CN115245798A - 一种γ-AlOOH溶胶及其制备方法与应用 - Google Patents

一种γ-AlOOH溶胶及其制备方法与应用 Download PDF

Info

Publication number
CN115245798A
CN115245798A CN202210851819.3A CN202210851819A CN115245798A CN 115245798 A CN115245798 A CN 115245798A CN 202210851819 A CN202210851819 A CN 202210851819A CN 115245798 A CN115245798 A CN 115245798A
Authority
CN
China
Prior art keywords
gamma
alooh
sol
preparation
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210851819.3A
Other languages
English (en)
Inventor
陈代荣
张帝
张立
焦秀玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN202210851819.3A priority Critical patent/CN115245798A/zh
Publication of CN115245798A publication Critical patent/CN115245798A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0004Preparation of sols
    • B01J13/0008Sols of inorganic materials in water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/021After-treatment of oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/30Preparation of aluminium oxide or hydroxide by thermal decomposition or by hydrolysis or oxidation of aluminium compounds
    • C01F7/308Thermal decomposition of nitrates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • C04B35/62236Fibres based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Thermal Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

本申请公开了一种γ‑AlOOH溶胶及其制备方法与应用,属于无机纳米材料技术领域。该γ‑AlOOH溶胶的制备方法,包括下述步骤:(1)将拟薄水铝石滤饼溶于水中初步分散,加入浓硝酸后再次分散,回流后进行冷却得到γ‑AlOOH晶种;(2)将铝溶胶和γ‑AlOOH晶种在水中分散均匀,得到混合溶胶,所述混合溶胶进行水热反应,冷却后即得γ‑AlOOH溶胶。该制备方法工艺简单好操作,制备过程时间短,生产成本低,利于规模化生产γ‑AlOOH溶胶。

Description

一种γ-AlOOH溶胶及其制备方法与应用
技术领域
本申请涉及一种γ-AlOOH溶胶及其制备方法与应用,属于无机纳米材料技术领域。
背景技术
溶胶-凝胶(sol-gel)法是制备材料的一种湿化学法,是指以金属醇盐或无机盐为前驱体,经过溶液、溶胶、凝胶而固化,再经热处理制备氧化物或其它化合物的方法。溶胶-凝胶法具有制品纯度高、化学均匀性好、合成温度低、成分易控制、工艺设备简单等优点。溶胶-凝胶法可用于制备多种材料包括粉体、纤维、涂层及薄膜等。
用溶胶-凝胶法制备氧化铝微纳结构材料,一般是利用铝醇盐或无机铝盐为前驱体,经过水解和聚合反应,得到溶胶,再经浓缩或加入电解质得到透明凝胶,经干燥制得干凝胶,将干凝胶在不同温度条件下热处理,即可得氧化铝微纳结构材料,其中要精确控制pH值、浓度、反应温度、时间等条件。使用不同的前驱体,其主要区别在于水解聚合过程不同。
目前制备γ-AlOOH溶胶制备的原料主要包括有机醇铝(丁醇铝、异丙醇铝)、无机铝盐(氯化铝、硝酸铝等)和金属铝、纳米氧化铝、拟薄水铝石等。其中以有机醇铝和无机铝盐为原料,采用溶胶-凝胶法制备γ-AlOOH溶胶的过程,成胶反应时间及制备时间长,反应过程和浓度不易控制,不易实现工业化生产。
发明内容
为了解决上述问题,提供了一种γ-AlOOH溶胶及其制备方法与应用,该方法以硝酸为胶凝剂制得γ-AlOOH晶种,将该γ-AlOOH晶种和铝溶胶混合进行水热反应,能够促使铝溶胶转化为γ-AlOOH溶胶,整个制备过程时间短,生产成本低,工艺简单好操作,利于规模化生产γ-AlOOH溶胶。
根据本申请的一个方面,提供了一种γ-AlOOH溶胶的制备方法,包括下述步骤:
(1)将拟薄水铝石滤饼溶于水中初步分散,加入浓硝酸后再次分散,回流后进行冷却得到γ-AlOOH晶种;
(2)将铝溶胶和γ-AlOOH晶种在水中分散均匀,得到混合溶胶,所述混合溶胶进行水热反应,冷却后即得γ-AlOOH溶胶。
该制备方法反应条件温和,制备过程简单,易操作,便于工业化生产。
可选地,所述浓硝酸的质量分数不小于65%,所述拟薄水铝石滤饼中γ-AlOOH的含量为30~40%;
所述拟薄水铝石滤饼与所述浓硝酸的重量比为1:(0.06-0.09),优选为1:0.072。
上述拟薄水铝石滤饼与浓硝酸的重量比能够保证γ-AlOOH晶种的粒径为50-70nm,若比值过大,则粒径过大;若比值过小,溶液pH值过低,出现胶凝。
可选地,步骤(1)中,所述初步分散时间和所述再次分散时间均为2~3h;
所述回流温度为82~100℃,回流时间为8~12h。
步骤(1)中的初步分散能够保证拟薄水铝石滤饼中的γ-AlOOH充分分散至水中,提高水中γ-AlOOH的含量,再次分散能够保证水中γ-AlOOH和浓硝酸充分接触,便于回流中形成γ-AlOOH晶种,回流温度及时间的设置能够将γ-AlOOH晶种的粒径控制在60nm以内。
可选地,所述γ-AlOOH晶种的粒径为55~60nm,产率为82~85%,pH值为3.1~3.3。
可选地,步骤(2)中,所述铝溶胶中含有的氧化铝与所述γ-AlOOH晶种含有的氧化铝的重量比为1:(0.06-0.08),优选为1:0.0638。
上述重量比能够保证混合溶胶在水热反应时,铝溶胶在γ-AlOOH晶种的存在下顺利转化为γ-AlOOH溶胶,若重量比过大,则产物会出现胶凝;若重量比过小,则产物产率过低。
可选地,步骤(2)中,所述铝溶胶和γ-AlOOH晶种在水中的分散时间为2~3h,
所述水热反应的温度为240~280℃,时间为1~2h。
上述分散时间能够促使铝溶胶和γ-AlOOH晶种均匀分散在水中,水热温度与时间能够促使铝溶胶向γ-AlOOH溶胶转化,温度越高,γ-AlOOH溶胶的黏度越高,粒度越大;时间越长,γ-AlOOH溶胶的黏度越高,粒度越大。
可选地,所述铝溶胶的制备方法为:在硝酸铝中加入一定量氨水,室温下边搅拌边加氨水,硝酸铝与氨水摩尔比为1:2,4h后产生凝胶,立即加入硝酸,硝酸与硝酸铝的重量比例为0.05:1,85℃陈化10h后制得铝溶胶。
可选地,所述铝溶胶的固含量为12~14%,pH值为3.5~4,浊度小于3;优选的,所述铝溶胶的固含量为13.5%,pH值为3.7。
根据本申请的另一个方面,提供了一种γ-AlOOH溶胶,该γ-AlOOH溶胶由上述任一项所述的制备方法制得。
可选地,所述γ-AlOOH溶胶的黏度为0.3~0.7mPa·s,粒度为50~70nm,浊度为60~70。
优选的,所述γ-AlOOH溶胶的黏度为0.45~0.55mPa·s,粒度为55~60nm,浊度为65~67.5。所述γ-AlOOH溶胶的粒度越小,越有利于后续纤维前驱体溶胶的均一性,促进纤维和涂层的制备生产。
根据本申请的另一个方面,提供了上述所述的γ-AlOOH溶胶的应用,所述γ-AlOOH溶胶用于制备氧化铝陶瓷连续纤维和活性氧化铝涂层。
本申请的有益效果包括但不限于:
1)根据本申请的γ-AlOOH溶胶的制备方法,反应条件温和,过程简单,时间短,成本低,降低了能耗,安全性高,易于实现规模化生产。
2)根据本申请的γ-AlOOH溶胶的制备方法,应用生产过程不产生SO2、NO2、Cl2等对环境有害的气体,符合绿色化学的反应理念,在降低成本的基础上,降低对环境的污染。
3)根据本申请的γ-AlOOH溶胶的制备方法,各物质的重量比及反应条件均能够影响γ-AlOOH溶胶的黏度和粒度,故能够通过改变上述条件来控制γ-AlOOH溶胶的黏度和粒度,以适用于不同方面的应用。
4)根据本申请的γ-AlOOH溶胶,该生产得到的γ-AlOOH溶胶性质稳定,产品质量好,在长时间存放下,也不变质或聚沉,能用于氧化铝陶瓷连续纤维和活性氧化铝涂层材料等。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请实施例1涉及的铝溶胶的XRD图。
图2为本申请实施例1涉及的γ-AlOOH溶胶烘干后的XRD图。
图3为本申请实施例1涉及的γ-AlOOH溶胶的TEM图。
图4为本申请实施例1涉及的γ-AlOOH溶胶的FT-IR图。
图5为本申请实施例1涉及的γ-AlOOH溶胶的TG/DSC图。
具体实施方式
下面结合实施例详述本申请,但本申请并不局限于这些实施例。
如无特别说明,本申请的实施例中的原料均通过商业途径购买。
本申请的实施例中分析方法如下:
黏度:
利用NDJ-1指针式黏度测试仪进行黏度分析,室温,样品用量为75.0mL。
粒度:
利用麦奇克S3500进行粒度分析,25℃,样品用量为10.0mL。
浊度:
利用哈希2100Q浊度仪进行浊度分析,室温,样品用量为20mL。
XRD:
利用布鲁克X-射线衍射仪进行XRD分析,室温,样品用量为5g。
TEM:
利用JEM-ARM200F原子级分辨率透射电子显微镜,室温,样品用量为10g。
FT-IR:
利用Nicolet iS5 FT-IR光谱仪,室温,样品用量为5g。
TG/DSC:
利用STA-200同步热分析仪,室温,样品用量为5g。
下述实施例涉及一种γ-AlOOH铝溶胶的制备方法,其中铝溶胶的制备方法为:在硝酸铝中加入一定量氨水,室温下边搅拌边加氨水,硝酸铝与氨水摩尔比为1:2,4h后产生凝胶,立即加入硝酸,硝酸与硝酸铝的重量比例为0.05:1,85℃陈化10h后制得铝溶胶。所述铝溶胶的固含量为13.5%,pH值为3.7,浊度小于3。
下述实施例中所使用的拟薄水铝石滤饼中γ-AlOOH的含量为30%。
实施例1
(1)γ-AlOOH晶种的制备
将866g拟薄水铝石滤饼溶解于29.134kg三次蒸馏水中初步分散2.5h,加入62.37g质量分数65%的浓硝酸,搅拌均匀,在20~25℃再次分散2h,将反应产物置于50L玻璃釜中回流,回流温度为90℃,回流8.5h,冷却后得到γ-AlOOH晶种。
(2)γ-AlOOH溶胶的制备
将250g铝溶胶与72.1g步骤(1)制备的γ-AlOOH晶种混合后,加入914g三次蒸馏水,25℃分散2h,得到混合溶胶,将481g混合溶胶置于500mL反应釜中,280℃保温1h后,立即取出,冷却后得到γ-AlOOH溶胶1#。
实施例2
(1)γ-AlOOH晶种的制备
将200g拟薄水铝石滤饼溶解于1800g三次蒸馏水中初步分散2.5h,加入7.477g质量分数65%的浓硝酸,搅拌均匀,在20~25℃再次分散2h,将反应产物置于50L玻璃釜中回流,回流温度为90℃,回流8.5h,冷却后得到γ-AlOOH晶种。
(2)γ-AlOOH溶胶的制备
将250g铝溶胶与17.55g步骤(1)制备的γ-AlOOH晶种混合,所述铝溶胶中含有的氧化铝与所述γ-AlOOH晶种含有的氧化铝的重量比为1:0.048,加入662g三次蒸馏水,25℃分散2h,得到混合溶胶,将480g混合溶胶置于500mL反应釜中,280℃保温1h后,立即取出,冷却后得到γ-AlOOH溶胶2#。
实施例3
(1)γ-AlOOH晶种的制备
同实施例2。
(2)γ-AlOOH溶胶的制备
将250g铝溶胶与23.30g步骤(1)制备的γ-AlOOH晶种混合,加入914g三次蒸馏水,25℃分散2h,得到混合溶胶,将475g混合溶胶置于500mL反应釜中,280℃保温1h后,立即取出,冷却后得到γ-AlOOH溶胶3#。
实施例4
(1)γ-AlOOH晶种的制备
同实施例2。
(2)γ-AlOOH溶胶的制备
将250g铝溶胶与27.04g步骤(1)制备的γ-AlOOH晶种混合,加入914g三次蒸馏水,25℃分散2h,得到混合溶胶,将423.6g混合溶胶置于500mL反应釜中,280℃保温1h后,立即取出,冷却后得到γ-AlOOH溶胶4#。
实施例5
(1)γ-AlOOH晶种的制备
同实施例2。
(2)γ-AlOOH溶胶的制备
将250g铝溶胶与27.52g步骤(1)制备的γ-AlOOH晶种混合,加入913g三次蒸馏水,25℃分散2h,得到混合溶胶,将480g混合溶胶置于500mL反应釜中,280℃保温1h后,立即取出,冷却后得到γ-AlOOH溶胶5#。
实施例6
(1)γ-AlOOH晶种的制备
同实施例2。
(2)γ-AlOOH溶胶的制备
将250g铝溶胶与28.16g步骤(1)制备的γ-AlOOH晶种混合,加入900g三次蒸馏水,25℃分散2h,得到混合溶胶,将480.6g混合溶胶置于500mL反应釜中,280℃保温1h后,立即取出,冷却后得到γ-AlOOH溶胶6#。
实施例7
(1)γ-AlOOH晶种的制备
将1401g拟薄水铝石滤饼溶解于28.59kg三次蒸馏水中初步分散2h,加入100.91g质量分数65%的浓硝酸,搅拌均匀,在20~25℃再次分散2h,将反应产物置于50L玻璃釜中回流,回流温度为90℃,回流8.5h,冷却后得到γ-AlOOH晶种。
(2)γ-AlOOH溶胶的制备
将250g铝溶胶与76g步骤(1)制备的γ-AlOOH晶种混合,加入911g三次蒸馏水,25℃分散2h,得到混合溶胶,将480.5g混合溶胶置于500mL反应釜中,280℃保温1h后,立即取出,冷却后得到γ-AlOOH溶胶7#。
实施例8
(1)γ-AlOOH溶液的制备
同实施例7。
(2)γ-AlOOH溶胶的制备
将250铝溶胶与76g步骤(1)制备的γ-AlOOH晶种混合,加入911g三次水,25℃分散2h,得到混合溶胶,将427.4g混合溶胶置于500mL反应釜中,280℃保温40min后,立即取出,冷却后得到γ-AlOOH溶胶8#。
实施例9
(1)γ-AlOOH晶种的制备
将200g拟薄水铝石滤饼溶解于1800g三次蒸馏水中初步分散1h,加入100.91g质量分数65%的浓硝酸,搅拌均匀,在20~25℃再次分散3.0h,将反应产物置于50L玻璃釜中回流,回流温度为100℃,回流7h,冷却后得到γ-AlOOH晶种。
(2)γ-AlOOH溶胶的制备
将250g铝溶胶与76g步骤(1)制备的γ-AlOOH晶种混合,加入911g三次蒸馏水,25℃分散1h,得到混合溶胶,将480.5g混合溶胶置于500mL反应釜中,250℃保温2h后,立即取出,冷却后得到γ-AlOOH溶胶9#。
实施例10
(1)γ-AlOOH晶种的制备
将200g拟薄水铝石滤饼溶解于1800g三次蒸馏水中初步分散3h,加入100.91g质量分数65%的浓硝酸,搅拌均匀,在20~25℃再次分散1.0h,将反应产物置于50L玻璃釜中回流,回流温度为80℃,回流12h,冷却后得到γ-AlOOH晶种。
(2)γ-AlOOH溶胶的制备
将250g铝溶胶与76g步骤(1)制备的γ-AlOOH晶种混合,加入911g三次蒸馏水,25℃分散3h,得到混合溶胶,将480.5g混合溶胶置于500mL反应釜中,300℃保温0.5h后,立即取出,冷却后得到γ-AlOOH溶胶10#。
对上述实施例1-10制备得到的γ-AlOOH溶胶1#-10#进行性能测试,测试结果见下表1。
表1
样品编号 黏度(mPa·s) 粒度(nm) 浊度(NTU)
γ-AlOOH溶胶1# 0.54 57.2 67.1
γ-AlOOH溶胶2# 0.45 56.9 65.4
γ-AlOOH溶胶3# 0.47 56.4 65.8
γ-AlOOH溶胶4# 0.48 58.2 66.2
γ-AlOOH溶胶5# 0.47 57.4 66.1
γ-AlOOH溶胶6# 0.49 58.3 65.9
γ-AlOOH溶胶7# 0.52 57.2 66.6
γ-AlOOH溶胶8# 0.54 54.1 66.8
γ-AlOOH溶胶9# 0.53 59.4 66.2
γ-AlOOH溶胶10# 0.54 58.5 66.9
根据表1的内容可知,当AlOOH晶种与铝溶胶混合时,提高AlOOH晶种会增加产物的纳米粒度、浊度、黏度,此外,水热保温时间也会影响产物的黏度和粒度,保温时间减少时,会降低产物黏度和粒度,但若低于40min,可能会使产物晶化程度不够。实施例2与实施例1相比,减少了蒸馏水的用量,目的是为了减少成本,会略微增加晶种的粒度,但不影响后续使用生产。实施例8保温40min后,产物的黏度及粒度明显降低,但晶化程度不如保温1h的产物。
以上所述,仅为本申请的实施例而已,本申请的保护范围并不受这些具体实施例的限制,而是由本申请的权利要求书来确定。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的技术思想和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

1.一种γ-AlOOH溶胶的制备方法,其特征在于,包括下述步骤:
(1)将拟薄水铝石滤饼溶于水中初步分散,加入浓硝酸后再次分散,回流后进行冷却得到γ-AlOOH晶种;
(2)将铝溶胶和γ-AlOOH晶种在水中分散均匀,得到混合溶胶,所述混合溶胶进行水热反应,冷却后即得γ-AlOOH溶胶。
2.根据权利要求1所述的γ-AlOOH溶胶的制备方法,其特征在于,所述浓硝酸的质量分数不小于65%,所述拟薄水铝石滤饼中γ-AlOOH的固含量为30~40%;
所述拟薄水铝石滤饼与所述浓硝酸的重量比为1:(0.06-0.09),优选为1:0.072。
3.根据权利要求1所述的γ-AlOOH溶胶的制备方法,其特征在于,步骤(1)中,所述初步分散时间和所述再次分散时间均为2~3h;
所述回流温度为82~100℃,回流时间为8~12h。
4.根据权利要求1所述的γ-AlOOH溶胶的制备方法,其特征在于,步骤(2)中,所述铝溶胶中含有的氧化铝与所述γ-AlOOH晶种含有的氧化铝的重量比为1:(0.06-0.08),优选为1:0.0638。
5.根据权利要求1所述的γ-AlOOH溶胶的制备方法,其特征在于,步骤(2)中,所述铝溶胶和γ-AlOOH晶种在水中的分散时间为2~3h,
所述水热反应的温度为240~280℃,时间为1~2h。
6.根据权利要求1所述的γ-AlOOH溶胶的制备方法,其特征在于,所述铝溶胶的制备方法为:
在硝酸铝中加入一定量氨水,室温下边搅拌边加氨水,硝酸铝与氨水摩尔比为1:2,4h后产生凝胶,立即加入硝酸,硝酸与硝酸铝的重量比例为0.05:1,85℃陈化10h后制得铝溶胶。
7.根据权利要求1所述的γ-AlOOH溶胶的制备方法,其特征在于,所述铝溶胶的固含量为12~14%,pH值为3.5~4,浊度小于3;
优选的,所述铝溶胶的固含量为13.5%,pH值为3.7。
8.一种由权利要求1-7任一项所述的制备方法制得的γ-AlOOH溶胶。
9.根据权利要求8所述的γ-AlOOH溶胶,其特征在于,所述γ-AlOOH溶胶的黏度为0.3~0.7mPa·s,粒度为50~70nm,浊度为60~70;
优选的,所述γ-AlOOH溶胶的黏度为0.45~0.55mPa·s,粒度为55~60nm,浊度为65~67.5。
10.权利要求8或9所述的γ-AlOOH溶胶的应用,其特征在于,所述γ-AlOOH溶胶用于制备氧化铝陶瓷连续纤维和活性氧化铝涂层。
CN202210851819.3A 2022-07-20 2022-07-20 一种γ-AlOOH溶胶及其制备方法与应用 Pending CN115245798A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210851819.3A CN115245798A (zh) 2022-07-20 2022-07-20 一种γ-AlOOH溶胶及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210851819.3A CN115245798A (zh) 2022-07-20 2022-07-20 一种γ-AlOOH溶胶及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN115245798A true CN115245798A (zh) 2022-10-28

Family

ID=83699714

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210851819.3A Pending CN115245798A (zh) 2022-07-20 2022-07-20 一种γ-AlOOH溶胶及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN115245798A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4797139A (en) * 1987-08-11 1989-01-10 Norton Company Boehmite produced by a seeded hydyothermal process and ceramic bodies produced therefrom
CN102432300A (zh) * 2011-09-15 2012-05-02 三达膜科技(厦门)有限公司 一种粒径可控的铝溶胶的制备方法
WO2014181346A2 (en) * 2013-04-23 2014-11-13 Heubach Colour Pvt. Ltd. A process for manufacturing of boehmite particulate material
CN105836770A (zh) * 2016-03-24 2016-08-10 中国铝业股份有限公司 一种耐高温勃姆石的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4797139A (en) * 1987-08-11 1989-01-10 Norton Company Boehmite produced by a seeded hydyothermal process and ceramic bodies produced therefrom
CN102432300A (zh) * 2011-09-15 2012-05-02 三达膜科技(厦门)有限公司 一种粒径可控的铝溶胶的制备方法
WO2014181346A2 (en) * 2013-04-23 2014-11-13 Heubach Colour Pvt. Ltd. A process for manufacturing of boehmite particulate material
CN105836770A (zh) * 2016-03-24 2016-08-10 中国铝业股份有限公司 一种耐高温勃姆石的制备方法

Similar Documents

Publication Publication Date Title
CN112456528B (zh) 一种勃姆石及其制备方法、应用
CN109809453B (zh) 超细氢氧化铝及其制备方法和应用
CN108689422B (zh) 一种大比表面积纳米氧化钆粉体的制备方法
CN103407969B (zh) 一种三维有序大孔-介孔金属氧化物或复合氧化物的气相渗透-沉淀制备方法及所得产品
CN103182302B (zh) 具有核壳结构的稀土锆基复合氧化物及其制备方法和应用
CN106784817B (zh) 磷酸铁/石墨烯复合材料的制备方法
CN109019614B (zh) 一种稀土增韧硅气凝胶前驱体
CN106811832A (zh) 一种珠帘状BiFeO3微纳米纤维的制备方法及所得产品
CN107758715A (zh) 一种制备高结晶度高纯拟薄水铝石的方法
CN108275695B (zh) 高铝煤矸石制备洗涤助剂用4a沸石的方法
CN108751242A (zh) 一种低钠氧化铝分解工艺及低钠氧化铝
CN102249275A (zh) 一种制备高烧结活性光电级高纯氧化铝的方法
CN105293516A (zh) 一种使用晶种快速制备zsm-22分子筛的方法
CN115245798A (zh) 一种γ-AlOOH溶胶及其制备方法与应用
CN111408390B (zh) 一种纯相多边形w2c纳米材料及其制备方法
CN105314651A (zh) 一种小晶粒NaY分子筛的制备方法
CN110026151B (zh) 一种提高无粘结剂nalsx分子筛吸附量与强度的方法
CN101590410B (zh) 一种光催化分解硫化氢的催化剂及利用该催化剂制备氢气和液态硫的方法
CN112871206A (zh) 一种低成本高活性苯酚羟基化钛硅分子筛催化剂的制备方法
CN115676871B (zh) 一种纳米氧化铜粉体的制备工艺
CN108766859B (zh) 铝酸盐电子发射材料共沉淀合成用混合盐溶液的制备方法
CN108912802A (zh) 膨润土活性增稠防沉流变剂及其制备方法
CN109368682A (zh) 一种超细铈氧硫复合物的制备方法
WO2017191979A1 (ko) 페로브스카이트 구조를 갖는 산화물 분말의 제조 방법 및 이에 의해 제조된 산화물 분말
CN117398987A (zh) 一种尖晶石结构铝酸锂催化剂载体的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination