CN115233188B - 一种片级Ni-Al2O3多孔能源材料的制备方法 - Google Patents

一种片级Ni-Al2O3多孔能源材料的制备方法 Download PDF

Info

Publication number
CN115233188B
CN115233188B CN202210866169.XA CN202210866169A CN115233188B CN 115233188 B CN115233188 B CN 115233188B CN 202210866169 A CN202210866169 A CN 202210866169A CN 115233188 B CN115233188 B CN 115233188B
Authority
CN
China
Prior art keywords
functionalized
porous
energy material
nickel
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210866169.XA
Other languages
English (en)
Other versions
CN115233188A (zh
Inventor
范德松
成宏
房俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN202210866169.XA priority Critical patent/CN115233188B/zh
Publication of CN115233188A publication Critical patent/CN115233188A/zh
Application granted granted Critical
Publication of CN115233188B publication Critical patent/CN115233188B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/08Perforated or foraminous objects, e.g. sieves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemically Coating (AREA)

Abstract

本发明公开了一种片级Ni‑Al2O3多孔能源材料的制备方法,首先制备脒功能化微球乳液,功能化基底玻片;其次采用湿静电垂直自组装方法制备胶晶模板;然后在模板表面电沉积镍金属,溶解模板得到镍多孔材料;最后在其表面原子层沉积氧化铝得到Ni‑Al2O3多孔能源材料。该多孔能源材料可广泛应用于表面水蒸发、热管吸液芯、沸腾表面、光热转化及光电催化等领域。

Description

一种片级Ni-Al2O3多孔能源材料的制备方法
技术领域
本发明属于能源利用领域,特别是一种片级Ni-Al2O3多孔能源材料的制备方法。
背景技术
进入21世纪以来, 电子信息产业快速发展, 电子设备的小型化、集成化已经成为当今电子技术发展的趋势,芯片的高度集成、高工作频率以及高封装密度使得芯片的温度急剧升高。目前,热管作为一种高效的相变传热工具, 由于其拥有高导热性、优异的均温性能、运行可靠性等特点, 被广泛应用在能源、航空、电子元件等领域的散热。各种形式的热管层出不穷,但由于电子设备尺寸较小,限制其发展。相比于传统热管,采用一种片级多孔材料制作热管,可与电子设备有效贴合,在对流条件下也可以提高传热性能,同时该能源材料在表面水蒸发、热管吸液芯、沸腾表面、光热转化及光电催化领域有更大的应用前景和市场。
目前,在Ni-Al2O3多孔能源材料的制备方面,国内外研究者多采用阳极氧化法、物理气相沉积(真空蒸发、溅射镀膜和离子镀)、溶胶凝胶法。阳极氧化法中使用氰化物、磷酸盐等有害物质,环境污染严重;物理气相沉积方法虽然没有环境污染,设备对环境拥有较高的要求,成本较高。溶胶-凝胶法虽然简单,但所需周期过长,所使用的原料价格比较昂贵。鉴于片级Ni-Al2O3多孔能源材料巨大的应用前景和市场,采用一种成本低,污染小的方法制备Ni-Al2O3多孔结构具有重要意义。
发明内容
本发明提供一种片级Ni-Al2O3多孔能源材料的制备方法,以解决现有方法对设备要求较高,且严重污染环境的问题。
实现本发明目的的技术解决方案为:
一种片级Ni-Al2O3多孔能源材料的制备方法,包括以下步骤:
步骤1、制备脒功能化微球乳液:
聚二烯丙基二甲基氯化铵溶液、苯乙烯溶液分散于无水乙醇中,进行脱氧处理,注入脱氧后的2,2-偶氮双(2-甲基丙脒)盐酸盐溶液加热搅拌,完全反应后离心洗涤得到脒功能化微球乳液;
步骤2、制备功能化基底玻片:
玻片分别在甲醇、丙酮和异丙醇中超声洗涤,然后在碱性食人鱼溶液(H2O2/NH4OH/H2O,体积比为1:1:5)中加热改性,在N-(3-(三甲氧基甲硅烷基)丙基)-N,N,N-三甲基氯化铵甲醇溶液中浸泡使之带正电,用去离子水冲洗得到功能化基底玻片;
步骤3、自组装:
功能化基底玻片浸入脒功能化的脒功能化微球乳液中,设置温度和湿度,加入保湿剂,以湿静电垂直沉积法进行自组装;
步骤4、电沉积镍:
将自组装后的基底玻片快速转移到镍电镀液中,连接电源进行沉积,沉积后转移至有机溶剂,溶解模板后得到镍多孔材料;
步骤5、原子层沉积氧化铝:
采用三甲基铝为前驱体,以水为反应物,氮气为载气,设置反应腔温度、工艺压力、循环周期等反应条件,在镍多孔材料表面原子层沉积氧化铝得到片级Ni-Al2O3多孔能源材料。
本发明与现有技术相比,其显著优点:
(1)本发明的制备方法简单、成本低、对环境污染小,可广泛应用于表面水蒸发、热管吸液芯、沸腾表面、太阳能洁净水处理及光电催化等领域。
(2)本发明的具有增强的机械、化学、热和光子特性,具有很大的应用前景和市场,可广泛应用于电池电极、光子器件和热交换器等领域。
(3)本发明制备的Ni-Al2O3具有较强的光吸收能力,有利于提高太阳光热利用系统的光热转换效率。
(4)本发明制备的Ni-Al2O3多孔能源材料具有亲水能力,有利于提高水工质的毛细抽取能力,加速太阳能洁净水处理。
(5)本发明实现了模板的片级生长,有利于实现柔性薄膜蒸发器的开发利用。
下面结合附图对本发明作进一步详细描述。
附图说明
图1为Ni-Al2O3多孔能源材料制备流程图。
图2为Ni-Al2O3多孔能源材料实物图。
图3为Ni-Al2O3多孔能源材料表面扫描电镜图。
图4为Ni-Al2O3多孔能源材料孔径统计分布图。
图5为Ni-Al2O3多孔能源材料光谱吸收图。
图6为Ni-Al2O3多孔能源材料表面接触角测试图。
图7为Ni-Al2O3多孔能源材料X射线光电子能谱图。
图8为Ni-Al2O3多孔能源材料截面扫描电镜成分分析测试图。
具体实施方式
为了说明本发明的技术方案及技术目的,下面结合附图及具体实施例对本发明做进一步的介绍。
结合图1,本发明的一种片级Ni-Al2O3多孔能源材料的制备方法,包括以下步骤:
步骤1、制备脒功能化微球乳液:
将25~30wt%聚二烯丙基二甲基氯化铵溶液、苯乙烯分散于无水乙醇中,进行脱氧处理,注入脱氧后的2,2-偶氮双(2-甲基丙脒)盐酸盐溶液加热搅拌,完全反应后离心洗涤得到脒功能化微球乳液。
步骤2、功能化基底玻片:
玻片分别在甲醇、丙酮和异丙醇中超声洗涤,然后在碱性食人鱼溶液(H2O2/NH4OH/H2O,体积比为1:1:5)中加热改性,在N-(3-(三甲氧基甲硅烷基)丙基)-N,N,N-三甲基氯化铵甲醇溶液中浸泡使之带正电,用去离子水冲洗得到功能化基底玻片。
步骤3、自组装:
功能化基底玻片浸入脒功能化的微球乳液中,设置温度湿度,加入保湿剂,用垂直沉积法进行自组装。
步骤4、电沉积镍:
将基底玻片快速转移到镍电镀液中,连接电源进行沉积,沉积后转移至有机溶剂,溶解模板后得到镍多孔材料。
步骤5、原子层沉积氧化铝:
采用三甲基铝为前驱体,以水为反应物,氮气为载气,设置反应腔温度、工艺压力、循环周期等反应条件,在镍多孔材料表面原子层沉积氧化铝得到片级Ni-Al2O3多孔能源材料。
实施例1
一种片级Ni-Al2O3多孔能源材料的制备方法,包括以下步骤:
步骤1、制备脒功能化微球乳液:
量取0.13ml质量浓度为28%的聚二烯丙基二甲基氯化铵溶液、6ml苯乙烯溶液,倒入盛有75ml无水乙醇的圆底烧瓶中,通氮气脱氧,随后注入0.07g脱氧后的2,2-偶氮双(2-甲基丙脒)盐酸盐溶液,加热至75℃搅拌反应20小时,反应完全后离心洗涤备用。
步骤2、功能化基底玻片:
将ITO载玻片分别在甲醇、丙酮和异丙醇中超声处理15分钟,然后浸泡在80℃的碱性食人鱼溶液中3小时,随后浸泡在质量浓度1.0 % 的N-[3-(三甲氧基甲硅烷基)丙基]-N,N,N-二甲基氯化铵溶液中一天,最后用去离子水彻底冲洗基底。
步骤3、自组装:
将基底玻片浸入质量浓度为0.9%的脒功能化微球乳液烧杯内,加入脒功能化微球乳液体积的0.06%的甘油保湿剂,进行垂直自组装,加热至56℃,控制湿度为26%,自组装24-36小时。
步骤4、电沉积镍:
步骤4.1、将样品取出,快速浸入镍电镀液中(氨基磺酸镍、溴化镍、硼酸、水的质量比为50:1.365:4.37:136.6),模板面朝下倾斜,将电源连接到模板和镍阳极上,利用计时电流法在-1.37伏电压下沉积。
步骤4.2、在甲苯中浸泡10小时以上溶解模板形成镍多孔结构。
步骤5、用氮气吹干后放入腔体,采用三甲基铝为前驱体,以水为反应物,氮气为载气,设置反应腔温度150℃、工艺压力26.7帕斯卡、循环48个周期沉积氧化铝,冷却后将样品从基底上机械剥离。
图2为Ni-Al2O3多孔能源材料实物图,可以看出该薄膜表面呈现灰黑色。图3为ITO基底上制备的Ni-Al2O3多孔能源材料表面扫描电镜图,从图中可以看出,成功制备出了结构有序的Ni-Al2O3薄膜,且无明显裂纹。图4为Ni-Al2O3多孔能源材料孔径统计分布图,可以确定孔径大小在0.758微米左右。利用ImageJ软件计算出孔隙率为76%。图5为Ni-Al2O3多孔能源材料的光谱吸收图,具有较强的光吸收能力,有利于提高太阳光热利用系统的光热转换效率。图6为Ni-Al2O3多孔能源材料的接触角测试图,从图上可以看出Ni-Al2O3多孔能源材料具备亲水性能,接触角为85.7度。图7为Ni-Al2O3多孔能源材料的X射线光电子能谱图。本发明的Ni-Al2O3多孔结构能源材料的制备方法简单,可直接在导电玻璃基底上制备出片级Ni-Al2O3多孔结构,结构稳定。图8为Ni-Al2O3多孔能源材料的截面扫描电镜成分分析测试图,从图上可以看出本发明的Ni-Al2O3多孔能源材料的成分中主要含有氧、铝、镍三种元素。

Claims (9)

1.一种片级Ni-Al2O3多孔能源材料的制备方法,其特征在于,包括以下步骤:
步骤1、制备脒功能化微球乳液:
将聚二烯丙基二甲基氯化铵溶液、苯乙烯分散于无水乙醇中,进行脱氧处理,加入脱氧后的2,2-偶氮双(2-甲基丙脒)盐酸盐溶液加热搅拌,完全反应后离心洗涤得到脒功能化微球乳液;
步骤2、自组装:
将功能化基底玻片浸入脒功能化的微球乳液中,控制温度和湿度,加入保湿剂,用垂直沉积法进行自组装,其中,功能化基底玻片是指对基底玻片进行带正电的功能化处理,保湿剂为甘油或聚乙二醇溶液,保湿剂的体积为脒功能化的微球乳液体积的0.03-0.12%;
步骤3、电沉积镍:
将自组装后的基底玻片快速转移到镍电镀液中,进行沉积,沉积后转移至有机溶剂,溶解模板后得到镍多孔材料;
步骤4、原子层沉积氧化铝:
采用三甲基铝为前驱体,以水为反应物,氮气为载气,在镍多孔材料表面进行原子层沉积氧化铝得到片级Ni-Al2O3多孔能源材料。
2.根据权利要求1所述的制备方法,其特征在于,加热搅拌温度为65-80℃,搅拌转速为300-400r/min,加热搅拌时间为20-24h。
3.根据权利要求1所述的制备方法,其特征在于,苯乙烯和2,2-偶氮双(2-甲基丙脒)盐酸盐的质量比为10~1000。
4.根据权利要求1所述的制备方法,其特征在于,功能化基底玻片是指对基底玻片进行带正电的功能化处理,具体步骤为:基底玻片分别在甲醇、丙酮和异丙醇中超声洗涤,然后在碱性食人鱼溶液中于70~80℃下改性2-3h,在N-(3-(三甲氧基甲硅烷基)丙基)-N,N,N-三甲基氯化铵甲醇溶液中浸泡20-36h使之带正电,用去离子水冲洗得到功能化基底玻片。
5.根据权利要求1或4所述的制备方法,其特征在于,基底玻片为ITO、FTO导电玻璃中任意一种。
6.根据权利要求1所述的制备方法,其特征在于,步骤2中,将功能化基底玻片浸入脒功能化的微球乳液中,控制温度为50-60℃,湿度为20%-30%。
7.根据权利要求1或6所述的制备方法,其特征在于,步骤2中,脒功能化的微球乳液的质量浓度为0.9-1.5%。
8.根据权利要求1所述的制备方法,其特征在于,电沉积镍的电压在(-1.3)~(-1.6)伏。
9.根据权利要求1所述的制备方法,其特征在于,原子层沉积时的反应腔温度为150-160℃,压力为13-40 帕斯卡,循环周期为5-200。
CN202210866169.XA 2022-07-22 2022-07-22 一种片级Ni-Al2O3多孔能源材料的制备方法 Active CN115233188B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210866169.XA CN115233188B (zh) 2022-07-22 2022-07-22 一种片级Ni-Al2O3多孔能源材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210866169.XA CN115233188B (zh) 2022-07-22 2022-07-22 一种片级Ni-Al2O3多孔能源材料的制备方法

Publications (2)

Publication Number Publication Date
CN115233188A CN115233188A (zh) 2022-10-25
CN115233188B true CN115233188B (zh) 2024-05-17

Family

ID=83676215

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210866169.XA Active CN115233188B (zh) 2022-07-22 2022-07-22 一种片级Ni-Al2O3多孔能源材料的制备方法

Country Status (1)

Country Link
CN (1) CN115233188B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102560419A (zh) * 2011-11-29 2012-07-11 华东师范大学 一种氧化铝超薄薄膜的制备方法
CN104671197A (zh) * 2015-02-26 2015-06-03 中国科学院合肥物质科学研究院 可转移有序金属纳/微米孔模板的制备方法
CN108538617A (zh) * 2018-04-02 2018-09-14 中国科学院宁波材料技术与工程研究所 一种三维有序多孔材料的制备方法
JP2020090601A (ja) * 2018-12-05 2020-06-11 積水化成品工業株式会社 カチオン性グラフト共重合体粒子、並びにこれを用いた亜鉛負極合剤、亜鉛負極及び亜鉛二次電池
CN112490433A (zh) * 2020-11-05 2021-03-12 中国电子科技集团公司第十八研究所 一种固态电池及提升固态电池倍率性能和安全性的方法
WO2021141369A1 (ko) * 2020-01-07 2021-07-15 서강대학교산학협력단 단일 가닥 dna 탐침 기반 rna 검출 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102560419A (zh) * 2011-11-29 2012-07-11 华东师范大学 一种氧化铝超薄薄膜的制备方法
CN104671197A (zh) * 2015-02-26 2015-06-03 中国科学院合肥物质科学研究院 可转移有序金属纳/微米孔模板的制备方法
CN108538617A (zh) * 2018-04-02 2018-09-14 中国科学院宁波材料技术与工程研究所 一种三维有序多孔材料的制备方法
JP2020090601A (ja) * 2018-12-05 2020-06-11 積水化成品工業株式会社 カチオン性グラフト共重合体粒子、並びにこれを用いた亜鉛負極合剤、亜鉛負極及び亜鉛二次電池
WO2021141369A1 (ko) * 2020-01-07 2021-07-15 서강대학교산학협력단 단일 가닥 dna 탐침 기반 rna 검출 방법
CN112490433A (zh) * 2020-11-05 2021-03-12 中国电子科技集团公司第十八研究所 一种固态电池及提升固态电池倍率性能和安全性的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Conformal oxide nanocoatings on electrodeposited 3D porous Ni films by atomic layer deposition;J. Zhang等;J. Mater. Chem. C;第第4卷卷;第8655-8662页 *

Also Published As

Publication number Publication date
CN115233188A (zh) 2022-10-25

Similar Documents

Publication Publication Date Title
CN101872862B (zh) 燃料电池板的表面的涂覆方法
CN110165229B (zh) 一种石墨烯复合碳纤维纸及其制备方法和应用
CN102942178A (zh) 一种贵金属纳米阵列与单层石墨烯复合基底及其制备方法
CN103011149B (zh) 一种多层还原石墨烯薄膜的制备方法及其应用
CN104505509B (zh) 一种碳包覆多孔氮化钒纳米线薄膜及其制备方法
CN110898862B (zh) 基于静电自组装的双极膜制备方法以及双极膜
CN105420689B (zh) 一种取向碳纳米管-氧化铝杂化纤维及其制备方法
CN115233188B (zh) 一种片级Ni-Al2O3多孔能源材料的制备方法
CN112609465B (zh) 一种光热转换高导热的浸润性材料及其制备方法
CN107674236B (zh) 一种超双亲聚氨酯泡沫材料及其制备方法
CN105702942A (zh) 一种硅基负极材料、制备方法及其应用
CN110643999A (zh) 一种自组装封孔保护膜的制备方法
CN115346803A (zh) 一种w18o49/碳纸复合电极材料及其制备方法
CN103741148B (zh) 一种蜂窝环氧玻璃钢天线金属化工艺
CN110265681A (zh) 一种用于催化甲酸钠氧化的复合电极及其制备方法和用途
CN111326603A (zh) 一种以氧化锌做电子传输层的无机钙钛矿电池制备方法
CN108914150B (zh) 一种有序微纳孔阵列结构超薄Ni-P复合电极材料的制备方法
CN114381938A (zh) 一种非对称结构的碳毡/银复合材料及其制备方法
CN110042391B (zh) 基于阳极氧化铝模板的钒酸铋纳米颗粒包裹的镍阵列方法
CN110359058B (zh) 一种锆钛酸铅修饰的赤铁矿纳米棒阵列光阳极的制备方法
CN109930140B (zh) 一种柔性电极的制备方法
CN114197013B (zh) 一种硅烷/钛酸酯双偶联剂防腐蚀涂层的制备方法
CN105895889B (zh) 一种锂离子电池用正极集流体的制备方法
CN108417847B (zh) 一种钛基镍酸镧电极及其制备方法
CN109802010A (zh) 一种可循环化学浴法制备太阳能电池吸收层Sb2S3薄膜的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant