CN115259892B - 一种基于镍渣的气凝胶多级孔发泡陶瓷及其制备方法 - Google Patents

一种基于镍渣的气凝胶多级孔发泡陶瓷及其制备方法 Download PDF

Info

Publication number
CN115259892B
CN115259892B CN202210755807.0A CN202210755807A CN115259892B CN 115259892 B CN115259892 B CN 115259892B CN 202210755807 A CN202210755807 A CN 202210755807A CN 115259892 B CN115259892 B CN 115259892B
Authority
CN
China
Prior art keywords
nickel slag
ceramic
aerogel
agent
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210755807.0A
Other languages
English (en)
Other versions
CN115259892A (zh
Inventor
吴其胜
孙辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yancheng Institute of Technology
Original Assignee
Yancheng Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yancheng Institute of Technology filed Critical Yancheng Institute of Technology
Priority to CN202210755807.0A priority Critical patent/CN115259892B/zh
Publication of CN115259892A publication Critical patent/CN115259892A/zh
Application granted granted Critical
Publication of CN115259892B publication Critical patent/CN115259892B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/10Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by using foaming agents or by using mechanical means, e.g. adding preformed foam
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/1305Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/131Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/1328Waste materials; Refuse; Residues without additional clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/138Waste materials; Refuse; Residues from metallurgical processes, e.g. slag, furnace dust, galvanic waste
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/22Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in calcium oxide, e.g. wollastonite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62204Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5228Silica and alumina, including aluminosilicates, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5236Zirconia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种基于镍渣的气凝胶多级孔发泡陶瓷及其制备方法,包括镍渣、SiO2气凝胶、高铝水泥、粘结剂、助熔剂、化学发泡剂及增韧剂;制备时将镍渣破碎球磨过筛后,与高铝水泥、SiO2气凝胶、粘结剂、助熔剂、发泡剂及增韧剂混合球磨制得混合物,将上述混合物造粒、压制成型后脱模,并进行高温煅烧,即可。该发泡陶瓷具有宏孔和介孔的多级孔结构,使得该发泡陶瓷在具有较高孔隙率的同时具有优异的抗压强度,应用于墙体保温建筑材料,不仅力学强度高,且同时具有轻便保温性能。

Description

一种基于镍渣的气凝胶多级孔发泡陶瓷及其制备方法
技术领域
本发明属于陶瓷制备领域,尤其涉及一种基于镍渣的气凝胶多级孔发泡陶瓷及其制备方法。
背景技术
镍渣是有色金属镍冶金行业生产过程中产生的废弃物,据报道,每生产1t 镍,将排放6-16t镍铁渣。目前,处理镍渣的方法主要集中于水泥混凝土和建筑墙体材料中,例如专利CN109608062A公开了一种富硅镁镍渣混凝土增强剂及镍渣增强混凝土材料,专利CN108863255A公开了一种镍渣混凝土,专利CN105130492A公开了一种镍渣加气混凝土及其制备工艺等。这些方法都能够资源化镍渣,不过产品附加值很低且远远不够满足国内镍渣的排放。
发泡陶瓷是一种含有很多开口或闭口气泡的多孔材料,其开口孔隙率多、使用寿命长、产品再生性能好,具有耐高温和耐高压、抗酸碱腐蚀的优异性能等优点,可以适用于外墙保温、管道隔热、高压气体排气消音、气体吸附及电解滤膜等领域。诸多学者探索利用工业固废为原料制备发泡陶瓷,例如专利 CN113480324A公开了一种粉煤灰和冶金废渣制备的发泡陶瓷及其制备方法,专利CN113387717A公开了一种高铁型全尾矿基发泡陶瓷保温材料及其制备方法,专利CN113061049A公开了一种高强赤泥基发泡陶瓷及其制备方法与应用,但该类发泡工艺单一,制备的产品不具有多级孔特征。
气凝胶是一种低密度、低导热系数、高比表面积、高孔隙率的介孔材料,其中以SiO2气凝胶使用最为广泛,制备成的气凝胶复合材料具有轻便保温的性能,比如气凝胶毯和气凝胶毛毡。如果将气凝胶优异的轻便保温性能结合到发泡陶瓷上,充分利用生产出复合材料,是材料发展的一个重要方向。
发明内容
发明目的:本发明的第一目的是提供一种具有宏孔和介孔,且基于镍渣的多级孔发泡陶瓷材料;
本发明的第二目的是提供上述发泡陶瓷的制备方法。
技术方案:本发明的基于镍渣的气凝胶多级孔发泡陶瓷,按重量份数包括如下原料:镍渣20-60份、SiO2气凝胶0.1-1份、高铝水泥30-70份、粘结剂1-5 份、助熔剂1-5份及化学发泡剂1-4份;其中,所述化学发泡剂为偶氮二甲酰胺、对甲苯磺酰肼或苯磺酰肼。
本发明将镍渣与高铝水泥相复配制得MgO-SiO2-Al2O3三元结构体系的堇青石-钙长石复合陶瓷,且基于该结构陶瓷,复配SiO2气凝胶及化学发泡剂,SiO2气凝胶在球磨时能均匀分布于镍渣和高铝水泥颗粒接触的空隙中,在高温下能够起到分散隔离陶瓷内部由于化学发泡产生的联通气体,从而使部分联通气体分离生成一部分介孔,且气孔分散均匀,形成具有宏孔和介孔的多级孔结构,宏孔和介孔的结构使得陶瓷呈现较低的密度的同时,具有优异的抗压强度。此外,结合助熔剂和增韧剂,助熔剂能够与镍渣高铝水泥形成低共熔化合物,大幅度提高生成堇青石-钙长石复合陶瓷相的烧结温度,于1020℃便可以生成。增韧剂能够增加多级孔材料力学性能,提高该多级孔陶瓷的抗压强度。
进一步说,该发泡陶瓷还可包括增韧剂0.2-1份。
进一步说,该发泡陶瓷的粘结剂至少可包括羧甲基纤维素、焦磷酸钠或聚乙烯醇中的一种。
进一步说,该发泡陶瓷的助熔剂至少可包括氟化镁、氟铝酸钾或四硼酸钠中的一种。
进一步说,该发泡陶瓷的增韧剂可为氧化锆或莫来石纤维。
本发明制备上述气凝胶镍渣多级孔发泡陶瓷的方法,包括如下步骤:
(1)将镍渣破碎球磨过筛后,与高铝水泥、SiO2气凝胶、粘结剂、助熔剂、发泡剂及增韧剂混合球磨20-50min,制得混合物料;
(2)将上述混合物料造粒、压制成型后脱模,并进行热处理反应,即可。
进一步说,该制备方法的步骤(2)中,压制成型的压力可为1-5MPa。
进一步说,该制备方法的步骤(2)中,高温煅烧是先于450-500℃条件下,保温反应20-30min,再于1020-1120℃条件下,保温反应60-120min。
有益效果:与现有技术相比,本发明的显著优点为:该发泡陶瓷具有宏孔和介孔的多级孔结构,使得该发泡陶瓷在具有较高孔隙率的同时具有优异的抗压强度,应用于墙体保温建筑材料,不仅力学强度高,且同时具有轻便保温性能。
附图说明
图1为本发明实施例2的发泡陶瓷宏孔结构SEM图;
图2为本发明实施例2的发泡陶瓷介孔结构SEM图;
图3为本发明实施例2的发泡陶瓷X射线衍射图谱;
图4为本发明实施例7的发泡陶瓷SEM图;
图5为本发明实施例7的发泡陶瓷X射线衍射图谱;
图6为本发明对比例1的发泡陶瓷SEM图。
具体实施方式
下面结合实施例和附图对本发明的技术方案做进一步详细说明。
本发明基于镍渣的气凝胶多级孔发泡陶瓷按重量份数包括如下原料:镍渣 20-60份、SiO2气凝胶0.1-1份、高铝水泥30-70份、粘结剂1-5份、助熔剂1-5 份、化学发泡剂1-4份。进一步说,还可包括增韧剂0.2-1份。
其中,镍渣的组分含量如下表1所示。
表1镍渣的组分含量
组分 <![CDATA[SiO<sub>2</sub>]]> MgO <![CDATA[Al<sub>2</sub>O<sub>3</sub>]]> <![CDATA[Fe<sub>2</sub>O<sub>3</sub>]]> CaO <![CDATA[Na<sub>2</sub>O]]> L.O.I
含量% 50.97 29.97 5.02 7.76 1.36 3.97 0.95
高铝水泥的组分含量如下表2所示。
表2高铝水泥的组分含量
组分 <![CDATA[Al<sub>2</sub>O<sub>3</sub>]]> CaO <![CDATA[SiO<sub>2</sub>]]> <![CDATA[Fe<sub>2</sub>O<sub>3</sub>]]> MgO <![CDATA[SO<sub>3</sub>]]> L.O.I
含量% 56.82 32.82 6.38 1.72 0.07 1.62 0.57
实施例1
该实施例的多级孔发泡陶瓷的组分及含量如下表3所示。
表3多级孔发泡陶瓷的组分含量
组分 镍渣 <![CDATA[SiO<sub>2</sub>气凝胶]]> 高铝水泥 羧甲基纤维素 四硼酸钠 偶氮二甲酰胺
含量/份 50 0.1 44 1 1.7 3.2
该实施例多级孔发泡陶瓷的制备方法包括如下步骤:
(1)将镍渣进行破碎球磨处理并过200目筛,过筛后的镍渣与高铝水泥、 SiO2气凝胶、羧甲基纤维素、四硼酸钠及偶氮二甲酰胺进行混合,并继续球磨 30min,过200目筛,制得混合料;
(2)采用5%的聚乙烯醇溶液对上述混合料进行造粒,造粒过程中边滴溶液边用研钵不断碾磨造粒,结束后用模具装填,以5MPa的压力压制成型并脱模;
(3)以3℃/min的速率由室温升温至450℃,保温30min;再以5℃/min 的升温速度升至1020℃,保温60min;最后自然冷却至室温,制得该多级孔发泡陶瓷。
实施例2
该实施例的多级孔发泡陶瓷的组分及含量如下表4所示。
表4多级孔发泡陶瓷的组分含量
组分 镍渣 <![CDATA[SiO<sub>2</sub>气凝胶]]> 高铝水泥 羧甲基纤维素 氟化镁 偶氮二甲酰胺
含量/份 50 0.2 44 1 1.6 3.2
该实施例多级孔发泡陶瓷的制备方法包括如下步骤:
(1)将镍渣进行破碎球磨处理并过200目筛,过筛后的镍渣与高铝水泥、 SiO2气凝胶、羧甲基纤维素、氟化镁及偶氮二甲酰胺进行混合,并继续球磨30min,过200目筛,制得混合料;
(2)采用5%的聚乙烯醇溶液对混合料进行造粒,造粒过程中边滴溶液边用研钵不断碾磨造粒,结束后用模具装填,以5MPa的压力压制成型并脱模;
(3)以3℃/min的速率由室温升温至450℃,保温30min;再以5℃/min 的升温速度升至1020℃,保温60min;最后自然冷却至室温,制得该多级孔发泡陶瓷。
实施例3
该实施例的多级孔发泡陶瓷的组分及含量如下表5所示。
表5多级孔发泡陶瓷的组分含量
组分 镍渣 <![CDATA[SiO<sub>2</sub>气凝胶]]> 高铝水泥 羧甲基纤维素 氟化镁 偶氮二甲酰胺
含量/份 50 0.4 44 2 2 1.6
该实施例多级孔发泡陶瓷的制备方法包括如下步骤:
(1)将镍渣进行破碎球磨处理并过200目筛,过筛后的镍渣与高铝水泥、 SiO2气凝胶、羧甲基纤维素、氟化镁及偶氮二甲酰胺及进行混合,并继续球磨 30min,过200目筛,制得混合料;
(2)采用5%的聚乙烯醇溶液对混合料进行造粒,造粒过程中边滴溶液边用研钵不断碾磨造粒,结束后用模具装填,以5MPa的压力压制成型并脱模;
(3)以3℃/min的速率由室温升温至450℃,保温30min;再以5℃/min 的升温速度升至1040℃,保温60min;最后自然冷却至室温,制得该多级孔发泡陶瓷。
实施例4
该实施例的多级孔发泡陶瓷的组分及含量如下表6所示。
表6多级孔发泡陶瓷的组分含量
组分 镍渣 <![CDATA[SiO<sub>2</sub>气凝胶]]> 高铝水泥 羧甲基纤维素 四硼酸钠 偶氮二甲酰胺
含量/份 50 0.5 44 2 2 1.5
该实施例多级孔发泡陶瓷的制备方法包括如下步骤:
(1)将镍渣进行破碎球磨处理并过200目筛,过筛后的镍渣与高铝水泥、 SiO2气凝胶、羧甲基纤维素、四硼酸钠及偶氮二甲酰胺进行混合,并继续球磨 30min,过200目筛,制得混合料;
(2)采用5%的聚乙烯醇溶液对混合料进行造粒,造粒过程中边滴溶液边用研钵不断碾磨造粒,结束后用模具装填,以5MPa的压力压制成型并脱模;
(3)以3℃/min的速率由室温升温至450℃,保温30min;再以5℃/min 的升温速度升至1020℃,保温60min;最后自然冷却至室温,制得该多孔发泡陶瓷。
实施例5
该实施例的多孔发泡陶瓷的组分及含量如下表7所示。
表7多级孔发泡陶瓷的组分含量
组分 镍渣 <![CDATA[SiO<sub>2</sub>气凝胶]]> 高铝水泥 羧甲基纤维素 四硼酸钠 偶氮二甲酰胺 氧化锆
含量/份 50 0.5 44 2 2 3.2 0.2
该实施例多级孔发泡陶瓷的制备方法包括如下步骤:
(1)将镍渣进行破碎球磨处理并过200目筛,过筛后的镍渣与高铝水泥、 SiO2气凝胶、羧甲基纤维素、四硼酸钠、偶氮二甲酰胺及氧化锆进行混合,并继续球磨30min,过200目筛,制得混合料;
(2)采用5%的聚乙烯醇溶液对混合料进行造粒,造粒过程中边滴溶液边用研钵不断碾磨造粒,结束后用模具装填,以5MPa的压力压制成型并脱模;
(3)以3℃/min的速率由室温升温至450℃,保温30min;再以5℃/min 的升温速度升至1020℃,保温60min;最后自然冷却至室温,制得该多级孔发泡陶瓷。
实施例6
基本步骤与实施例5相同,不同之处在于增韧剂氧化锆的含量为0.4份。
实施例7
基本步骤与实施例5相同,不同之处在于增韧剂氧化锆的含量为0.6份。
实施例8
基本步骤与实施例5相同,不同之处在于增韧剂氧化锆的含量为0.8份。
实施例9
基本步骤与实施例5相同,不同之处在于增韧剂氧化锆的含量为1份。
性能检测
将上述实施例制备的发泡陶瓷进行密度、孔隙率及抗压强度检测,所获得的结果如下表8所示。
表8实施例1至实施例8所制备的发泡陶瓷相关性能参数
通过上表可知,本发明制备的多孔堇青石-钙长石复相陶瓷的密度变化幅度较小。实施例1-4的抗压强度均达满足保温墙体材料所需的0.4MP强度,孔隙率都达到84.0以上,同时加入增韧剂氧化锆能够增加材料的抗压强度,实例5-8 的抗压强度明显提升。
此外,对实施例2和实施例7制备的陶瓷分别进行了扫描电镜和XRD检测,获得的结果如图1至图5所示。
通过图1及图2可知,本发明制备的多级孔陶瓷内部孔结构呈现宏孔与介孔复合孔的形状,孔隙不规则分布,且有些许介孔能够依附于宏孔之上,呈现宏孔包裹介孔的多级孔结构,降低多级孔陶瓷的密度。
通过图3可知,本发明在制备该陶瓷时,经过1020-11020℃烧结后,多级孔陶瓷出现堇青石相和钙长石相的强特征峰,且伴随产生了钙镁橄榄石相及铁橄榄石相,所有相结构完整,在1020-1120℃烧结后生成了以堇青石-钙长石为复相的多孔陶瓷。
通过图4可知,单斜相的氧化锆生长在堇青石相和钙长石相的表面,能够起到相变增韧的效果,从而增加样品的抗压性能。且通过图5的XRD可以看出有新的氧化锆衍射峰,其余物相均没有改变,说明单斜相的氧化锆并未与其他物质生成新的物相,只是作为一种相变增韧材料增强泡沫陶瓷的抗压强度。
对比例1
基本步骤与实施例2相同,不同之处在于原料中不添加SiO2气凝胶。其原料组分如下表9所示。
表9对比例1的发泡陶瓷组分含量
组分 镍渣 高铝水泥 羧甲基纤维素 氟化镁 偶氮二甲酰胺
含量/份 50 44 1 1.6 3.4
图6为对比例1的SEM图,可以看出不添加SiO2气凝胶时制备得到的泡沫陶瓷内部呈现的均是5-40μm的宏孔。
实施例10
该实施例的多级孔发泡陶瓷的组分及含量如下表10所示。
表10多级孔发泡陶瓷的组分含量
组分 镍渣 <![CDATA[SiO<sub>2</sub>气凝胶]]> 高铝水泥 焦磷酸钠 氟铝酸钾 对甲苯磺酰肼 莫来石纤维
含量/份 20 0.1 30 1 1 1 0.2
该实施例多级孔发泡陶瓷的制备方法包括如下步骤:
(1)将镍渣进行破碎球磨处理并过200目筛,过筛后的镍渣与高铝水泥、 SiO2气凝胶、焦磷酸钠、氟铝酸钾、对甲苯磺酰肼及莫来石纤维进行混合,并继续球磨20min,过200目筛,制得混合料;
(2)采用5%的聚乙烯醇溶液对上述混合料进行造粒,造粒过程中边滴溶液边用研钵不断碾磨造粒,结束后用模具装填,以3MPa的压力压制成型并脱模;
(3)以3℃/min的速率由室温升温至480℃,保温25min;再以5℃/min 的升温速度升至1100℃,保温80min;最后自然冷却至室温,制得该多级孔发泡陶瓷。
实施例11
该实施例的多级孔发泡陶瓷的组分及含量如下表11所示。
表11多级孔发泡陶瓷的组分含量
组分 镍渣 <![CDATA[SiO<sub>2</sub>气凝胶]]> 高铝水泥 聚乙烯醇 氟铝酸钾 苯磺酰肼 莫来石纤维
含量/份 60 1 70 5 5 4 0.2
该实施例多级孔发泡陶瓷的制备方法包括如下步骤:
(1)将镍渣进行破碎球磨处理并过200目筛,过筛后的镍渣与高铝水泥、 SiO2气凝胶、聚乙烯醇、氟铝酸钾、苯磺酰肼及莫来石纤维进行混合,并继续球磨50min,过200目筛,制得混合料;
(2)采用5%的聚乙烯醇溶液对上述混合料进行造粒,造粒过程中边滴溶液边用研钵不断碾磨造粒,结束后用模具装填,以1MPa的压力压制成型并脱模;
(3)以3℃/min的速率由室温升温至500℃,保温20min;再以5℃/min 的升温速度升至1120℃,保温120min;最后自然冷却至室温,制得该多级孔发泡陶瓷。
将上述实施例制备的发泡陶瓷进行密度、孔隙率及抗压强度检测,所获得的结果如下表12所示。
表12实施例10和实施例11所制备的发泡陶瓷相关性能参数
通过上表可知,本发明制备的多孔堇青石-钙长石复相陶瓷的抗压强度均达到0.5MPa及以上,孔隙率都达到84.0以上,具有轻便保温性能的同时力学性能优。

Claims (8)

1.一种基于镍渣的气凝胶多级孔发泡陶瓷,其特征在于按重量份数包括如下原料:镍渣20-60份、SiO2气凝胶0.1-1份、高铝水泥30-70份、粘结剂1-5份、助熔剂1-5份及化学发泡剂1-4份;其中,所述化学发泡剂为偶氮二甲酰胺、对甲苯磺酰肼或苯磺酰肼。
2.根据权利要求1所述基于镍渣的气凝胶多级孔发泡陶瓷,其特征在于:该发泡陶瓷还包括增韧剂0.2-1份。
3.根据权利要求1所述基于镍渣的气凝胶多级孔发泡陶瓷,其特征在于:所述粘结剂至少包括羧甲基纤维素、焦磷酸钠或聚乙烯醇中的一种。
4.根据权利要求1所述基于镍渣的气凝胶多级孔发泡陶瓷,其特征在于:所述助熔剂至少包括氟化镁、氟铝酸钾或四硼酸钠中的一种。
5.根据权利要求2所述基于镍渣的气凝胶多级孔发泡陶瓷,其特征在于:所述增韧剂为氧化锆或莫来石纤维。
6.一种制备权利要求2所述基于镍渣的气凝胶多级孔发泡陶瓷的方法,其特征在于包括如下步骤:
(1)将镍渣破碎球磨过筛后,与高铝水泥、SiO2气凝胶、粘结剂、助熔剂、发泡剂及增韧剂混合球磨20-50min,制得混合物;
(2)将上述混合物造粒、压制成型后脱模,并进行高温煅烧,即可。
7.根据权利要求6所述制备基于镍渣的气凝胶多级孔发泡陶瓷的方法,其特征在于:步骤(2)中,所述压制成型的压力为1-5 MPa。
8.根据权利要求6所述制备基于镍渣的气凝胶多级孔发泡陶瓷的方法,其特征在于:步骤(2)中,所述高温煅烧是先于450-500℃条件下,保温反应20-30min,再于1020-1120℃条件下,保温反应60-120min。
CN202210755807.0A 2022-06-29 2022-06-29 一种基于镍渣的气凝胶多级孔发泡陶瓷及其制备方法 Active CN115259892B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210755807.0A CN115259892B (zh) 2022-06-29 2022-06-29 一种基于镍渣的气凝胶多级孔发泡陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210755807.0A CN115259892B (zh) 2022-06-29 2022-06-29 一种基于镍渣的气凝胶多级孔发泡陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN115259892A CN115259892A (zh) 2022-11-01
CN115259892B true CN115259892B (zh) 2023-05-12

Family

ID=83762904

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210755807.0A Active CN115259892B (zh) 2022-06-29 2022-06-29 一种基于镍渣的气凝胶多级孔发泡陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN115259892B (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103304252B (zh) * 2013-06-13 2014-04-23 哈尔滨工业大学 一种SiO2气凝胶/多孔Si3N4复合材料的制备方法
CN106866180A (zh) * 2017-01-09 2017-06-20 南京工业大学 泡沫陶瓷复合SiO2气凝胶隔热材料的制备方法
CN107540378B (zh) * 2017-08-25 2020-06-12 巩义市泛锐熠辉复合材料有限公司 一种碳化硅/铝复合材料的制备方法
CN117105646A (zh) * 2019-01-12 2023-11-24 纽约州立大学研究基金会 陶瓷泡沫、其制造方法及其用途
CN110294636B (zh) * 2019-08-16 2021-11-23 盐城工学院 一种轻质隔热镍冶金废渣泡沫陶瓷及其制备方法
CN113387720B (zh) * 2021-07-08 2022-11-15 河南省高新技术实业有限公司 一种发泡陶瓷保温材料及其制备方法

Also Published As

Publication number Publication date
CN115259892A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
CN113968701B (zh) 一种co2驱动固结的轻质混凝土及其制备方法
Zhu et al. Microstructure and properties of mullite-based porous ceramics produced from coal fly ash with added Al 2 O 3
CN105541306B (zh) 一种氧化铝纤维增强的氧化铝闭孔泡沫陶瓷及其制备方法
CN110294636B (zh) 一种轻质隔热镍冶金废渣泡沫陶瓷及其制备方法
CN108178658B (zh) 一种粉煤灰为原料制备钛酸铝莫来石复合多孔陶瓷的方法
AU2020102254A4 (en) Raw material for preparing porous ceramic material and preparation method of porous ceramic material
CN112552072A (zh) 一种建筑废弃物再生发泡陶瓷及其制备方法
CN104003755A (zh) 一种利用抛光废渣制备呼吸砖的工艺
CN105585330A (zh) 一种节能保温加气混凝土砌块及其制备方法
CN108101480A (zh) 一种抗压型加气砖的制备方法
CN115259892B (zh) 一种基于镍渣的气凝胶多级孔发泡陶瓷及其制备方法
CN108793911B (zh) 一种利用发泡法制备镁质轻质骨料的方法
CN114380576A (zh) 一种原位生成莫来石晶须增强陶瓷坯体及其制备方法
CN115340405B (zh) 一种铝灰微孔砖及其制备方法
CN112456955A (zh) 碱式硫酸镁水泥基轻质多孔材料及其制备方法
CN112266241A (zh) 镁铝尖晶石多孔陶瓷及其制备方法
CN116874293A (zh) 一种具有纯相结构的致密化堇青石陶瓷及其制备方法
CN113213963B (zh) 一种利用建筑废弃物制备的轻质耐火材料及其制备方法
CN112279637A (zh) 氧化铝纤维-镁铝尖晶石多孔陶瓷及其制备方法
CN114573363A (zh) 一种高强氧化铝轻质砖及其制备方法
CN112573899A (zh) 一种低频隔音砖及其制备方法
CN108439948A (zh) 一种多孔陶瓷保温板的制备方法
CN114940623B (zh) 一种开孔发泡陶瓷板材及其制备方法
CN111056811A (zh) 一种加气混凝土砌块的制备方法
CN110857251A (zh) 一种粉煤灰基保温泡沫陶瓷的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant