CN115261827B - 一种硫化铟锌复合普鲁士蓝薄膜的制备方法 - Google Patents

一种硫化铟锌复合普鲁士蓝薄膜的制备方法 Download PDF

Info

Publication number
CN115261827B
CN115261827B CN202210755357.5A CN202210755357A CN115261827B CN 115261827 B CN115261827 B CN 115261827B CN 202210755357 A CN202210755357 A CN 202210755357A CN 115261827 B CN115261827 B CN 115261827B
Authority
CN
China
Prior art keywords
zinc sulfide
indium zinc
prussian blue
preparation
znin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210755357.5A
Other languages
English (en)
Other versions
CN115261827A (zh
Inventor
刘琪
郑梦姣
来龙杰
胡继月
冒国兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Polytechnic University
Original Assignee
Anhui Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Polytechnic University filed Critical Anhui Polytechnic University
Priority to CN202210755357.5A priority Critical patent/CN115261827B/zh
Publication of CN115261827A publication Critical patent/CN115261827A/zh
Application granted granted Critical
Publication of CN115261827B publication Critical patent/CN115261827B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/02Electrolytic coating other than with metals with organic materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Electrochemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及新材料技术领域,且公开了一种硫化铟锌复合普鲁士蓝薄膜的制备方法,先采用水热法制备ZnIn2S4纳米片薄膜,设备简单,可控性强;再采用电沉积法,在ZnIn2S4纳米片沉积PB纳米颗粒,形成ZnIn2S4/PB复合薄膜。依照本发明方法制备的硫化铟锌复合普鲁士蓝薄膜结合了ZnIn2S4和PB两种材料各自的特点和优势,两者之间形成异质结结构,可以有效抑制光生电子与空穴的复合,提升载流子的迁移速率,从而提升了半导体光阳极的PEC性能。

Description

一种硫化铟锌复合普鲁士蓝薄膜的制备方法
技术领域
本发明涉及新材料技术领域,具体为一种硫化铟锌复合普鲁士蓝薄膜的制备方法。
背景技术
化石燃料的过度燃烧导致的能源问题和环境污染问题已经引起越来越多人的关注,为了解决这些问题,许多研究人员将目光投向可再生能源。太阳能和氢能被认为是最有发展前途的可再生能源。在这种情况下,基于半导体光催化剂的光催化技术被认为是一种可再生、经济、安全和清洁的处理技术,并且可以进行各种催化反应:如光催化分解水、降解染料及抗生素、减少二氧化碳、选择性氧化反应等,由于其应用广泛,所以半导体光催化剂的研究具有重要意义。因此,寻找可以吸收可见光且有较高的载流子迁移率和传输效率的光催化半导体是至关重要的。
ZnIn2S4因其层状结构、优异的光学特性、合适的带隙位置、合适的氧化还原电位和优异的物理化学稳定性而被认为是一种潜在的污染物降解和析氢光催化剂。其在光催化,电荷储存,电化学记录和热电应用中有巨大潜在价值。但是,对于单一的ZnIn2S4来讲,光吸收能力较低,光生电子与空穴复合严重等问题限制了其应用。为了提高光催化效率,选择合适的改性方法,用以扩大可见光吸收区间以及抑制光生电子空穴的复合。常见的改性方法有表面贵金属沉积;金属离子掺杂;复合半导体;碳类似物修饰;导电聚合物修饰等。
普鲁士蓝(PB)是一种由金属离子和氰化物基配体配位构建的多孔配位聚合物,组成和结构可调节,合成条件比较温和,被广泛应用于各种形式的纳米材料,例如金属硫化物,氧化物和碳基复合材料等。
本申请旨在提供一种结合了ZnIn2S4与普鲁士蓝(PB)两种材料各自的特点和优势的多功能型复合材料,以克服上述ZnIn2S4光吸收能力较低,光生电子与空穴复合严重的问题。
发明内容
针对背景技术中提出的现有ZnIn2S4在使用过程中存在的不足,本发明提供了一种硫化铟锌复合普鲁士蓝薄膜的制备方法,具备抑制光生电子与空穴的复合,提升载流子的迁移速率,从而提升半导体光阳极的PEC性能的优点,解决了上述背景技术中提出的ZnIn2S4光吸收能力较低,光生电子与空穴复合严重等问题限制了其应用的问题。
本发明提供如下技术方案:一种硫化铟锌复合普鲁士蓝薄膜的制备方法,包括以下步骤:
步骤一、在FTO导电玻璃上制备ZnO晶种:将乙酸锌加入到无水乙醇中至完全溶解,将FTO导电玻璃放入上述溶液中浸泡,然后取出FTO导电玻璃并将其放入马弗炉中退火,获取表面预植ZnO晶种的FTO导电玻璃;
步骤二、利用水热法在FTO导电玻璃上生长硫化铟锌纳米片薄膜:将三氯化铟(InCl3)、氯化锌(ZnCl2)和硫代乙酰胺(CH3CSNH2)按比例配成反应溶液,反应溶液经搅拌均匀后转移至反应釜中,将带有ZnO晶种的FTO导电玻璃放入反应溶液中并进行水热反应,获取ZnIn2S4纳米片薄膜,所制备的ZnIn2S4纳米片薄膜用去离子水多次冲洗,并在室温下干燥、备用;
步骤三、采用电沉积法在硫化铟锌纳米片薄膜上沉积普鲁士蓝纳米颗粒,制备ZnIn2S4/PB复合光阳极:在室温下,使用三电极体系恒电位进行电化学沉积PB,电沉积的电解液由铁氰化钾(K3FeC6N6)、三氯化铁(FeCl3)和氯化钾(KCl)组成,将FTO导电玻璃用作工作电极,铂板用作对电极,Ag/AgCl用作参比电极,电沉积结束后,将用作阳极的FTO导电玻璃用去离子水冲洗并干燥。
优选的,步骤一中所述溶液中乙酸锌的浓度为0.005~0.015mol/L。
优选的,步骤一中所述的浸泡时间为30~60min,马弗炉退火温度为350~450℃,退火时长为30~60min。
优选的,步骤二中所述反应溶液的组成如下:InCl3的摩尔浓度为40~50mmol/L,ZnCl2的摩尔浓度为20~30mmol/L,CH3CSNH2的摩尔浓度为190~210mmol/L,且反应溶液中InCl3、ZnCl2和CH3CSNH2摩尔比为2:1:8。
优选的,步骤二中所述水热反应温度为150℃~200℃,反应时间为3~6h。
优选的,步骤三中所述电化学沉积的参数为:电压为0.2~0.4mV,沉积时间为5~60s。
优选的,步骤三中所述的电解液中K3FeC6N6的浓度为5~15mmol/L,FeCl3的浓度为5~15mmol/L,KCl的浓度为40~60mmol/L。
优选的,步骤三中所述干燥温度是50~100℃。
本发明具备以下有益效果:
本发明将硫化铟锌生长到FTO导电玻璃表面,设备简单,可控性强。再通过电沉积制备ZnIn2S4/PB复合薄膜,结合了ZnIn2S4和PB两种材料各自的特点和优势,两者之间形成异质结结构,可以有效抑制光生电子与空穴的复合,提升载流子的迁移速率,从而提升了半导体光阳极的PEC性能。
附图说明
图1为实施案例1产品的XRD图;
图2为单一的ZnIn2S4和不同沉积时间的复合薄膜SEM图;
图3为单一ZnIn2S4、单一PB以及不同沉积时间的光电流图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
本发明的使用方法如下:
步骤一、室温下,将0.5mmol乙酸锌加入到50mL无水乙醇中直至完全溶解,将上述溶液搅拌均匀,将清洗干净的FTO导电玻璃放入上述溶液中浸泡60min,然后将导电玻璃放入马弗炉中退火,退火温度为400℃,退火时间为60min,得到带有ZnO晶种的FTO导电玻璃。
步骤二、InCl3使用InCl3·4H2O获取,取40ml含有1mmol ZnCl2、2mmol InCl3·4H2O、8mmol CH3CSNH2的去离子水溶液,搅拌30min,制得前驱体溶液,然后将带有ZnO晶种的FTO导电玻璃导电面朝下置于100mL的高压反应釜中,加入前驱体溶液,水热反应温度为180℃,反应时间为4h。水热反应结束后,用去离子水反复清洗ZnIn2S4纳米片薄膜,然后放入60℃烘箱干燥备用。
步骤三、在室温下,使用电化学工作站三电极体系进行电化学沉积,采用恒电位法;将上述制备的FTO导电玻璃用作工作电极,铂板用作对电极,Ag/AgCl用作参比电极。电化学沉积的电解液中K3FeC6N6的浓度为10mmol/L、FeCl3的浓度为10mmol/L、KCl的浓度为50mmol/L,沉积电位为0.3mV,沉积时间为20s。待实验结束后用去离子水清洗干净,放入60℃烘箱干燥1h。
实施例2:与实施例一相比,区别在于步骤三中电化学沉积PB的时间为10s。
实施例3:与实施例一相比,区别在于步骤三中电化学沉积PB的时间为30s。
参阅图1所示,为实施案例1产品的XRD图。由于FTO具有较强的衍射峰,因此只在17.5°出现了PB的衍射峰,在衍射角21.5°,27.6°,47.1°出现的衍射峰分别对应ZnIn2S4六方相的(006)、(102)、(110)晶面。在ZnIn2S4/PB复合材料XRD图中并未观察到PB的衍射峰,可能是由于PB沉积时间较短,含量较少造成的,此外,ZnIn2S4相关的峰强度降低,可能是PB复合在ZnIn2S4表面,阻止了X射线渗透到ZnIn2S4薄膜上。
图2为单一的ZnIn2S4和不同沉积时间的复合薄膜SEM图。图2a中可以看出ZnIn2S4纳米片均匀分布在FTO上,厚度大约为40~70nm。图2b为沉积时间10s时,ZnIn2S4纳米片表面有少量的纳米颗粒;当反应时间为20s时,ZnIn2S4纳米片表面纳米颗粒增多,厚度大约增加到90~110nm,形成ZnIn2S4/PB异质结结构,进一步延长沉积时间为30s时,表面沉积的纳米颗粒过多厚度大约增加到120-130nm,会覆盖到部分ZnIn2S4纳米片结构,阻止了部分光的散射和反射。从图中可以看出ZnIn2S4表面均匀生长了一层PB。
图3为单一ZnIn2S4、单一PB以及不同沉积时间的光电流图,从图中可以看出ZnIn2S4/PB复合薄膜的光电流比单一ZnIn2S4和单一PB都要高。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (8)

1.一种硫化铟锌复合普鲁士蓝薄膜的制备方法,其特征在于:包括以下步骤:
步骤一、在FTO导电玻璃上制备ZnO晶种:将乙酸锌加入到无水乙醇中至完全溶解,将FTO导电玻璃放入上述溶液中浸泡,然后取出FTO导电玻璃并将其放入马弗炉中退火,获取表面预植ZnO晶种的FTO导电玻璃;
步骤二、利用水热法在FTO导电玻璃上生长硫化铟锌纳米片薄膜:将三氯化铟(InCl3)、氯化锌(ZnCl2)和硫代乙酰胺(CH3CSNH2)按比例配成反应溶液,反应溶液经搅拌均匀后转移至反应釜中,将带有ZnO晶种的FTO导电玻璃放入反应溶液中并进行水热反应,获取ZnIn2S4纳米片薄膜,所制备的ZnIn2S4纳米片薄膜用去离子水多次冲洗,并在室温下干燥、备用;
步骤三、采用电沉积法在硫化铟锌纳米片薄膜上沉积普鲁士蓝纳米颗粒,制备ZnIn2S4/PB复合光阳极:在室温下,使用三电极体系恒电位进行电化学沉积PB,电沉积的电解液由铁氰化钾(K3FeC6N6)、三氯化铁(FeCl3)和氯化钾(KCl)组成,将FTO导电玻璃用作工作电极,铂板用作对电极,Ag/AgCl用作参比电极,电沉积结束后,将用作阳极的FTO导电玻璃用去离子水冲洗并干燥。
2.根据权利要求1所述的一种硫化铟锌复合普鲁士蓝薄膜的制备方法,其特征在于:步骤一中所述溶液中乙酸锌的浓度为0.005~0.015mol/L。
3.根据权利要求1所述的一种硫化铟锌复合普鲁士蓝薄膜的制备方法,其特征在于:步骤一中所述的浸泡时间为30~60min,马弗炉退火温度为350~450℃,退火时长为30~60min。
4.根据权利要求1所述的一种硫化铟锌复合普鲁士蓝薄膜的制备方法,其特征在于:步骤二中所述反应溶液的组成如下:InCl3的摩尔浓度为40~50mmol/L,ZnCl2的摩尔浓度为20~30mmol/L,CH3CSNH2的摩尔浓度为190~210mmol/L,且反应溶液中InCl3、ZnCl2和CH3CSNH2摩尔比为2:1:8。
5.根据权利要求1所述的一种硫化铟锌复合普鲁士蓝薄膜的制备方法,其特征在于:步骤二中所述水热反应温度为150℃~200℃,反应时间为3~6h。
6.根据权利要求1所述的一种硫化铟锌复合普鲁士蓝薄膜的制备方法,其特征在于:步骤三中所述电化学沉积的参数为:电压为0.2~0.4mV,沉积时间为5~60s。
7.根据权利要求1所述的一种硫化铟锌复合普鲁士蓝薄膜的制备方法,其特征在于:步骤三中所述的电解液中K3FeC6N6的浓度为5~15mmol/L,FeCl3的浓度为5~15mmol/L,KCl的浓度为40~60mmol/L。
8.根据权利要求1所述的一种硫化铟锌复合普鲁士蓝薄膜的制备方法,其特征在于:步骤三中所述干燥温度是50~100℃。
CN202210755357.5A 2022-06-29 2022-06-29 一种硫化铟锌复合普鲁士蓝薄膜的制备方法 Active CN115261827B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210755357.5A CN115261827B (zh) 2022-06-29 2022-06-29 一种硫化铟锌复合普鲁士蓝薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210755357.5A CN115261827B (zh) 2022-06-29 2022-06-29 一种硫化铟锌复合普鲁士蓝薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN115261827A CN115261827A (zh) 2022-11-01
CN115261827B true CN115261827B (zh) 2023-08-11

Family

ID=83764601

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210755357.5A Active CN115261827B (zh) 2022-06-29 2022-06-29 一种硫化铟锌复合普鲁士蓝薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN115261827B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012031357A1 (en) * 2010-09-10 2012-03-15 Ozin Geoffrey A Photoactive material comprising nanoparticles of at least two photoactive constiuents
CN104900945A (zh) * 2015-04-22 2015-09-09 许昌学院 ITO衬底上无溶剂元素直接制备PbS薄膜的方法
CN105776431A (zh) * 2016-05-05 2016-07-20 哈尔滨工程大学 一种电催化电极的制备及应用方法
CN112456558A (zh) * 2020-12-08 2021-03-09 安徽工程大学 一种氧化钨/普鲁士蓝核壳纳米棒薄膜及其制备方法
WO2022062228A1 (zh) * 2020-09-22 2022-03-31 深圳先进技术研究院 一种构建z型异质结光阳极的方法及z型异质结光阳极
CN114588897A (zh) * 2022-03-25 2022-06-07 安徽工程大学 一种复合多孔光触媒材料及其制备方法和应用
WO2022206038A1 (zh) * 2021-03-29 2022-10-06 南京邮电大学 一种铜锌锡硫硒半透明太阳能电池器件及其制备方法
CN115287696A (zh) * 2022-07-27 2022-11-04 常州大学 一种高效硫化铟锌光阳极的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112919593B (zh) * 2021-01-12 2022-05-13 同济大学 石墨烯包覆钴类普鲁士蓝纳米晶复合材料的制备方法及采用其制备工作电极的方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012031357A1 (en) * 2010-09-10 2012-03-15 Ozin Geoffrey A Photoactive material comprising nanoparticles of at least two photoactive constiuents
CN104900945A (zh) * 2015-04-22 2015-09-09 许昌学院 ITO衬底上无溶剂元素直接制备PbS薄膜的方法
CN105776431A (zh) * 2016-05-05 2016-07-20 哈尔滨工程大学 一种电催化电极的制备及应用方法
WO2022062228A1 (zh) * 2020-09-22 2022-03-31 深圳先进技术研究院 一种构建z型异质结光阳极的方法及z型异质结光阳极
CN112456558A (zh) * 2020-12-08 2021-03-09 安徽工程大学 一种氧化钨/普鲁士蓝核壳纳米棒薄膜及其制备方法
WO2022206038A1 (zh) * 2021-03-29 2022-10-06 南京邮电大学 一种铜锌锡硫硒半透明太阳能电池器件及其制备方法
CN114588897A (zh) * 2022-03-25 2022-06-07 安徽工程大学 一种复合多孔光触媒材料及其制备方法和应用
CN115287696A (zh) * 2022-07-27 2022-11-04 常州大学 一种高效硫化铟锌光阳极的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Liu, Q et.al.Enhanced Photoelectrochemical Performance of ZnIn2S4 Electrodes Modified by Prussian Blue.《CHEMISTRY LETTERS》.2023,全文. *

Also Published As

Publication number Publication date
CN115261827A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
CN109402656B (zh) 一种磷化钴修饰钼掺杂钒酸铋光电极的制备方法
Kim et al. The study of post annealing effect on Cu2O thin-films by electrochemical deposition for photoelectrochemical applications
JP4803548B2 (ja) 酸化物薄膜太陽電池
Luo et al. An ultra-thin NiOOH layer loading on BiVO4 photoanode for highly efficient photoelectrochemical water oxidation
Hu et al. High-performance 1D type-II TiO2@ ZnO core-shell nanorods arrays photoanodes for photoelectrochemical solar fuel production
CN109778223B (zh) 一种ZnO修饰WO3/BiVO4异质结的制备方法及其在光电催化中的应用
Li et al. Trimetallic oxyhydroxide modified 3D coral-like BiVO4 photoanode for efficient solar water splitting
Wang et al. Synthesis and performance of Cu2ZnSnS4 semiconductor as photocathode for solar water splitting
Salehmin et al. Recent advances on state-of-the-art copper (I/II) oxide as photoelectrode for solar green fuel generation: Challenges and mitigation strategies
Dhandole et al. Efficient charge transfers in hematite photoanode integrated by fluorine and zirconia co-doping for photoelectrochemical water splitting
CN110760874B (zh) 一种利用废弃磷酸铁锂电池制备氧化铁光阳极薄膜的方法
Esmaeili-Zare et al. CIS/CdS/ZnO/ZnO: Al modified photocathode for enhanced photoelectrochemical behavior under visible irradiation: Effects of pH and concentration of electrolyte solution
CN111962090B (zh) 一种Ti3C2-MXene修饰的α-氧化铁光电极及其制备方法
Jeong et al. All-solution-processed BiVO4/SnO2 nanorods-axial-heterostructure with improved charge collection properties for solar water-splitting
CN113293404B (zh) 一种异质结光阳极材料及其制备方法和应用
JP2008243752A (ja) 電極及びその製造方法、並びに色素増感型太陽電池
CN115261827B (zh) 一种硫化铟锌复合普鲁士蓝薄膜的制备方法
CN109518213B (zh) 一种NiB助剂改性的钒酸铋纳米多孔薄膜电极及其制备方法和应用
CN115233255A (zh) MOF衍生的NiO/BiVO4复合光电极制备方法及其光电应用
CN113718288A (zh) 一种新型CuCoOx负载的Mo-BiVO4复合光阳极的制备方法和应用
Najafi et al. Electrochemical atomic layer deposition of cadmium telluride for Pt decoration: Application as novel photoelectrocatalyst for hydrogen evolution reaction
Wang et al. Nickel sulfide cocatalyst-modified silicon nanowire arrays for efficient seawater-based hydrogen generation
CN116815233B (zh) 一种rGO修饰的InGaN纳米柱光电极材料及其制备方法与应用
KR102368478B1 (ko) 게르마늄으로 도핑된 헤마타이트를 포함하는 포토에노드, 이의 제조방법, 및 이를 포함하는 물분해 장치
CN115611373B (zh) 一种FeOOH/In-BiVO4(L)光电阳极材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Liu Qi

Inventor after: Zheng Mengjiao

Inventor after: Lai Longjie

Inventor after: Hu Jiyue

Inventor after: Mao Guobing

Inventor before: Liu Qi

Inventor before: Zheng Mengjiao

Inventor before: Lai Longjie

Inventor before: Hu Jiyue

Inventor before: Mao Guobing

GR01 Patent grant
GR01 Patent grant