极侧隔层的制备 方法
技术领域
本发明属于锂硫电池正极侧隔层领域,具体涉及一种网状孔高负载金属钴的锂硫电池用正极侧隔层的制备方法。
背景技术
清洁能源的普及以及应用需要高效的电化学储能技术的支持,受限于正极容量的限度,锂离子电池等传统电池技术已不能满足日益增长的高能量密度、低成本和长循环寿命储能设备的需求。而锂硫电池,由于具有高理论比容量(1675mA hg-1)和能量密度(2600Wh kg-1)的优势,已经成为下一代储能设备研究的重点。此外,硫的自然储量丰富,成本低廉,环境友好,因此,锂硫电池同时极具大规模储能应用的潜力。尽管具有上述优点,但在实际应用中,由于多硫化物(Li2Sx,4<x≤8)在电解液中极易溶解,造成了严重的穿梭效应,表现出库仑效率低、阳极腐蚀严重和容量衰减快等问题,从而导致锂硫电池的实际应用受到了很大限制。
在众多围绕缓解锂硫电池穿梭效应的举措中,设计具有优异性能的隔层引起了广泛关注。郭娇等人发表的《具有协同Co和N活性位点的分层多孔膜在Li-S电池中实现高效的锂离子传输和氧化还原》中使用水凝胶浴相转化膜上生长ZIF-67用于锂硫电池隔层,同时隔层的设计同时也受到了一些挑战。例如,李祥村等人《具有快速离子传输通道和多硫化物捕获网络的分级多孔C/Fe3C膜用于大面积锂硫电池》,一方面具有均匀分散的活性位点,另一方面因为是水系相转化,一体化隔层中都有较大的空隙,导致体积利用率较低。因此有必要设计一种简便的方法来制备可以吸附和催化多硫化物转化的有效隔层,一方面就有均匀分散的活性位点,一方面充分发挥隔层内部空间的使用、提高隔层体积利用率,所以如何对隔层的结构进行功能化,简化操作步骤同时有效缓解穿梭效应,对于锂硫电池的实际应用具有重要的意义。
发明内容
针对以上问题,本发明提出了一种锂硫电池用正极侧隔层材料的制备方法,在正戊醇相转化膜中通过ZIF-67的优化,在ZIF-67原位碳化构建网状孔通道的同时原位负载金属钴,并通过调整ZIF-67的用量提高金属钴的负载,最终钴的质量占比为20%,同时ZIF-67几乎填满膜的体积。构建的网状孔高负载金属钴的碳膜结构中,网状孔通道增加了膜的孔隙率和比表面积,有利于锂离子和电子的传输以及多硫化物的吸附,其网状孔结构上负载的金属钴能效吸附催化多硫化物,防止锂硫电池的穿梭效应,提高了电池的循环稳定性、倍率性能和库伦效率。锂硫电池用正极侧隔层网状孔高负载金属钴碳膜以聚丙烯腈、ZIF-67、含羧基碳纳米管为原料制备铸膜液并在正戊醇中进行相转化再碳化得到。ZIF-67的合成是以六水合硝酸钴,二甲基咪唑在甲醇中合成,ZIF-67的引入可作为牺牲模板、在碳化的过程中因其与聚丙烯腈形变差异产生的应力导致ZIF-67结构被破坏从而形成空位,通过提高ZIF-67的用量、使其充分填满膜的内部,从而保证了碳化后ZIF-67消失形成的空位能够充分的连接从而形成网状结构,且ZIF-67中的钴元素转化为金属钴负载在网状孔的表面;因正戊醇凝胶浴与铸膜液中DMF的交换速率较低,能避免形成大的指状孔、从而提高了膜体积的利用率,使得网状孔能充分布满整个膜体积,且网状孔有利于离子的传输。制得的网状孔高负载金属钴碳基隔层材料(Co@CNT)可以有效缓解穿梭效应,提高导电性和离子传递速率。锂硫电池具有优异的循环稳定性、倍率性能、库伦效率和较高的充放电容量。
本发明的技术方案:
一种锂硫电池用正极侧隔层材料的制备方法,步骤如下:
(1)制备ZIF-67@CNT@PAN膜液
在丝口瓶中依次加入N,N-二甲基甲酰胺、聚丙烯腈、含羧基碳纳米管、ZIF-67,首先将ZIF-67放入DMF中超声搅拌20~60min,直至无明显颗粒状为止,之后在快速搅拌的状态下加入含羧基碳纳米管,搅拌20~60min,之后在快速搅拌的状态下加入聚丙烯腈,转速为500~1500r/min,控制N,N-二甲基甲酰胺、聚丙烯腈、含羧基碳纳米管和ZIF-67四者的质量比为24:1:0.5:1~24:3:2:4,通过调整ZIF-67的用量使其填满膜的内部,将丝口瓶在60~80℃下磁力搅拌10~24h后,得到紫黑色粘稠膜液,转速为500~1500r/min;
(2)制备ZIF-67@CNT@PAN相转化膜
通过自动刮膜机将所得铸膜液刮到玻璃板或四氟乙烯板上,刮膜厚度通过刮刀调整到200~400μm,用美术喷笔在一定气速下将凝胶浴均匀喷洒到膜液表面,用以稳定上表面,气瓶压力为2~5MPa,喷洒时间为1~3min。之后将带有膜液的玻璃板浸入到正戊醇中,相转化时间为12~24h,见图1;
(3)制备网状孔高负载钴碳膜
将干燥后的相转化膜用切片机切割为直径为12~19cm,通过马弗炉对相转化膜进行预氧化,由室温升至预氧化温度,升温速率为1~10℃/min,预氧化温度为200~300℃,预氧化时间为1~4h,由预氧化温度降至室温的降温速率为1~10℃/min,再在氩气/氮气氛围保护下,在管式炉中以1~10℃/min加热到600~1000℃进行碳化,碳化时间为1~3h,由碳化温度降至室温的降温速率为1~10℃/min,得到网状孔高含钴隔层(Co@CNT),见图2。
步骤(2)中的溶剂为N,N-二甲基甲酰、二甲基亚砜、N,N-二甲基乙酰胺、N,甲基吡咯烷酮。
步骤(3)中的凝胶浴为正丙醇、正戊醇。
本发明的有益效果:本发明由六水合硝酸钴与二甲基咪唑先合成ZIF-67,之后以聚丙烯腈、ZIF-67、含羧基碳纳米管为原料制备铸膜液,经以正戊醇相转化制膜,最后经以氩气保护下的碳化制备网状孔高含量金属钴结构,ZIF-67的引入可作为牺牲模板、在碳化的过程中因其与聚丙烯腈形变差异产生的应力导致ZIF-67结构被破坏从而形成空位,通过进一步通过提高ZIF-67的用量,使其充分填满膜的内部,从而保证了碳化后ZIF-67消失形成的空位能够充分的连接从而形成网状结构,且ZIF-67中的钴元素转化为金属钴负载在网状孔表面;因正戊醇凝胶浴与铸膜液中DMF的交换速率较低,能避免形成大的指状孔、从而提高了膜体积的利用率,使得网状孔能充分布满整个膜体积,网状孔结构有利于锂离子和电子传递,有利于多硫化物的吸附,网状结构上负载的金属钴占碳膜的质量比由图3计算可知为20%,能够有效吸附催化多硫化物,防止锂硫电池穿梭效应,从而缓解锂硫电池的穿梭效应,提高电池循环稳定性、倍率性能和库伦效率。
附图说明
图1为实施例1制备一种网状孔高负载金属钴的锂硫电池用正极侧隔层碳化前的扫描电镜图
图2为实施例1制备一种网状孔高负载金属钴的锂硫电池用正极侧隔层的扫描电镜图。
图3为实施例1制备一种网状孔高负载金属钴的锂硫电池用正极侧隔层的热重曲线图。
图4为实施例1组装Co@CNT隔层的锂硫电池及对比电池在2C电流密度下的循环性能图。
图5为实施例1组装Co@CNT隔层的锂硫电池及对比电池的倍率性能图。
图6为实施例1组装的Co@CNT隔层的锂硫电池充放电曲线图。
具体实施方式
以下结合附图和技术方案,进一步说明本发明的具体实施方式。
实施例
(1)锂硫电池用正极侧隔层电极材料制备
1)在蓝盖丝口瓶中依次加入N,N-二甲基甲酰胺、聚丙烯腈、含羧基碳纳米管、ZIF-67,首先将ZIF-67放入DMF中超声搅拌30min,直至无明显颗粒状为止,之后在快速搅拌的状态下加入含羧基碳纳米管,搅拌30min,之后在快速搅拌的状态下加入聚丙烯腈,转速为1000r/min,质量比为24:2:1:3,该比例能在保证ZIF-67不团聚的情况下很好的填充满整个膜体积,将丝口瓶在75℃下磁力搅拌12h后,得到紫黑色粘稠膜液。
2)通过自动刮膜机将所得铸膜液刮到玻璃板上,刮膜厚度通过刮刀调整到300μm,用美术喷笔在一定气速下将正戊醇均匀喷洒到膜液表面,用以稳定上表面,气瓶压力为3MPa,喷洒时间为1min,之后将带有膜液的玻璃板浸入到正戊醇中,相转化时间为24h。
3)将干燥后的相转化膜用切片机切割为直径为19cm,通过马弗炉对相转化膜进行预氧化,由室温升至预氧化温度,升温速率为5℃/min,预氧化温度为250℃,预氧化时间为3h,由预氧化温度降至室温的降温速率为10℃/min,再在氩气/氮气氛围保护下,在管式炉中以5℃/min加热到700℃进行碳化,碳化时间为3h,由碳化温度降至室温的降温速率为10℃/min,得到网状孔高含钴隔层(Co@CNT)。
(2)网状孔碳膜(CNT)制备(非本发明)
其他条件不变,网状孔碳膜制备过程不添加ZIF-67,性能见图4、5。
(3)以Co@CNT隔层材料制备锂硫电池
取10mg聚偏氟乙烯溶解在700μL N-甲基吡咯烷酮中,再加入90mg C/S复合材料,搅拌得到C/S复合浆料。取14μL C/S复合浆料涂抹在铝箔(直径12mm的圆片)的一侧,真空干燥后,作为锂硫电池正极。在手套箱中进行电池组装,锂片为负极,Celgard 2325为隔膜,Co@CNT作为隔层放置于正极和Celgard 2325隔膜之间,电解液为非水相电解液,含有1M双三氟甲基磺酸亚酰胺锂(LiTFSI)的1,3环氧戊环/乙二醇二甲醚(体积比1:1)溶液,添加1%LiNO3的添加剂。
(4)以CNT隔层制备锂硫电池
其他条件不变,将Co@CNT隔层替换为CNT隔层。
(5)Co@CNT及CNT隔层电池性能测试
将电池静置12h后,恒电流充放电循环性能测试和倍率性能测试通过蓝电测试系统完成,测试电压窗口为1.7–2.8V。倍率性能测试的电流密度为0.2C,0.5C,1C,2.0C,4.0C(1C=1675mA h g-1)。通过电化学工作站测试循环伏安曲线,扫描速率为0.05mV s-1。图4为实施例1组装Co@CNT隔层的锂硫电池及对比电池在2C电流密度下的循环性能图,在2C电流密度下,初始比容量为974.9mA h g-1,400圈循环后能保有580.4mA h g-1,每圈的容量损失率为0.10%,库伦效率接近100%;网状孔碳膜(CNT)作为电池正极侧隔层在2C电流密度下,初始比容量为608.7mA h g-1,400圈循环后能保有246.5mA h g-1。图5为实施例1组装Co@CNT隔层的锂硫电池及对比电池的倍率性能图,Co@CNT隔层在4.0C电流密度下,比容量维持在887.6mA h g-1,当电流密度恢复到0.2C时,比容量能够保持在1174.5mA h g-1,CNT隔层在4.0C电流密度下,比容量维持在135.8mA h g-1,当电流密度恢复到0.2C时,比容量能够保持在747.7mA h g-1。图6为本实施例组装的Co@CNT隔层的锂硫电池的充放电曲线图,可以观察到两个放电平台,电位区间是2.4-2.3V和2.1-2.0V;一个充电平台,电位区间是2.1-2.4V。
最后应说明的是:上述实施例仅为本发明的具体实现方式之一,尽管对其所进行的描述较为详细具体,但这并不能理解为对本发明范围的限制。本领域的技术人员应当理解,在不脱离本发明技术的范围内,对本发明做的等同替换或者修改等变动,均属未脱离本发明的技术方案内容,仍属于本发明的保护范围。

Claims (3)

1.一种网状孔高负载金属钴的锂硫电池用正极侧隔层的制备方法,其特征在于,步骤如下:
(1)制备ZIF-67@CNT@PAN膜液
将ZIF-67放入溶剂中超声搅拌20~60min,直至无明显颗粒状为止;之后在快速搅拌的状态下加入含羧基碳纳米管,搅拌20~60min;之后在快速搅拌的状态下加入聚丙烯腈,转速为500~1500r/min;控制溶剂、聚丙烯腈、含羧基碳纳米管和ZIF-67四者的质量比为24:1:0.5:1~24:3:2:4,确保ZIF-67的用量能使其填满膜的内部;将丝口瓶在60 ~ 80℃温度条件下磁力搅拌10~24 h后,得到紫黑色粘稠膜液,转速为500~1500r/min;
(2)制备ZIF-67@CNT@PAN相转化膜
通过自动刮膜机将紫黑色粘稠膜液刮到玻璃板或四氟乙烯板上,刮膜厚度通过刮刀调整到200~400μm,将凝胶浴均匀喷洒到紫黑色粘稠膜液表面,用以稳定上表面,喷洒时间为1~3min;之后将带有紫黑色粘稠膜液的玻璃板或四氟乙烯板浸入到凝胶浴中,相转化时间为12~24h;
(3)制备网状孔高负载钴碳膜
将干燥后的相转化膜用切片机切割为直径为12~19cm,通过马弗炉对相转化膜进行预氧化,升温速率为1~10℃/min,预氧化温度为200~300℃,预氧化时间为1~4 h;再由预氧化温度降至室温的降温速率为1~10 ℃/min,再在氩气/氮气氛围保护下,在管式炉中以1~10℃/min加热到600~1000℃进行碳化,碳化时间为1~3h;然后由碳化温度降至室温的降温速率为1~10℃/min,得到网状孔高负载金属钴隔层Co@CNT。
2.根据权利要求1所述的制备方法,其特征在于,所述步骤(1)的溶剂为N, N-二甲基甲酰胺、二甲基亚砜、N, N-二甲基乙酰胺或N,甲基吡咯烷酮。
3.根据权利要求1或2所述的制备方法,其特征在于,所述步骤(2)的凝胶浴为正丙醇或正戊醇。
CN202210949733.4A 2022-08-09 2022-08-09 一种网状孔高负载金属钴的锂硫电池用正极侧隔层的制备方法 Active CN115275526B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210949733.4A CN115275526B (zh) 2022-08-09 2022-08-09 一种网状孔高负载金属钴的锂硫电池用正极侧隔层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210949733.4A CN115275526B (zh) 2022-08-09 2022-08-09 一种网状孔高负载金属钴的锂硫电池用正极侧隔层的制备方法

Publications (2)

Publication Number Publication Date
CN115275526A CN115275526A (zh) 2022-11-01
CN115275526B true CN115275526B (zh) 2024-01-26

Family

ID=83748160

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210949733.4A Active CN115275526B (zh) 2022-08-09 2022-08-09 一种网状孔高负载金属钴的锂硫电池用正极侧隔层的制备方法

Country Status (1)

Country Link
CN (1) CN115275526B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106784525A (zh) * 2016-12-12 2017-05-31 中南大学 一种Co‑N‑C@RGO 复合材料、制备方法及用于锂硫电池隔膜改性的应用
CN113422153A (zh) * 2021-05-19 2021-09-21 大连理工大学 一种锂硫电池用正极侧隔层材料的制备方法
CN114204218A (zh) * 2021-11-22 2022-03-18 大连理工大学 一种负载空心Co3O4立方体的锂硫电池用正极侧隔层的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8017263B2 (en) * 2006-01-24 2011-09-13 Sony Corporation Separator and battery
CN112151762B (zh) * 2019-06-26 2022-06-10 重庆大学 一种锂硫电池正极材料及其制备方法、一种锂硫电池正极及其制备方法以及一种锂硫电池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106784525A (zh) * 2016-12-12 2017-05-31 中南大学 一种Co‑N‑C@RGO 复合材料、制备方法及用于锂硫电池隔膜改性的应用
CN113422153A (zh) * 2021-05-19 2021-09-21 大连理工大学 一种锂硫电池用正极侧隔层材料的制备方法
CN114204218A (zh) * 2021-11-22 2022-03-18 大连理工大学 一种负载空心Co3O4立方体的锂硫电池用正极侧隔层的制备方法

Also Published As

Publication number Publication date
CN115275526A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
Wang et al. A lightweight multifunctional interlayer of sulfur–nitrogen dual-doped graphene for ultrafast, long-life lithium–sulfur batteries
Chen et al. Self-supporting lithiophilic N-doped carbon rod array for dendrite-free lithium metal anode
US20150155107A1 (en) Lithium ion capacitor
CN111900326B (zh) 一种锂硫电池用正极-隔层一体化膜材料的制备方法和应用
CN104393304A (zh) 锂硒电池正极材料及其制备方法以及锂硒电池
CN112886134B (zh) 一种锂硫电池用修饰隔膜的制备方法
CN107946553B (zh) 高石墨化三维碳纳米管石墨烯复合材料及其制备与应用
CN113422153B (zh) 一种锂硫电池用正极侧隔层材料的制备方法
CN110611084B (zh) 一种具有长循环寿命和100%库伦效率的锂硫二次电池
CN111370783B (zh) 一种高性能水系氯离子电池及其制备方法
CN114204218B (zh) 一种负载空心Co3O4立方体的锂硫电池用正极侧隔层的制备方法
CN109980198A (zh) 一种自支撑的SiOx基复合负极材料及其制备方法
CN112510170B (zh) 氮、硫双掺杂多孔碳锂硫电池正极材料及其制备方法和应用
Ao et al. CoSe2 nanoparticles-decorated carbon nanofibers as a hierarchical self-supported sulfur host for high-energy lithium-sulfur batteries
CN111403659A (zh) 一种用于锂硫电池的超高比表面积碳气凝胶涂覆隔膜中间层及其制备方法以及一种锂硫电池
Liu et al. Free-standing graphene/polyetherimide/ZrO2 porous interlayer to enhance lithium-ion transport and polysulfide interception for lithium-sulfur batteries
Li et al. Trash to treasure: Recycling discarded agarose gel for practical Na/K-ion batteries
CN114613613B (zh) 聚多巴胺/石墨烯复合材料锂离子混合电容器及制备方法
CN115275526B (zh) 一种网状孔高负载金属钴的锂硫电池用正极侧隔层的制备方法
CN108987732B (zh) 锂离子电池SiO复合负极材料及其制备方法
CN109698336A (zh) 褶皱状的硫-大米碳/碳化钛复合材料及其制备方法和应用
CN112174131B (zh) 一种动态催化广域石墨化制备石墨化空心碳复合材料方法
CN108933235B (zh) 一种开放性笼状等级孔碳基锂硫电池正极材料及其制备方法
Davood et al. Hierarchical sparse Co nanowire/carbon nanofiber arrays as 3D Li+ gateways for high rate, long-life lithium-sulfur batteries
CN111099574A (zh) 用于锂离子电池负极的阶层多孔炭气凝胶的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant