CN115274907A - 带有张应变薄膜的中红外GeSn发光器 - Google Patents

带有张应变薄膜的中红外GeSn发光器 Download PDF

Info

Publication number
CN115274907A
CN115274907A CN202210911667.1A CN202210911667A CN115274907A CN 115274907 A CN115274907 A CN 115274907A CN 202210911667 A CN202210911667 A CN 202210911667A CN 115274907 A CN115274907 A CN 115274907A
Authority
CN
China
Prior art keywords
layer
gesn
active region
infrared
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210911667.1A
Other languages
English (en)
Other versions
CN115274907B (zh
Inventor
张庆芳
卢温翔
张吉涛
陈芊羽
张培
秦自瑞
曹玲芝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University of Light Industry
Original Assignee
Zhengzhou University of Light Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University of Light Industry filed Critical Zhengzhou University of Light Industry
Priority to CN202210911667.1A priority Critical patent/CN115274907B/zh
Publication of CN115274907A publication Critical patent/CN115274907A/zh
Application granted granted Critical
Publication of CN115274907B publication Critical patent/CN115274907B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/1812Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table including only AIVBIV alloys, e.g. SiGe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Led Devices (AREA)

Abstract

本发明属于光电子硅基集成电路技术领域,涉及带有张应变薄膜的中红外GeSn发光器,包括由下至上依次设置的:衬底层、赝衬底层、驰豫层、有源区;驰豫层为n+型GeSn驰豫层,有源区由下至上依次为n+型GeSn层、本征GeSn层和p+型GeSn层;有源区为空心圆柱,有源区周围包裹一层应变薄膜;在p+型GeSn层上设置第一金属电极,在驰豫层顶端、有源区外侧设置第二金属电极。发光器制备过程中应变薄膜内残余应力释放,向有源区引入张应变,有源区张应变的引入使导带Γ能谷比L能谷更加剧烈下降,促进GeSn合金向直接带隙材料转变,器件发光波长向中红外2~5μm拓展,并有效提高GeSn发光效率。

Description

带有张应变薄膜的中红外GeSn发光器
技术领域
本发明属于光电子硅基集成电路技术领域,具体涉及到一种带有张应变薄膜的中红外GeSn发光器。
背景技术
随着集成电路技术的发展,Si基光电集成的集成度及芯片特征尺寸分别沿着摩尔定律的方向快速提高和缩小,硅基光电子向着微型化、高密度化、高速化、高可靠性和系统高度集成化的方向发展。无毒、环保、廉价、易大规模集成的硅基光电子技术及器件成为当代研究的热点。近几十年,硅基光学器件在探测器、调制器、光电开关等方面均取得了突破性成就得到了广泛应用,但因Si、Ge及其合金均为间接带隙材料,硅基发光器件的研究与应用一直没有得到很好的解决。
中红外光电技术的发展影响了社会生活中的各个领域。随着Si基外延生长技术逐渐成熟,使Si基红外光源器件的发展看到了希望。光子能量对应分子振动能级的基频跃迁,其中波长为2~5μm的电磁波是中红外波谱中非常重要的一部分,中红外光学与集成光学的结合将为医疗诊断、环境监测、工业安全、人工智能、航空航天、自动驾驶、军事安全等方面带来革命性应用。GeSn(锗锡)合金具有工作波长可调节的特性,而且在中红外光吸收、光辐射方面具有比Ge(锗)更优越的性能,使得GeSn中红外光子有源器件的研究具有重要学术意义和深远实用价值。Ge半导体的直接带隙(EG,Γ=0.8eV)与间接带隙(EG,L=0.664eV)能量相差仅136meV,及其与CMOS工艺的兼容性,使得强电注入硅基Ge发光器件得到研究者们的关注,但由于Ge仍为间接带隙半导体,Γ能谷载流子占比较低使得Ge光源的发光效率非常低。实验与理论研究证明,Ge中引入负能带结构Sn材料可以改变GeSn合金的能带结构,随着Sn组分的增加GeSn合金的导带Γ能谷比L能谷靠近价带顶的速度更快,当Γ能谷低于L能谷时,GeSn合金将会由间接带隙半导体材料变成直接带隙半导体材料。理论上,通过Sn掺杂可以解决Ge间接带隙问题,但Ge和α-Sn间存在很大的晶格失配(14.7%),Sn在Ge中的平衡固溶度小于1%,且Sn的表面能比Ge小,容易发生表面分凝,致使直接生长出高质量、无缺陷的高Sn组分的GeSn合金十分困难。理论研究发现,除增加Sn组分以外,在合理引入张应变情况下GeSn半导体材料可转变为直接带隙材料。
发明内容
本发明提出了带有张应变薄膜的中红外GeSn发光器新结构,以提高硅基光电子集成电路中GeSn光源的发光效率。本发明通过应变薄膜在GeSn发光器件中引入张应变。研究发现,张应变作用下GeSn合金导带Γ能谷(EG,Γ)和L能谷(EG,L)的能量均下降并且导带Γ能谷下降更多,Γ能谷曲率变大,GeSn合金价带的HH(重空穴)和LH(轻空穴)发生分裂,LH上升且能带顶部的曲率发生变化。张应变作用下GeSn合金直接带隙的减小、向直接带隙材料的转变以及对Sn组分需求量的降低,这些特性将极大的改善GeSn发光器的发光效率,降低GeSn合金制备难度。
为实现上述目的,本发明采用以下技术方案:
带有张应变薄膜的中红外GeSn发光器,其包括由下至上依次设置的:衬底层、赝衬底层、驰豫层、有源区。
所述衬底层为SOI衬底层,该SOI衬底为Si-SiO2-Si夹心结构,所述衬底的顶层为单晶Si,厚度较小约几十纳米;
所述赝衬底层为n+型Ge层,即n+型磷(P)重掺杂Ge赝衬底层;
所述驰豫层为n+型GeSn驰豫层,即n+型磷(P)重掺杂GeSn驰豫层;
所述有源区为p-i-n GeSn有源区,包括本征GeSn层与两侧的p+型GeSn层和n+型GeSn层,p-i-n GeSn有源区由下至上依次为n+型GeSn层、本征GeSn层和p+型GeSn层。所述p+型GeSn层为p+型硼(B)重掺杂GeSn层,所述本征GeSn层为i型GeSn层,所述n+型GeSn层为n+型磷(P)重掺杂GeSn层。
所述有源区GeSn材料通式为Ge1-xSnx,0≤x≤0.15,所述驰豫层GeSn材料通式为Ge1-ySny,其中y>x。有源区为空心圆柱,有源区周围包裹一层应变薄膜,该应变薄膜位于驰豫层上方。应变薄膜沉积在发光器有源区周围,用于在发光器有源区内引入张应变,同时用作有源区表面的钝化层。所述应变薄膜为具有残余压应变的Si3N4薄膜,其杨氏模量为250GPa,泊松比为0.26,该薄膜是利用PECVD(等离子体增强化学气相沉积)工艺生长获得,退火过程释放残余应变。
在p+型GeSn层上还设置有第一金属电极,第一金属电极的底部与p+型GeSn层顶端欧姆接触,在驰豫层顶端、有源区外侧还设置有第二金属电极,第二金属电极不接触n+型GeSn层,第二金属电极的底部与驰豫层欧姆接触。
上述带有张应变薄膜的中红外GeSn发光器的制备方法,包括以下步骤:
步骤1:在SOI衬底层上,利用分子束外延技术,依次生长赝衬底层、驰豫层。
步骤2:在驰豫层上利用分子束外延技术生长n+型GeSn层、本征GeSn层、p+型GeSn层;其中p+型GeSn材料采用硼离子注入工艺、n+型GeSn材料采用磷离子注入工艺,分别形成p+型GeSn层、n+型GeSn层。
步骤3:利用干法刻蚀将赝衬底层、驰豫层、n+型GeSn层、本征GeSn层、p+型GeSn层刻蚀成为直径为2.5μm的圆台,再将有源区刻蚀成为外直径为1.4μm、内直径为0.8μm的空心圆环柱体。
步骤4:利用PECVD工艺在有源区表面及驰豫层顶层沉积一层Si3N4薄膜,该Si3N4薄膜即为应变薄膜。
步骤5:应变薄膜残余应变释放之后,利用带胶剥离技术在p+型GeSn层顶部和驰豫层顶部形成第一金属电极和第二金属电极,其中第二金属电极不接触n+型GeSn层。
相比现有技术,本发明的有益效果在于:
本发明发光器结构为新型空心结构,使应变薄膜包裹在发光器整个有源区周围,有利于引入更大的三轴张应变。其关键在于,在发光器新型空心结构中有源区周围通过PECVD沉积具有2.5GPa残余应力的薄膜应变源Si3N4,残余应力释放过程中,在发光器有源区引入1.07%三轴张应变,促进GeSn材料直接带隙的减小,使得电子和空穴在GeSn内部的迁移率提高,载流子辐射复合效率提高,最终获得可覆盖2~5μm中红外发光波段的高发光效率器件。有源区材料为单晶GeSn材料,其通式为Ge1-xSnx(0≤x≤0.15),为能带可调半导体材料,且与Si材料属同族材料更便于硅基集成。另外,应变薄膜Si3N4为透明绝缘材料,不需要再进行绝缘工艺步骤,同时用作有源区表面的钝化层,提高发光器的可靠性。
附图说明
图1为带有张应变薄膜的中红外GeSn发光器的立体模式图。
图2为带有张应变薄膜的中红外GeSn发光器的XZ剖面图。
图3为带有张应变薄膜的中红外GeSn发光器的制备方法的步骤1的加工示意图。
图4为带有张应变薄膜的中红外GeSn发光器的制备方法的步骤2的加工示意图。
图5为带有张应变薄膜的中红外GeSn发光器的制备方法的步骤3的加工示意图。
图6为带有张应变薄膜的中红外GeSn发光器的制备方法的步骤4的加工示意图。
图7为带有张应变薄膜的中红外GeSn发光器的制备方法的步骤5的加工示意图。
图8为Ge0.92Sn0.08材料驰豫状态能带图。
图9为Ge0.90Sn0.10材料弛豫状态能带图。
图10为Ge0.90Sn0.10材料引入1.07%张应变能带图。
附图中标号:101—衬底层,102—赝衬底层,103—驰豫层,104—n+型GeSn层,105—i型GeSn层,106—p+型GeSn层,107—应变薄膜,108—第一金属电极,109—第二金属电极。
具体实施方式
下面通过具体实施方式对本发明进行更加详细的说明,以便于对本发明技术方案的理解,但并不用于对本发明保护范围的限制。
实施例1新型空心结构中红外GeSn发光器
如图1所示,该中红外GeSn发光器包括:由下至上依次设置的衬底层101、赝衬底层102、驰豫层103、n+型GeSn层104、本征GeSn层105、p+型GeSn层106。所述衬底层101为SOI衬底层,所述赝衬底层102为n+型Ge层,所述驰豫层103为n+型GeSn驰豫层,所述n+型GeSn层104为n+型磷(P)重掺杂Ge1-xSnx层,所述本征GeSn层105为i型Ge1-xSnx层,所述p+型GeSn层106为p+型硼(B)重掺杂Ge1-xSnx层。
有源区为空心圆柱,有源区周围包裹应变薄膜。
n+型GeSn层104、本征GeSn层105及p+型GeSn层106构成发光器的有源区p-i-n结构,具体的,有源区Ge1-xSnx材料的通式为Ge0.92Sn0.08,驰豫层材料的通式为Ge0.875Sn0.125
所述p+型GeSn层106顶部设置有第一金属电极108,第一金属电极108包括环形部和设置在环形部下方的柱形部,该柱形部与p+型GeSn层接触连接;在驰豫层顶部、有源区外侧设置第二金属电极109,第二金属电极109不接触n+型GeSn层,第二金属电极的底部与驰豫层接触相连。
因本实施例的p-i-n有源区单晶GeSn周围无Si3N4薄膜应变源,为驰豫状态的GeSn发光器件。弛豫状态的Ge0.92Sn0.08禁带宽度EG,Γ为0.569eV,EG,L为0.728eV,发光波长为2.18μm。能带图为图8所示。
实施例2
本实施例与实施例1基本相同,不同之处在于:p-i-n有源区单晶GeSn材料的通式为Ge0.90Sn0.10。随着Sn组分的增加,相对于L能谷,Γ能谷的下降速度更快,EG,Γ为0.531eV,EG,L为0.706eV,能带图为图9所示。与实施例1相比较,弛豫的Ge0.90Sn0.10EG,Γ降低了0.038eV,EG,L降低了0.022eV,发光波长拓展到2.34μm。
实施例3带有张应变薄膜的中红外GeSn发光器
本实施例与实施例2基本相同,不同之处在于:p-i-n有源区周围沉积300nm应变薄膜Si3N4,在其2.5GPa残余应力的释放过程中,向发光器有源区引入1.07%三轴张应变,有效地调制了能带结构。应变的Ge0.90Sn0.10禁带宽度EG,Γ为0.360eV,EG,L为0.582eV,发光波长拓展至3.44μm,能带图为图10所示。与弛豫的Ge0.90Sn0.10相比较,在1.07%的张应变作用下Ge0.90Sn0.10的EG,Γ降低了0.171eV,EG,L降低了0.124eV,发光波长向中红外方向拓展了1.1μm。
实施例4:带张有应变薄膜的中红外GeSn发光器的制备
包括以下步骤:
步骤1:如图3所示,在SOI衬底层上,利用分子束外延技术及原位掺杂技术依次生长一层单晶Ge材料形成赝衬底层102;一层驰豫的n+型Ge0.875Sn0.125材料以形成驰豫层103,以减弱有源区GeSn内的压应变;
步骤2:如图4所示,在驰豫层上依次生长一层n+型Ge0.90Sn0.10的材料,一层本征Ge0.90Sn0.10材料,一层p+型Ge0.90Sn0.10材料,其中p+型GeSn材料采用硼离子注入工艺,形成p+型GeSn层;n+型GeSn材料采用磷离子注入工艺,形成n+型GeSn层;
步骤3:如图5所示,利用干法刻蚀将赝衬底层、驰豫层、n+型GeSn层、本征GeSn层、p+型GeSn层刻蚀成为直径为2.5μm的圆台,再将有源区刻蚀成为外直径为1.4μm,内直径为0.8μm的空心圆环柱体。
步骤4:如图6所示,利用PECVD工艺在有源区表面及驰豫层顶层沉积一层Si3N4薄膜,形成应变薄膜107。
步骤5:如图7所示,利用带胶剥离技术在p+型GeSn层顶部和驰豫层顶部分别形成第一金属电极108和第二金属电极109,其中第二金属电极不接触n+型GeSn层。
以上所述之实施例,只是本发明的较佳实施例而已,并非限制本发明的实施范围,故凡依本发明专利范围所述的构造、特征及原理所做的等效变化或修饰,均应包括于本发明申请专利范围内。

Claims (10)

1.带有张应变薄膜的中红外GeSn发光器,其特征在于,包括由下至上依次设置的:衬底层、赝衬底层、驰豫层、有源区;
所述驰豫层为n+型GeSn驰豫层,
所述有源区由下至上依次为n+型GeSn层、本征GeSn层和p+型GeSn层;有源区为空心圆柱,有源区周围包裹一层应变薄膜,所述应变薄膜为具有残余压应变的Si3N4薄膜;
在p+型GeSn层上还设置有第一金属电极,在驰豫层顶端还设置有第二金属电极。
2.根据权利要求1所述的带有张应变薄膜的中红外GeSn发光器,其特征在于,所述衬底层为SOI衬底层,所述赝衬底层为n+型Ge层。
3.根据权利要求1所述的带有张应变薄膜的中红外GeSn发光器,其特征在于,所述有源区的GeSn材料通式为Ge1-x Sn x ,0≤x≤0.15。
4.根据权利要求3所述的带有张应变薄膜的中红外GeSn发光器,其特征在于,所述驰豫层的GeSn材料通式为Ge1-y Sn y ,其中y>x
5.根据权利要求1所述的带有张应变薄膜的中红外GeSn发光器,其特征在于,应变薄膜杨氏模量为250GPa,泊松比为0.26。
6.根据权利要求1所述的带有张应变薄膜的中红外GeSn发光器,其特征在于,所述第一金属电极包括环形部和设置在环形部下方的柱形部,该柱形部与p+型GeSn层接触连接。
7.根据权利要求1所述的带有张应变薄膜的中红外GeSn发光器,其特征在于,所述第二金属电极呈环形,第二金属电极位于有源区外侧、不接触n+型GeSn层。
8.权利要求1所述的带有张应变薄膜的中红外GeSn发光器的制备方法,其特征在于,包括以下步骤:
步骤1:在衬底层上,利用分子束外延技术,依次生长赝衬底层、驰豫层;
步骤2:在驰豫层上利用分子束外延技术生长n+型GeSn层、本征GeSn层、p+型GeSn层;
步骤3:利用干法刻蚀将赝衬底层、驰豫层、n+型GeSn层、本征GeSn层、p+型GeSn层刻蚀成为圆台,再将有源区刻蚀成空心圆环柱体;
步骤4:利用PECVD工艺在有源区表面及驰豫层顶层沉积一层Si3N4薄膜作为应变薄膜;
步骤5:应变薄膜残余应变释放之后,利用带胶剥离技术在p+型GeSn层顶部和驰豫层顶部形成第一金属电极和第二金属电极,其中第二金属电极不接触n+型GeSn层。
9.根据权利要求8述的制备方法,其特征在于,步骤2中,p+型GeSn料采用硼离子注入工艺、n+型GeSn材料采用磷离子注入工艺,分别形成p+型GeSn层、n+型GeSn层。
10.根据权利要求8述的制备方法,其特征在于,步骤3中,圆台的直径为2.5μm,空心圆环柱体的外直径为1.4μm、内直径为0.8μm。
CN202210911667.1A 2022-07-30 2022-07-30 带有张应变薄膜的中红外GeSn发光器 Active CN115274907B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210911667.1A CN115274907B (zh) 2022-07-30 2022-07-30 带有张应变薄膜的中红外GeSn发光器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210911667.1A CN115274907B (zh) 2022-07-30 2022-07-30 带有张应变薄膜的中红外GeSn发光器

Publications (2)

Publication Number Publication Date
CN115274907A true CN115274907A (zh) 2022-11-01
CN115274907B CN115274907B (zh) 2024-05-10

Family

ID=83747871

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210911667.1A Active CN115274907B (zh) 2022-07-30 2022-07-30 带有张应变薄膜的中红外GeSn发光器

Country Status (1)

Country Link
CN (1) CN115274907B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116314215A (zh) * 2023-05-23 2023-06-23 中国科学院半导体研究所 多波段探测器及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1774815A (zh) * 2003-06-13 2006-05-17 住友电气工业株式会社 场效应晶体管
CN104300013A (zh) * 2014-05-05 2015-01-21 重庆大学 带有应变源的GeSn红外探测器
CN104425273A (zh) * 2013-09-02 2015-03-18 中芯国际集成电路制造(上海)有限公司 半导体器件的制造方法
CN106024922A (zh) * 2016-03-02 2016-10-12 西安电子科技大学 基于GeSn材料的光电晶体管及其制作方法
CN206595266U (zh) * 2017-02-10 2017-10-27 陕西学前师范学院 用于长波光通信的光电探测器
CN107342535A (zh) * 2017-06-20 2017-11-10 西安电子科技大学 基于GeSn/SiGeSn材料的应变多量子阱激光器及其制作方法
CN112713215A (zh) * 2020-12-03 2021-04-27 广东省大湾区集成电路与系统应用研究院 一种探测器的集成结构及集成方法
US20220102942A1 (en) * 2020-09-28 2022-03-31 Board Of Trustees Of The University Of Arkansas SiGeSn LASER DIODES AND METHOD OF FABRICATING SAME
CN115548185A (zh) * 2021-12-13 2022-12-30 郑州轻工业大学 带有磁致应变源的GeSn发光二极管及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1774815A (zh) * 2003-06-13 2006-05-17 住友电气工业株式会社 场效应晶体管
CN104425273A (zh) * 2013-09-02 2015-03-18 中芯国际集成电路制造(上海)有限公司 半导体器件的制造方法
CN104300013A (zh) * 2014-05-05 2015-01-21 重庆大学 带有应变源的GeSn红外探测器
CN106024922A (zh) * 2016-03-02 2016-10-12 西安电子科技大学 基于GeSn材料的光电晶体管及其制作方法
CN206595266U (zh) * 2017-02-10 2017-10-27 陕西学前师范学院 用于长波光通信的光电探测器
CN107342535A (zh) * 2017-06-20 2017-11-10 西安电子科技大学 基于GeSn/SiGeSn材料的应变多量子阱激光器及其制作方法
US20220102942A1 (en) * 2020-09-28 2022-03-31 Board Of Trustees Of The University Of Arkansas SiGeSn LASER DIODES AND METHOD OF FABRICATING SAME
CN112713215A (zh) * 2020-12-03 2021-04-27 广东省大湾区集成电路与系统应用研究院 一种探测器的集成结构及集成方法
CN115548185A (zh) * 2021-12-13 2022-12-30 郑州轻工业大学 带有磁致应变源的GeSn发光二极管及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUNG, WT: "《Silicon-based high-responsivity GeSn short-wave infrared heterojunction phototransistors with a floating base》", 《OPTICS LETTERS》 *
LIU, Y: "《Theoretical Investigation of Tensile-Strained GeSn/SiGeSn Multiple Quantum Well Laser Wrapped in Si3N4 Liner Stressor》", 《IEEE PHOTONICS JOURNAL》 *
张庆芳: "《基于GeSn合金的中红外探测与发光器件应变工程研究》", 《中国博士学位论文全文数据库信息科技辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116314215A (zh) * 2023-05-23 2023-06-23 中国科学院半导体研究所 多波段探测器及其制备方法
CN116314215B (zh) * 2023-05-23 2023-08-22 中国科学院半导体研究所 多波段探测器及其制备方法

Also Published As

Publication number Publication date
CN115274907B (zh) 2024-05-10

Similar Documents

Publication Publication Date Title
US7358524B2 (en) Nanowire device and method of fabricating the same
US9117954B2 (en) High efficiency nanostructured photovoltaic device manufacturing
US9064991B2 (en) Photovoltaic devices with enhanced efficiencies using high-aspect ratio nanostructures
JP2008177539A (ja) 傾斜ハイブリッド非晶質シリコンナノワイヤー太陽電池
US20090217972A1 (en) Techniques for Enhancing Efficiency of Photovoltaic Devices Using High-Aspect-Ratio Nanostructures
US20110155236A1 (en) Nanowire Solar Cell and Manufacturing Method of the Same
CN106449855A (zh) 单行载流子光电探测器及其制作方法
EP2253021B1 (en) Photovoltaic devices with high-aspect-ratio nanostructures
CN115274907B (zh) 带有张应变薄膜的中红外GeSn发光器
KR101957801B1 (ko) 플렉서블 이중접합 태양전지
CN114220878A (zh) 一种具有载流子传输层的Ga2O3/GaN日盲紫外探测器及其制备方法
CN109148638B (zh) 红外探测器及其制备方法
WO2016008288A1 (zh) 基于应变型异质结量子点的太阳能电池装置及其制备方法
CN210805800U (zh) 生长在石墨烯基板上GaN纳米柱阵列的柔性紫外探测器
WO2018192199A1 (zh) 多结叠层激光光伏电池及其制作方法
CN210778633U (zh) 一种氮化物多结太阳能电池
CN115775848A (zh) 垂直结构GaN紫外光探测器及其制备方法
CN115548185A (zh) 带有磁致应变源的GeSn发光二极管及其制备方法
CN109449757B (zh) SiGe/Ge/SiGe双异质结激光器及其制备方法
US20070228459A1 (en) Integrated semiconductor circuits and methods of making integrated semiconductor circuits
TWI313026B (en) Multi layer compound semiconductor solar photovoltaic device and its growing method
CN116190497B (zh) 一种基于强耦合MoS2/MoO3异质结光电探测器的制备方法
CN116666500B (zh) 锗光电探测器及通过热失配应力提高其长波响应的方法
CN214797436U (zh) 一种采用栅调制石墨烯/半导体肖特基结的光电探测器
CN218277720U (zh) 一种基于钙钛矿纳米线径向结的光电探测器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant