CN115254115B - Co/C-TiO2复合材料的制备方法及其在CO2光催化还原中的应用 - Google Patents

Co/C-TiO2复合材料的制备方法及其在CO2光催化还原中的应用 Download PDF

Info

Publication number
CN115254115B
CN115254115B CN202210920083.0A CN202210920083A CN115254115B CN 115254115 B CN115254115 B CN 115254115B CN 202210920083 A CN202210920083 A CN 202210920083A CN 115254115 B CN115254115 B CN 115254115B
Authority
CN
China
Prior art keywords
tio
composite material
drying
application
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210920083.0A
Other languages
English (en)
Other versions
CN115254115A (zh
Inventor
李霁
秦振华
何文战
曹仲
易志
李柏霖
郭林松
彭一鸣
孙全
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangtze Ecology And Environment Co ltd
Wuhan Polytechnic University
Original Assignee
Yangtze Ecology And Environment Co ltd
Wuhan Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangtze Ecology And Environment Co ltd, Wuhan Polytechnic University filed Critical Yangtze Ecology And Environment Co ltd
Priority to CN202210920083.0A priority Critical patent/CN115254115B/zh
Publication of CN115254115A publication Critical patent/CN115254115A/zh
Application granted granted Critical
Publication of CN115254115B publication Critical patent/CN115254115B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/75Cobalt
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/24Nitrogen compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种Co/C‑TiO2复合材料的制备方法及其在CO2光催化还原中的应用,该材料制备时,包括以下步骤:S1、将2‑甲基咪唑和钴盐加入到醇溶剂中反应5‑24h,加弱酸混匀;S2、将钛源与醇溶剂混匀,再与S1所得溶液混合搅拌反应,后静置、干燥得到凝胶;S3、将凝胶在惰性气氛下煅烧,最后清洗干燥得Co/C‑TiO2复合材料。本发明提供的Co/C‑TiO2复合材料,能有效提高TiO2对可见光的利用效率,促进光生电子与空穴的转移和分离,提高CO2的光催化还原效率。

Description

Co/C-TiO2复合材料的制备方法及其在CO2光催化还原中的 应用
技术领域
本发明属于光催化技术领域,具体涉及一种Co/C-TiO2复合材料的制备方法及其在CO2光催化还原中的应用。
背景技术
近年来,由于大量的使用煤炭和石油,造成二氧化碳过度排放,由此导致的能源危机、海洋酸化和温室效应严重影响社会的发展和人类的生存。二氧化碳的减排和转化备受重视。
通常情况下二氧化碳在可见光的辐射下是化学惰性的,需要光催化剂吸收太阳光产生光生电子,光生电子再迁移到光催化剂表面将吸附态二氧化碳进行还原。光催化技术可在常温常压下利用半导体催化剂光催化还原二氧化碳制备一氧化碳、甲烷,具有条件温和、绿色环保、无二次污染的优势。在光催化还原二氧化碳的过程中,窄带隙半导体可以有效的提高催化剂对光的利用效率。光催化剂在吸收光子能量后,价带上的基态电子跃迁到导带产生光生电子-空穴对,该过程也往往伴随着光生电子与空穴的复合,造成大量光生电子不能被利用进而降低了催化剂的光催化还原活性。构筑异质结构是抑制电子-空穴对的常用方法,通过两种物质的亲密接触构成异质结构形成内建电场,在内建电场的作用下电子向一定的方向传输,光生电子-空穴的复合能够得到有效抑制。
在光催化还原二氧化碳的半导体催化剂中,二氧化钛材料成本廉价,并且在光催化反应中具有显著的稳定性和合适的能带结构,是一种性能优良的n型半导体。但是纯二氧化钛材料带隙较宽,难以有效的利用可见光,也存在光生电子-空穴对快速复合的缺点,阻碍了电荷载流子的转移,从而减慢了光催化二氧化碳还原反应,导致光催化效率低。另一方面通常采用减小二氧化钛粒径的方法来缩短光生电子的迁移路径,进而提高光生电子的利用率。而二氧化钛的超细粒子形态造成了纳米二氧化钛在催化反应完成后分离困难,不利于催化剂的重复利用。
CN114054013A公开了采用溶胶凝胶法结合超临界干燥工艺和高温热处理制备CeO2-TiO2复合气凝胶光催化剂,利用CeO2-TiO2之间的异质结提高可见光的利用效率。CN111450820A公开了将水热法制备二氧化钛纳米片分散于水中得到二氧化钛悬浮液,再利用铬酸钾水溶液与二氧化钛悬浮液混合,超声分散后将铬前驱体溶液进行可见光沉积,最后通过清洗、冷冻、干燥后得到铬氧化物负载的二氧化钛光催化剂。CN114130410A公开了将卤化钾水溶液滴入五水合硝酸铋的乙二醇溶液中,搅拌均匀后离心烘干得到铋化物,再将铋化物、二氧化钛、氧化亚铁和卤氧化铋纳米片充分混合后与熔盐一起进行研磨、煅烧和清洗,最后将清洗后的样品放入烘箱中干燥得到铋铁钛氧卤化物光催化材料。CN109589959A分别用水热法制备出海胆状的α-Fe2O3和溶剂热制备出TiO2纳米片,再将α-Fe2O3和TiO2纳米片在150℃条件下反应,最后洗涤干燥得到能够光催化CO2还原的α-Fe2O3/TiO2纳米复合材料。
上述方法均采用了外源引入其他半导体材料与TiO2进行复合形成异质结,抑制光生电子与空穴的复合,进而改善光催化剂对CO2的还原效率。对应的制备过程繁琐、生产成本高、缺乏大规模制备的潜力,外源引入的半导体材料与TiO2基体之间形成异质结的效率较低。
发明内容
本发明提供一种Co/C-TiO2复合材料的制备方法及其在CO2光催化还原中的应用,能有效提高TiO2对可见光的利用效率,促进光生电子与空穴的转移和分离,提高CO2的光催化还原效率。
本发明的技术方案是,一种Co/C-TiO2复合材料的制备方法,包括以下步骤:
S1、将2-甲基咪唑和钴盐加入到醇溶剂中反应5-24h,加弱酸混匀;
S2、将钛源与醇溶剂混匀,再与S1所得溶液混合搅拌反应,后静置、干燥得到凝胶;
S3、将凝胶在惰性气氛下煅烧,最后清洗干燥得Co/C-TiO2复合材料。
进一步地,所述的钴盐为六水硝酸钴,钛源为钛酸四丁酯,两者的摩尔比为0.02~0.08:1。
进一步地,所述钴盐与2-甲基咪唑的摩尔比为1:10~25;钛源与醇溶剂的体积比为0.5~1.5:1。
进一步地,所述的弱酸为乳酸、硼酸、柠檬酸、冰醋酸中的至少一种。
进一步地,所述的醇溶剂为甲醇、乙醇、异丙醇中的至少一种。
进一步地,S2中混合搅拌的时间为30-90min,干燥温度为20-70℃。
进一步地,S3中煅烧温度为650-750℃,升温速度为5-10℃/min,保温时间0.5-2h,煅烧气氛为氮气氛或者氩气氛,惰性气体流速为0.02-0.55L/min。
进一步地,S3中干燥温度为50-80℃。
本发明还涉及所述制备方法得到的Co/C-TiO2复合材料。
本发明还涉及所述Co/C-TiO2复合材料在CO2光催化还原中的应用。
本发明具有以下有益效果:
1、本发明提供Co/C-TiO2复合材料的制备方法,利用过量的2-甲基咪唑与钴离子形成类沸石咪唑酯骨架结构材料的悬浮液,再将该悬浮液与钛酸四丁酯的醇溶液进行复配,制得均匀混合的前驱体材料,煅烧得到的Co/C-TiO2复合材料。钴离子的加入量很少,钴离子的加入一是用于控制TiO2的相转变,控制生成锐钛矿/金红石相二氧化钛异质结;二是与2-甲基咪唑生成部分部分ZIF-67,再在惰性气氛中将ZIF-67中的钴离子在高温下转变为单质金属钴,用于提高TiO2在光照下光生电子的分离效果,该效果还可以从图7的光电流测试中予以证明。本发明利用弱酸控制的溶胶凝胶法制备TiO2前驱体,并一步煅烧法完成单质金属钴与锐钛矿/金红石相异质结的复合,制备成本低,效率高,而且过量的2-甲基咪唑在高温煅烧过程衍生产生的碳成功的包覆在催化剂的表面,提高了催化剂对光的利用效率和使用稳定性,也能减少TiO2纳米粒子的泄露。
2、本发明提供的该材料具有以下特点,1)TiO2材料中原位形成锐钛矿/金红石异质结构,2)前驱体中引入过量的2-甲基咪唑可以在TiO2基体中掺入氮元素,3)TiO2材料表面原位碳化形成碳包覆层,4)类沸石咪唑酯骨架结构材料衍生的钴/碳颗粒锚固在TiO2材料表面。
3、采用上述Co/C-TiO2复合材料作为CO2光催化还原的催化剂,能有效提高TiO2对可见光的利用效率,促进光生电子与空穴的转移和分离,提高CO2的光催化还原效率,解决外源引入半导体材料与TiO2形成异质结过程繁琐、效率低的缺陷。
附图说明
图1是实施例1所得催化剂的SEM照片;
图2是实施例1所得催化剂的TEM照片;
图3为实施例2所得催化剂的XPS谱图;
图4为实施例2所得催化剂边缘的HRTEM照片;
图5为实施例2所得催化剂的HRTEM晶格条纹;
图6为实施例2、实施例3和实施例5中所得催化剂的XRD谱图;
图7为实施例2、实施例3所得催化剂和商业P25的光电流响应强度测试图;
图8为实施例3所得催化剂光还原CO2的效果图。
具体实施方式
下面将结合实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限定本发明的范围。
实施例1
称取0.684g六水硝酸钴和1.93g 2-甲基咪唑置于15mL乙醇溶液中,搅拌1h后静置20h得到悬浮液A,在悬浮液A中加入3g硼酸形成混合液B;在10mL异丙醇中加入15mL钛酸四丁酯搅拌均匀形成溶液C。将混合液B和溶液C在搅拌下混合,继续搅拌30min后静置在60℃的干燥箱中干燥。将干燥后的混合物研磨成粉,取4g转移到石英舟中,再将石英舟置于管式炉中,设置升温速度为10℃/min,升温至750℃保温0.5h,氮气流速为0.55L/min;氮气氛下自然冷却后的催化剂材料转移到250mL去离子水中,煮沸30min后过滤、60℃干燥得到具有光催化CO2还原的复合催化剂。该催化剂的SEM照片见图1,TEM照片见图2,结果显示Co/C-TiO2复合材料中的TiO2粒子粒径大小在30-80nm之间,且相互连接,最终形成500nm大小的聚集体结构,小晶粒可以保证良好的催化效果,相互连接可以形成锐钛矿/金红石相二氧化钛异质结,同时相互连接的聚集体可以降低催化剂的回收难度,减少TiO2纳米粒子的泄露。
将100mg制得的催化剂置于CO2催化还原器中,利用氙灯光源照射2h,利用气相色谱分析仪测定CO2的还原产物,CH4的产量为1.2μmol/(g·h),CO的产量为26.1μmol/(g·h)。
实施例2
称取0.255g六水硝酸钴和1.8g 2-甲基咪唑置于10mL异丙醇溶液中,搅拌0.5h后静置5h得到悬浮液A,在悬浮液A中加入1.5mL乳酸形成混合液B;在10mL乙醇中加入10mL钛酸四丁酯搅拌均匀形成溶液C。将混合液B和溶液C在搅拌下混合,继续搅拌90min后静置在50℃的干燥箱中干燥。将干燥后的混合物研磨成粉,取3.5g转移到石英舟中,再将石英舟置于管式炉中,设置升温速度为10℃/min,升温至700℃保温1h,氩气流速为0.02L/min;氩气氛下自然冷却后的催化剂材料转移到200mL去离子水中,煮沸20min后过滤、50℃干燥得到具有光催化CO2还原的复合催化剂。该催化剂的XPS谱图见图3,催化剂边缘的HRTEM照片见图4,HRTEM晶格条纹见图5,XPS结果显示Co和N成功的负载在催化剂中,HRTEM显示TiO2晶格条纹清晰,表明TiO2具有良好的结晶性,且其表面成功的负载了一层约3nm的碳包覆层,碳层包覆一能有效的降低催化剂的光腐蚀,提高催化剂的重复利用,二能将催化剂聚集体中的TiO2粒子交联在一起,降低催化剂中TiO2基本粒子的泄露。
将100mg制得的催化剂置于CO2催化还原器中,利用氙灯光源照射2h,利用气相色谱分析仪测定CO2的还原产物,CH4的产量为0.9μmol/(g·h),CO的产量为21.2μmol/(g·h)。
实施例3
称取0.43g六水硝酸钴和2g 2-甲基咪唑置于10mL甲醇溶液中,搅拌0.5h后静置15h得到悬浮液A,在悬浮液A中加入0.5mL冰醋酸形成混合液B;在10mL乙醇中加入10mL钛酸四丁酯搅拌均匀形成溶液C。将混合液B和溶液C在搅拌下混合,继续搅拌30min后静置在70℃的干燥箱中干燥。将干燥后的混合物研磨成粉,取3g转移到石英舟中,再将石英舟置于管式炉中,设置升温速度为5℃/min,升温至700℃保温1h,氮气流速为0.08L/min;氮气氛下自然冷却后的催化剂材料转移到200mL去离子水中,煮沸20min后过滤、80℃干燥得到具有光催化CO2还原的复合催化剂。将100mg制得的催化剂置于CO2催化还原器中,利用氙灯光源照射2h,利用气相色谱分析仪测定CO2的还原产物,CH4的产量为1.8μmol/(g·h),CO的产量为29.4μmol/(g·h)。催化剂光还原CO2的效果图见图8,显示Co/C-TiO2复合材料在光催化还原CO2的应用中有稳定的使用效果。
实施例4
称取0.255g六水硝酸钴和1.44g 2-甲基咪唑置于10mL甲醇溶液中,搅拌0.5h后静置24h得到悬浮液A,在悬浮液A中加入2g柠檬酸形成混合液B;在15mL甲醇和15mL乙醇的混合液中加入15mL钛酸四丁酯搅拌均匀形成溶液C。将混合液B和溶液C在搅拌下混合,继续搅拌60min后静置在20℃的室温下自然干燥。将干燥后的混合物研磨成粉,取3.5g转移到石英舟中,再将石英舟置于管式炉中,设置升温速度为8℃/min,升温至650℃保温2h,氮气流速为0.15L/min;氮气氛下自然冷却后的催化剂材料转移到200mL去离子水中,煮沸30min后过滤、60℃干燥得到具有光催化CO2还原的复合催化剂。将100mg制得的催化剂置于CO2催化还原器中,利用氙灯光源照射2h,利用气相色谱分析仪测定CO2的还原产物,CH4的产量为1.4μmol/(g·h),CO的产量为20.6μmol/(g·h)。
实施例5(对比例)
称取2g 2-甲基咪唑置于10mL甲醇溶液中完全溶解得到溶液A,在溶液液A中加入3g硼酸形成混合液B;在10mL乙醇中加入10mL钛酸四丁酯搅拌均匀形成溶液C。将混合液B和溶液C在搅拌下混合,继续搅拌30min后静置在70℃的干燥箱中干燥。将干燥后的混合物研磨成粉,取3g转移到石英舟中,再将石英舟置于管式炉中,设置升温速度为5℃/min,升温至700℃保温1h,氮气流速为0.2L/min;氮气氛下自然冷却后的催化剂材料转移到200mL去离子水中,煮沸20min后过滤、80℃干燥得到具有光催化CO2还原的复合催化剂。将100mg制得的催化剂置于CO2催化还原器中,利用氙灯光源照射2h,利用气相色谱分析仪测定CO2的还原产物,CH4的产量为0.3μmol/(g·h),CO的产量为6.1μmol/(g·h)。
实施例2(Co:Ti为0.03)、实施例3(Co:Ti为0.05)与实施例5(Co:Ti为0)的XRD图见图6,结果显示没有钴的掺入时所得样品为单一锐钛矿相的TiO2,而掺入少量的钴所得的催化剂样品为锐钛矿/金红石相TiO2的复合物。
将实施例2所得催化剂(3%Co- TiO2)、实施例3所得催化剂(5%Co- TiO2)与市售二氧化钛P25进行对比,其光电流响应强度测试图见图7。结果显示,与商业P25相比,实施例2和实施例3所得的催化剂的光电流密度有很大的提升,显示在光催化过程中,实施例2和实施例3所得的复合催化剂中光生电子空穴对具有更高的分离率和更低的复合率,有利于提升CO2的光催化还原效率。
上述的实施例仅为本发明的优选技术方案,而不应视为对于本发明的限制,本申请中的实施例及实施例中的特征在不冲突的情况下,可以相互任意组合。本发明的保护范围应以权利要求记载的技术方案,包括权利要求记载的技术方案中技术特征的等同替换方案为保护范围。即在此范围内的等同替换改进,也在本发明的保护范围之内。

Claims (10)

1.一种Co/C-TiO2复合材料的制备方法,其特征在于,包括以下步骤:
S1、将2-甲基咪唑和钴盐加入到醇溶剂中反应5-24h,加弱酸混匀,其中钴盐与2-甲基咪唑的摩尔比为1:10~25;
S2、将钛源与醇溶剂混匀,再与S1所得溶液混合搅拌反应,后静置、干燥得到凝胶,其中钴盐与钛源的摩尔比为0.02~0.08:1;
S3、将凝胶在惰性气氛下煅烧,最后清洗干燥得Co/C-TiO2复合材料。
2.根据权利要求1所述的制备方法,其特征在于:所述的钴盐为六水硝酸钴,钛源为钛酸四丁酯。
3.根据权利要求1所述的制备方法,其特征在于:所述S1中钴盐浓度为0.088-0.235mol/L,S2中钛源与醇溶剂的体积比为0.5~1.5:1。
4.根据权利要求1所述的制备方法,其特征在于:所述的弱酸为乳酸、硼酸、柠檬酸、冰醋酸中的至少一种。
5.根据权利要求1所述的制备方法,其特征在于:所述的醇溶剂为甲醇、乙醇、异丙醇中的至少一种。
6.根据权利要求1所述的制备方法,其特征在于:S2中混合搅拌的时间为30-90min,干燥温度为20-70℃。
7.根据权利要求1所述的制备方法,其特征在于:S3中煅烧温度为650-750℃,升温速度为5-10℃/min,保温时间0.5-2h,煅烧气氛为氮气氛或者氩气氛,惰性气体流速为0.02-0.55L/min。
8.根据权利要求1所述的制备方法,其特征在于:S3中干燥温度为50-80℃。
9.权利要求1~8任意一项所述制备方法得到的Co/C-TiO2复合材料。
10.权利要求9所述Co/C-TiO2复合材料在CO2光催化还原中的应用。
CN202210920083.0A 2022-08-01 2022-08-01 Co/C-TiO2复合材料的制备方法及其在CO2光催化还原中的应用 Active CN115254115B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210920083.0A CN115254115B (zh) 2022-08-01 2022-08-01 Co/C-TiO2复合材料的制备方法及其在CO2光催化还原中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210920083.0A CN115254115B (zh) 2022-08-01 2022-08-01 Co/C-TiO2复合材料的制备方法及其在CO2光催化还原中的应用

Publications (2)

Publication Number Publication Date
CN115254115A CN115254115A (zh) 2022-11-01
CN115254115B true CN115254115B (zh) 2023-08-29

Family

ID=83747320

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210920083.0A Active CN115254115B (zh) 2022-08-01 2022-08-01 Co/C-TiO2复合材料的制备方法及其在CO2光催化还原中的应用

Country Status (1)

Country Link
CN (1) CN115254115B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115870008B (zh) * 2022-12-12 2024-03-19 西安交通大学 一种空气取水捕碳-光催化制碳氢燃料多功能复合材料及制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108579781A (zh) * 2018-01-29 2018-09-28 南京工业大学 一种苯酚加氢催化剂及其制备方法
CN108855220A (zh) * 2018-07-02 2018-11-23 肇庆市华师大光电产业研究院 一种二氧化钛掺杂zif及其制备方法和应用
CN109261217A (zh) * 2018-09-25 2019-01-25 河南师范大学 具有核壳结构的Co-ZIF-67@α-TiO2复合光催化材料的制备方法
CN111613787A (zh) * 2020-05-29 2020-09-01 扬州大学 二氧化钛包覆碳-四氧化三钴复合材料、制备方法及其应用
CN113713796A (zh) * 2021-07-15 2021-11-30 杭州师范大学 一种Ni-NiO/C-TiO2核壳结构纳米棒状材料光催化剂的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112118904A (zh) * 2018-05-18 2020-12-22 研究三角协会 制备在聚合物溶液中的金属有机框架的胶体悬浮液的方法及其用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108579781A (zh) * 2018-01-29 2018-09-28 南京工业大学 一种苯酚加氢催化剂及其制备方法
CN108855220A (zh) * 2018-07-02 2018-11-23 肇庆市华师大光电产业研究院 一种二氧化钛掺杂zif及其制备方法和应用
CN109261217A (zh) * 2018-09-25 2019-01-25 河南师范大学 具有核壳结构的Co-ZIF-67@α-TiO2复合光催化材料的制备方法
CN111613787A (zh) * 2020-05-29 2020-09-01 扬州大学 二氧化钛包覆碳-四氧化三钴复合材料、制备方法及其应用
CN113713796A (zh) * 2021-07-15 2021-11-30 杭州师范大学 一种Ni-NiO/C-TiO2核壳结构纳米棒状材料光催化剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ruiqing Liu et al.,.TiO2 and Co Nanoparticle-Decorated Carbon Polyhedra as Efficient Sulfur Host for High-Performance Lithium–Sulfur Batteries.《Small》.2019,第15卷全文. *

Also Published As

Publication number Publication date
CN115254115A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
Mei et al. A Z-scheme Bi 2 MoO 6/CdSe-diethylenetriamine heterojunction for enhancing photocatalytic hydrogen production activity under visible light
Luo et al. Cu-MOF assisted synthesis of CuS/CdS (H)/CdS (C): Enhanced photocatalytic hydrogen production under visible light
CN110813280A (zh) 一种高分散铂负载表面修饰的黑色二氧化钛光催化剂、制备方法及其应用
CN108525677B (zh) 一种二氧化铈/硫化铟锌纳米片复合催化剂及其在可见光催化co2转化中的应用
CN102125859B (zh) 一种p-NiO/n-CdS/TiO2复合半导体光催化剂的制备方法
CN112563515B (zh) 一种铁氮共掺杂碳与MXene复合物及其制备方法和应用
CN110280281B (zh) 铁酸锌/黑磷微球复合物的制备方法及其在光催化领域中的应用
CN111036189B (zh) 活性炭负载ZnO/CuO或ZnO/CuO/Cu2O光催化复合粉体的制备方法
CN111468165B (zh) 一种氮掺杂纳米CoS2/石墨烯光催化材料的制备方法及应用
CN112427045A (zh) 一种水热法合成的具有Z型异质结CdS/g-C3N4复合光催化剂材料的制备方法
CN116139867B (zh) 一种MOFs衍生的ZnO@CDs@Co3O4复合光催化剂及其制备方法和应用
CN112495401A (zh) 一种Mo掺杂MoO3@ZnIn2S4 Z体系光催化剂及其制备方法与应用
CN113680372B (zh) 一种石墨相氮化碳纳米片的热辅助制备方法及应用
CN115254115B (zh) Co/C-TiO2复合材料的制备方法及其在CO2光催化还原中的应用
CN112892607A (zh) 一种稳定的光催化分解水制氢的三元复合材料及其制备方法
Jin et al. Fabrication of a novel Ni 3 N/Ni 4 N heterojunction as a non-noble metal co-catalyst to boost the H 2 evolution efficiency of Zn 0.5 Cd 0.5 S
CN107308973B (zh) 一种碱式磷酸钴纳米针复合lton光催化剂及其制备方法和应用
Hao et al. Ultra-thin carbon coated amorphous N-doped CoP enhancing electron transfer for wide spectrum photocatalytic hydrogen evolution
Liu et al. The synergistic effect of CuBi 2 O 4 and Co-Pi: Improving the PEC activity of BiVO 4-based composite materials
CN110054211B (zh) 一种以香兰素合金属配合物为前驱体合成多孔氧化物微球的方法
Qin et al. Multiobjective optimization of a gC 3 N 4/Cd-Zn 3 In 2 S 6 heterojunction for high-efficiency photocatalytic hydrogen evolution
CN114505076B (zh) 一种CoO/h-TiO2纳米异质结构的制备方法
CN109926085A (zh) 一种非晶/结晶型催化剂的制备方法
CN112657516B (zh) 一种直接z型光催化剂及其制备方法和应用
CN111604090B (zh) 一种pi修饰钨酸铋混晶复合材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant