CN109698336A - 褶皱状的硫-大米碳/碳化钛复合材料及其制备方法和应用 - Google Patents

褶皱状的硫-大米碳/碳化钛复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN109698336A
CN109698336A CN201811564534.1A CN201811564534A CN109698336A CN 109698336 A CN109698336 A CN 109698336A CN 201811564534 A CN201811564534 A CN 201811564534A CN 109698336 A CN109698336 A CN 109698336A
Authority
CN
China
Prior art keywords
rice
sulphur
carbon
composite material
rice carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811564534.1A
Other languages
English (en)
Other versions
CN109698336B (zh
Inventor
夏新辉
刘博�
王秀丽
涂江平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201811564534.1A priority Critical patent/CN109698336B/zh
Publication of CN109698336A publication Critical patent/CN109698336A/zh
Application granted granted Critical
Publication of CN109698336B publication Critical patent/CN109698336B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种褶皱状的硫‑大米碳/碳化钛复合材料及其制备方法和作为锂硫电池正极材料的应用。通过瞬时膨化法得到具有三维多孔结构的大米碳材料,以此为载体,通过高温固相反应向大米碳中引入导电极性材料碳化钛,随后熔融扩散法渗硫得到碳硫复合材料作为优异的锂硫电池正极材料。本发明硫‑大米碳/碳化钛复合材料兼具三维多孔结构及褶皱状的微观形貌,拥有出色的固硫效果和较高的电子传导率,对多硫化物的“穿梭效应”具有“物理吸附”和“化学结合”两种机制的协同作用,从而有效了锂硫电池的电化学性能。

Description

褶皱状的硫-大米碳/碳化钛复合材料及其制备方法和应用
技术领域
本方法涉及一种新型锂硫电池正极材料,具体涉及一种褶皱状的硫-大米碳/碳化钛三维多孔复合材料及其制备方法以及作为锂硫电池正极材料的应用。
背景技术
储能技术,是广泛、清洁和高效使用能源的必经之路。锂硫电池由于其较高的理论比容量(1675mA h g-1)和理论能量密度(2600W h kg-1),以及硫在地壳中丰度高、成本低、无毒无害无污染等巨大优势,被认为是新一代极具开发前景的二次电池,成为了优于传统锂离子电池的高能量密度电化学系统的候选者之一。但是,硫单质的绝缘性、循环过程中多硫化物的穿梭效应、电极材料的体积膨胀以及锂金属枝晶生长等等技术难题带来的放电容量低、库伦效率低、快速容量衰减及安全性问题,给锂硫电池的实际应用带来了巨大的困扰。因此,在锂硫电池中,通常将硫和其他导电载体材料复合,利用载体的导电性、载体作为物理阻隔层产生的物理吸附作用或极性载体材料表面的化学吸附作用来抑制多硫化物的“穿梭效应”,达到固硫、提高比容量和改善循环稳定性的目的。
多孔碳材料凭借其巨大的表面积和丰富的孔结构可以有效提高硫的负载率,适应充放电过程中活性物质的体积膨胀;同时碳材料本身有很强的导电性及结构稳定等特点,有利于锂离子更好地传输;另外,碳的来源广泛,许多生物质碳材料具有天然的分级结构,良好的碳化方法可将这些生物材料转化为多孔碳材料。这些优势都使得多孔碳材料成为了硫的理想载体材料。然而,碳是一种非极性材料,这使得碳基材料不能捕获极性的多硫化物。此外,碳和多硫化物之间的亲和力较差也阻碍了界面电荷的有效转移,并且减缓了反应动力学。
与非极性碳相比,极性的宿主材料有很强的活性,大量的表面活性位点,这些特点使这类材料具有化学吸附性质,可以吸附易穿梭的多硫化物以及硫化锂等物质,从而显著缓解“穿梭效应”。由于钛基化合物具有低成本、环境友好和对多硫化物理想的化学吸附性等特点,得到研究人员大量的研究。而碳化钛作为钛基化合物中的最常见的材料之一,也是一种导电极性材料,在促使多硫化物在电解液中的液相转变,以及液态多硫化物转变成硫化锂固态沉淀的过程中,显示出比非极性碳更强的活性。
大米碳/碳化钛复合材料是以大米作为碳源,通过简便易得的“瞬时膨化”方法得到三维多孔结构,并在此基础上,通过高温固相反应引入导电极性材料碳化钛,对多硫化物的“穿梭效应”具有“物理吸附”和“化学结合”两种机制的协同作用,同时拥有出色的固硫和较高的电子传导率,从而有效地提高了锂硫电池的电化学性能。
发明内容
本发明的目的在于针对背景技术中的问题,提供了一种硫-大米碳/碳化钛复合材料及其制备方法,通过简单的瞬时膨化法得到三维多孔碳结构,利用高温固相合成法得到具有褶皱状的三维多孔结构的大米碳/碳化钛复合材料,最后通过熔融扩散法渗硫得到硫-大米碳/碳化钛复合材料。该复合材料作为锂硫电池正极材料,对多硫化物的“穿梭效应”具有“物理吸附”和“化学结合”两种机制的协同作用,同时拥有出色的固硫和较高的电子传导率,从而有效地提高了锂硫电池的电化学性能。
一种褶皱状的硫-大米碳/碳化钛复合材料作为优异的锂硫电池正极材料,包括三维多孔结构的大米碳、通过高温固相反应引入的导电极性材料碳化钛以及熔融扩散法进入大米碳中的硫,即包括多个片状交错连接的大米碳片、生长在所述大米碳片上的碳化钛以及熔融扩散到所述大米碳片和碳化钛的硫,呈现褶皱状的微观形貌。
所述的多个大米碳片交错连接形成三维多孔结构,所述的硫覆盖在所述长有碳化钛的大米碳片上以及成块地堆积在各个大米碳片之间的孔隙内。
所述的大米碳片的厚度为0.3~1.2μm(进一步优选为0.5~1μm),所述的碳化钛为无定型纳米颗粒,直径为10~100nm(进一步优选为20~50nm)。
通过熔融扩散法渗入的硫不仅均匀地覆盖在长有碳化钛的大米片层上,也成块地堆积在二次碳片互连形成的孔隙内。
本发明所述的褶皱状的硫-大米碳/碳化钛复合材料的制备方法,包括以下步骤:
(1)将大米洗净之后浸入水中5~15h,随后将大米收集起来干燥、膨化处理后,得到以大米为碳源的多孔碳材料;
(2)将步骤(1)得到的膨化大米浸渍在钛酸酯和乙醇的混合溶液中,进行水热反应,水热产物倒入石英坩埚中并置于管式炉内经热处理后得到大米碳/碳化钛复合材料;
(3)将步骤(2)得到的大米碳/碳化钛复合材料与升华硫粉混合均匀,通过熔融扩散法在145~165℃下保温8~16h,得到褶皱状的硫-大米碳/碳化钛复合材料。
以下作为本发明的优选技术方案:
步骤(1)中,所述的干燥的温度为60~100℃。
所述的膨化处理条件为:在瞬时膨化设备中,200~300℃的条件下0.5~1.5MPa保压5~10min。
得到以大米为碳源的多孔碳材料,为三维多孔结构,其中的二次碳片厚度约为0.5μm,表面光滑,呈现较低的粗糙度,二次碳片互连形成了大体上约为50μm的孔径。
步骤(1)中的大米、水与步骤(2)中的钛酸酯、乙醇的用量之比为0.9~1.4g(优选为1.14g):50~100mL:1.0~4.0mL:50~100mL
步骤(2)中,所述的钛酸酯为钛酸四乙酯、钛酸四异丙酯、钛酸四丁酯中的任意一种。
所述的水热反应的温度为200~300℃,水热反应时间为5~10h。
所述的热处理的条件为,在氩气氛围下加热至1200~1400℃,保温时间2~4h。经热处理后得到大米碳/碳化钛复合材料,为褶皱状的三维多孔复合结构。
步骤(3)中,所述的升华硫粉在大米碳/碳化钛复合材料与升华硫粉混合物种的质量百分含量为50~80%,经反应后,得到硫-大米碳/碳化钛复合材料。
通过熔融扩散法在150~160℃(最优选155℃)下保温10~14h(最优选12h)。
本发明中,通过简单的瞬时膨化法得到三维多孔碳结构,之后将膨化大米浸渍在钛酸酯和乙醇的混合溶液中进行水热反应。再利用高温固相合成法在氩气氛围下加热至1200~1400℃,保温2~4h得到具有褶皱状三维多孔结构的大米碳/碳化钛复合材料。最后通过熔融扩散法将碳硫混合材料在155℃下保温12h得到硫-大米碳/碳化钛复合材料。其中大米碳片厚度约为0.5~1μm,所述的无定型碳化钛纳米颗粒直径约为20~50nm。本发明一种褶皱状的硫-大米碳/碳化钛复合材料,对多硫化物的“穿梭效应”具有“物理吸附”和“化学结合”两种机制的协同作用,同时拥有出色的固硫和较高的电子传导率,从而有效地提高了锂硫电池的电化学性能。
与现有技术相比,本发明具有如下优点:
本发明中,膨化大米表现出的三维多孔结构造成了强烈的物理约束,硫被均匀地限制在三维孔隙中,导致其与相互连接的电子通路有效接触。碳化钛作为一种导电极性材料,有大量的表面活性位点,能够促使多硫化物在电解液中的转变,且具有很强的化学吸附作用,为可溶性中间体提供了额外的亲和力。无定型碳化钛纳米颗粒在大米片层上生长,呈现褶皱状的微观形貌,极大的增加了比表面积,达到了固硫的目的,并且作为物理阻隔层产生的物理吸附作用能够用来抑制多硫化物的“穿梭效应”。“物理吸附”和“化学结合”两种机制的协同作用保证了硫-大米碳/碳化钛复合材料作为锂硫电池正极材料优异的电化学性能。
附图说明
图1为实施例1中制得的大米碳材料及大米碳/碳化钛复合材料的XRD图;
图2为实施例1中制得的大米碳材料的三维多孔结构的扫描电镜图;
图3为实施例1中制得的大米碳材料的三维多孔结构的透射电镜图;
图4为实施例1中制得的大米碳/碳化钛复合材料的褶皱状三维多孔复合结构的扫描电镜图;
图5为实施例1中制得的大米碳/碳化钛复合材料的扫描电镜图及元素分布图,其中图5中a为扫描电镜图,图5中b为C元素分布图,图5中c为Ti元素分布图;
图6为实施例1中制得的大米碳/碳化钛复合材料的透射电镜图。
具体实施方式
下面结合实施例来详细说明本发明,但本发明并不仅限于此。
实施例1
选取1.14g大米,洗净之后在室温25℃下浸入100mL水溶液中10h,随后将大米收集起来在70℃的烘箱中干燥。将处理过的大米密封在瞬时膨化设备中,250℃的条件下1.0MPa保压5min。取出密封垫以获得膨化处理后的大米,将其浸渍在2.0mL的钛酸异丙酯和60mL的乙醇混合溶液中,200℃保温6h。将得到的淡黄色中间产物倒入石英坩埚中并置于管式炉内,在氩气氛围下加热至1300℃,保温时间3h。将升华硫粉与上述合成的大米碳和碳化钛的复合材料使用熔融扩散法复合,其中升华硫粉在升华硫粉和大米碳和碳化钛的复合材料中的质量百分含量为70%,混合研磨均匀后将混合物在155℃下保温12h,最终得到碳硫复合材料(即褶皱状的硫-大米碳/碳化钛复合材料)。
实施例1中制得的大米碳材料及大米碳/碳化钛复合材料的XRD图如图1所示;实施例1中制得的大米碳材料的三维多孔结构的扫描电镜图如图2所示;实施例1中制得的大米碳材料的三维多孔结构的透射电镜图如图3所示;实施例1中制得的大米碳/碳化钛复合材料的褶皱状三维多孔复合结构的扫描电镜图如图4所示;实施例1中制得的大米碳/碳化钛复合材料的扫描电镜图及元素分布图如图5所示,其中图5中a为扫描电镜图,图5中b为C元素分布图,图5中c为Ti元素分布图;实施例1中制得的大米碳/碳化钛复合材料的透射电镜图如图6所示。
如图所示,褶皱状的硫-大米碳/碳化钛复合材料作为优异的锂硫电池正极材料,包括多个片状交错连接的大米碳片、生长在所述大米碳片上的碳化钛以及熔融扩散渗入大米碳片和碳化钛的硫,呈现褶皱状的微观形貌。
多个大米碳片交错连接形成三维多孔结构,硫覆盖在长有碳化钛的大米碳片上以及成块地堆积在各个大米碳片之间的孔隙内。大米碳片的厚度为0.5~1μm,碳化钛为无定型纳米颗粒,直径为20~50nm。膨化大米表现出的三维多孔结构造成了强烈的物理约束,硫被均匀地限制在三维孔隙中,导致其与相互连接的电子通路有效接触。碳化钛作为一种导电极性材料,有大量的表面活性位点,能够促使多硫化物在电解液中的转变,且具有很强的化学吸附作用,为可溶性中间体提供了额外的亲和力。无定型碳化钛纳米颗粒在大米片层上生长,呈现褶皱状的微观形貌,极大的增加了比表面积,达到了固硫的目的,并且作为物理阻隔层产生的物理吸附作用能够用来抑制多硫化物的“穿梭效应”。“物理吸附”和“化学结合”两种机制的协同作用保证了硫-大米碳/碳化钛复合材料作为锂硫电池正极材料优异的电化学性能。
实施例2
选取1.14g大米,洗净之后在室温25℃下浸入100mL水溶液中10h,随后将大米收集起来在70℃的烘箱中干燥。将处理过的大米密封在瞬时膨化设备中,250℃的条件下1.0MPa保压5min。取出密封垫以获得膨化处理后的大米,将其浸渍在2.0mL的钛酸异丙酯和60mL的乙醇混合溶液中,200℃保温6h。将得到的淡黄色中间产物倒入石英坩埚中并置于管式炉内,在氩气氛围下加热至1300℃,保温时间3h。将升华硫粉与上述合成的大米碳和碳化钛的复合材料使用熔融扩散法复合,其中升华硫粉在升华硫粉和大米碳和碳化钛的复合材料中的质量百分含量为60%,混合研磨均匀后将混合物在155℃下保温12h,最终得到碳硫复合材料。
实施例3
选取1.14g大米,洗净之后在室温25℃下浸入100mL水溶液中10h,随后将大米收集起来在70℃的烘箱中干燥。将处理过的大米密封在瞬时膨化设备中,250℃的条件下2.0MPa保压5min。取出密封垫以获得膨化处理后的大米,将其浸渍在2.0mL的钛酸异丙酯和60mL的乙醇混合溶液中,200℃保温6h。将得到的淡黄色中间产物倒入石英坩埚中并置于管式炉内,在氩气氛围下加热至1300℃,保温时间3h。将升华硫粉与上述合成的大米碳和碳化钛的复合材料使用熔融扩散法复合,其中升华硫粉在升华硫粉和大米碳和碳化钛的复合材料中的质量百分含量为80%,混合研磨均匀后将混合物在155℃下保温12h,最终得到碳硫复合材料。
实施例4
选取1.14g大米,洗净之后在室温25℃下浸入100mL水溶液中10h,随后将大米收集起来在70℃的烘箱中干燥。将处理过的大米密封在瞬时膨化设备中,250℃的条件下1.0MPa保压5min。取出密封垫以获得膨化处理后的大米,将其浸渍在3.0mL的钛酸四乙酯和60mL的乙醇混合溶液中,200℃保温6h。将得到的淡黄色中间产物倒入石英坩埚中并置于管式炉内,在氩气氛围下加热至1300℃,保温时间3h。将升华硫粉与上述合成的大米碳和碳化钛的复合材料使用熔融扩散法复合,其中升华硫粉在升华硫粉和大米碳和碳化钛的复合材料中的质量百分含量为70%,混合研磨均匀后将混合物在155℃下保温12h,最终得到碳硫复合材料。
实施例5
选取1.14g大米,洗净之后在室温25℃下浸入100mL水溶液中10h,随后将大米收集起来在70℃的烘箱中干燥。将处理过的大米密封在瞬时膨化设备中,250℃的条件下1.0MPa保压5min。取出密封垫以获得膨化处理后的大米,将其浸渍在1.0mL的钛酸四丁酯和60mL的乙醇混合溶液中,200℃保温6h。将得到的淡黄色中间产物倒入石英坩埚中并置于管式炉内,在氩气氛围下加热至1300℃,保温时间3h。将升华硫粉与上述合成的大米碳和碳化钛的复合材料使用熔融扩散法复合,其中升华硫粉在升华硫粉和大米碳和碳化钛的复合材料中的质量百分含量为70%,混合研磨均匀后将混合物在155℃下保温12h,最终得到碳硫复合材料。
性能测试
将上述实施例1~5制成的硫-大米碳/碳化钛复合材料与导电炭黑(Super P)、聚偏氟乙烯(PVDF)在N-甲基吡咯烷酮(NMP)中按照8:1:1的比例混合制备电极浆料。将浆料涂布在铝片上后在60℃下真空干燥24h得到正极材料。金属锂片作为负极材料,聚丙烯微孔膜(Cellgard 2300)作为隔膜。将双三氟甲烷磺酰亚胺锂(LiTFSI)溶于按照体积比1:1配置的乙二醇二甲醚(DME)和1,3-二氧环戊烷(DOL)混合溶液并向其中添加1wt%的硝酸锂(LiNO3)作为电解液,电解液的量遵循每毫克硫滴加20μL。CR2025型纽扣电池的组装是在以氩气为保护气,水氧分压均小于0.1ppm的封闭手套箱中进行的。将此电池系统静置48h后在室温环境(25±1℃)中进行循环伏安法测试(CV)、电化学阻抗谱测试(EIS)和充放电测试。
将实施例1组装成锂硫电池后,在扫描速率为0.1mV s-1的条件下呈现的CV曲线非常稳定,始终表现出较高的峰强度,较窄的峰分离和较少的极化,表明了它较快的反应动力学和较有效的对活性物质硫的利用。另外,为了进一步证明碳化钛对锂硫电池在性能方面的积极影响,将组装成的电池进行充放电测试。结果表明该材料具有更稳定的充/放电平台和更小的电化学极化;在0.1C、0.2C、0.5C的初始放电容量分别为1119.8mA h g-1、1027mA hg-1和909.2mA h g-1;当设定在2C时,硫-大米碳/碳化钛复合材料电极依然能够获得705.7mA h g-1的容量,表明该材料能够提供更好的高倍率容量,进一步说明该材料的离子扩散性能较为优异,对多硫化物的限制效果亦较好。
这主要得益于大米固有的三维多孔结构、极性导电材料碳化钛及其在大米片层上呈褶皱状的微观形貌共同促进了电子/离子的快速迁移并阻止了多硫化物的“穿梭效应”,从而使反应更好地进行。
因此,本发明硫-大米碳/碳化钛复合材料对多硫化物的“穿梭效应”具有“物理吸附”和“化学结合”两种机制的协同作用,同时拥有出色的固硫和较高的电子传导率,从而有效地提高了锂硫电池的电化学性能。

Claims (10)

1.一种褶皱状的硫-大米碳/碳化钛复合材料,其特征在于,包括多个片状交错连接的大米碳片、生长在所述大米碳片上的碳化钛以及熔融扩散到所述大米碳片和碳化钛的硫,呈现褶皱状的微观形貌;
所述的多个大米碳片交错连接形成三维多孔结构,所述的硫覆盖在所述长有碳化钛的大米碳片上以及成块地堆积在各个大米碳片之间的孔隙内。
2.根据权利要求1所述的褶皱状的硫-大米碳/碳化钛复合材料,其特征在于,所述的大米碳片的厚度为0.3~1.2μm,所述的碳化钛为无定型纳米颗粒,直径为10~100nm。
3.根据权利要求1所述的褶皱状的硫-大米碳/碳化钛复合材料的制备方法,其特征在于,包括以下步骤:
(1)将大米洗净之后浸入水中5~15h,随后将大米收集起来干燥、膨化处理后,得到以大米为碳源的多孔碳材料;
(2)将步骤(1)得到的膨化大米浸渍在钛酸酯和乙醇的混合溶液中,进行水热反应,水热产物倒入石英坩埚中并置于管式炉内经热处理后得到大米碳/碳化钛复合材料;
(3)将步骤(2)得到的大米碳/碳化钛复合材料与升华硫粉混合均匀,通过熔融扩散法在145~165℃下保温8~16h,得到褶皱状的硫-大米碳/碳化钛复合材料。
4.根据权利要求3所述的制备方法,其特征在于,步骤(1)中,所述的干燥的温度为60~100℃;
所述的膨化处理的条件为:在瞬时膨化设备中,200~300℃的条件下0.5~1.5MPa保压5~10min。
5.根据权利要求3所述的制备方法,其特征在于,步骤(1)中的大米、水与步骤(2)中的钛酸酯、乙醇的用量之比为0.9~1.4g:50~100mL:1.0~4.0mL:50~100mL。
6.根据权利要求3所述的制备方法,其特征在于,步骤(2)中,所述的钛酸酯为钛酸四乙酯、钛酸四异丙酯、钛酸四丁酯中的任意一种。
7.根据权利要求3所述的制备方法,其特征在于,步骤(2)中,所述的水热反应的温度为200~300℃,水热反应时间为5~10h;
所述的热处理的条件为,在氩气氛围下加热至1200~1400℃,保温时间2~4h。
8.根据权利要求3所述的制备方法,其特征在于,步骤(3)中,所述的升华硫粉在大米碳/碳化钛复合材料与升华硫粉混合物种的质量百分含量为50~80%。
9.根据权利要求3所述的制备方法,其特征在于,步骤(3)中,通过熔融扩散法在150~160℃下保温10~14h。
10.根据权利要求1所述的褶皱状的硫-大米碳/碳化钛复合材料作为锂硫电池正极材料的应用。
CN201811564534.1A 2018-12-20 2018-12-20 褶皱状的硫-大米碳/碳化钛复合材料及其制备方法和应用 Active CN109698336B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811564534.1A CN109698336B (zh) 2018-12-20 2018-12-20 褶皱状的硫-大米碳/碳化钛复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811564534.1A CN109698336B (zh) 2018-12-20 2018-12-20 褶皱状的硫-大米碳/碳化钛复合材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN109698336A true CN109698336A (zh) 2019-04-30
CN109698336B CN109698336B (zh) 2020-08-18

Family

ID=66231906

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811564534.1A Active CN109698336B (zh) 2018-12-20 2018-12-20 褶皱状的硫-大米碳/碳化钛复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN109698336B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110108399A (zh) * 2019-05-24 2019-08-09 吉林大学 一种基于生物材料向日葵花花粉和碳化钛复合材料的柔性压力传感器及其制备方法
CN110311112A (zh) * 2019-07-02 2019-10-08 东南大学 一种用于锂硫电池正极的HPCSs@d-Ti3C2复合材料及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101323444A (zh) * 2007-06-15 2008-12-17 中国科学院化学研究所 碳或碳复合中空球及其制备方法
CN104733695A (zh) * 2015-03-27 2015-06-24 浙江大学 一种锂硫电池正极用碳/硫复合材料及制备方法和应用
CN106024402A (zh) * 2016-05-05 2016-10-12 浙江大学 一种超级电容器碳/碳化钛核壳复合球电极材料及其制备方法
CN106532012A (zh) * 2016-12-23 2017-03-22 浙江大学 一种硫‑生物质碳/过渡金属复合电极材料及其制备方法和应用
CN107887588A (zh) * 2017-11-08 2018-04-06 黑龙江科技大学 一种纳米硫颗粒/二维层状碳化钛复合材料的制备方法和应用
WO2018127124A1 (en) * 2017-01-06 2018-07-12 The Hong Kong University Of Science And Technology Synthesis of porous carbon microspheres and their application in lithium-sulfur batteries

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101323444A (zh) * 2007-06-15 2008-12-17 中国科学院化学研究所 碳或碳复合中空球及其制备方法
CN104733695A (zh) * 2015-03-27 2015-06-24 浙江大学 一种锂硫电池正极用碳/硫复合材料及制备方法和应用
CN106024402A (zh) * 2016-05-05 2016-10-12 浙江大学 一种超级电容器碳/碳化钛核壳复合球电极材料及其制备方法
CN106532012A (zh) * 2016-12-23 2017-03-22 浙江大学 一种硫‑生物质碳/过渡金属复合电极材料及其制备方法和应用
WO2018127124A1 (en) * 2017-01-06 2018-07-12 The Hong Kong University Of Science And Technology Synthesis of porous carbon microspheres and their application in lithium-sulfur batteries
CN107887588A (zh) * 2017-11-08 2018-04-06 黑龙江科技大学 一种纳米硫颗粒/二维层状碳化钛复合材料的制备方法和应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110108399A (zh) * 2019-05-24 2019-08-09 吉林大学 一种基于生物材料向日葵花花粉和碳化钛复合材料的柔性压力传感器及其制备方法
CN110108399B (zh) * 2019-05-24 2021-02-12 吉林大学 一种基于生物材料向日葵花花粉和碳化钛复合材料的柔性压力传感器及其制备方法
CN110311112A (zh) * 2019-07-02 2019-10-08 东南大学 一种用于锂硫电池正极的HPCSs@d-Ti3C2复合材料及其应用

Also Published As

Publication number Publication date
CN109698336B (zh) 2020-08-18

Similar Documents

Publication Publication Date Title
Yang et al. Hierarchical porous nitrogen, oxygen, and phosphorus ternary doped hollow biomass carbon spheres for high‐speed and long‐life potassium storage
Wang et al. Polar and conductive iron carbide@ N-doped porous carbon nanosheets as a sulfur host for high performance lithium sulfur batteries
Wang et al. Metal–organic frameworks for energy storage: Batteries and supercapacitors
Ou et al. Honeysuckle-derived hierarchical porous nitrogen, sulfur, dual-doped carbon for ultra-high rate lithium ion battery anodes
Yan et al. Process optimization for producing hierarchical porous bamboo-derived carbon materials with ultrahigh specific surface area for lithium-sulfur batteries
Liu et al. High-performance sodium-ion capacitor constructed by well-matched dual-carbon electrodes from a single biomass
You et al. Novel biomass derived hierarchical porous carbon for lithium sulfur batteries
Liu et al. Biomass-derived activated carbon for rechargeable lithium-sulfur batteries
Wu et al. Insight into the positive effect of porous hierarchy in S/C cathodes on the electrochemical performance of Li–S batteries
Yan et al. Hierarchically porous carbon derived from wheat straw for high rate lithium ion battery anodes
CN107555424A (zh) 一种多孔类石墨烯活性碳材料的制备方法及其产品和应用
CN109360962B (zh) 一种锂电池用高稳定性硅碳负极材料及其制备方法
CN112239200A (zh) 一种非晶磷酸盐材料的制备及作为超级电容器电极材料的应用
Shao et al. Carbon nanotube-supported MoSe2 nanoflakes as an interlayer for lithium-sulfur batteries
Wang et al. Hierarchically porous nanosheets-constructed 3D carbon network for ultrahigh-capacity supercapacitor and battery anode
Gong et al. Anchoring high-mass iodine to nanoporous carbon with large-volume micropores and rich pyridine-N sites for high-energy-density and long-life Zn-I2 aqueous battery
CN109637843A (zh) 一种以芹菜为电极原料制备超级电容器的方法
CN110510595B (zh) 一种用于锂硫电池的n/s共掺杂多孔碳的制备方法
Sui et al. Highly dispersive CoSe 2 nanoparticles encapsulated in carbon nanotube-grafted multichannel carbon fibers as advanced anodes for sodium-ion half/full batteries
Zhang et al. Shaddock wadding created activated carbon as high sulfur content encapsulator for lithium-sulfur batteries
Deng et al. Synthesis of ZnAl-LDH and biomass carbon composites and its application as anode material with long cycle life for zinc–nickel secondary battery
CN113571841B (zh) 一种锂硫电池复合隔膜及其制备方法
CN109698336A (zh) 褶皱状的硫-大米碳/碳化钛复合材料及其制备方法和应用
Peng et al. Hierarchical porous biomass activated carbon for hybrid battery capacitors derived from persimmon branches
Gao et al. Na3TiV (PO4) 3/C nanoparticles for sodium‐ion symmetrical and full batteries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant