CN115224239A - 金属负极、电池和电子设备 - Google Patents

金属负极、电池和电子设备 Download PDF

Info

Publication number
CN115224239A
CN115224239A CN202110419798.3A CN202110419798A CN115224239A CN 115224239 A CN115224239 A CN 115224239A CN 202110419798 A CN202110419798 A CN 202110419798A CN 115224239 A CN115224239 A CN 115224239A
Authority
CN
China
Prior art keywords
layer
solid electrolyte
metal
battery
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110419798.3A
Other languages
English (en)
Inventor
吴凡
洪响
伍登旭
彭健
程小露
严润羽
宋凤梅
李泓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Institute of Physics of CAS
Original Assignee
Huawei Technologies Co Ltd
Institute of Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd, Institute of Physics of CAS filed Critical Huawei Technologies Co Ltd
Priority to CN202110419798.3A priority Critical patent/CN115224239A/zh
Priority to PCT/CN2022/087470 priority patent/WO2022222894A1/zh
Publication of CN115224239A publication Critical patent/CN115224239A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本申请提供一种金属负极,包括液态金属层,所述液态金属层包括储液材料层和分布于所述储液材料层中的液态金属溶液,所述液态金属溶液包括碱金属、第一有机组分和第二有机组分,所述第一有机组分包括具备电子接受能力的芳香烃类小分子化合物和含芳香烃类基团的聚合物中的至少一种,所述第二有机组分包括能够络合碱金属离子的醚类小分子、胺类小分子、硫醚类小分子、聚醚类聚合物、聚胺类聚合物和聚硫醚类聚合物中的至少一种。该金属负极包括液态金属层,液态金属溶液具备优异的溶锂性能,可从根本上抑制枝晶的形核和生长,提高碱金属电池安全性能和电化学性能。本申请实施例还提供了金属负极的制备方法、及电池和电子设备。

Description

金属负极、电池和电子设备
技术领域
本申请实施例涉及储能技术领域,特别是涉及一种金属负极、电池和电子设备。
背景技术
现代社会的发展迫切需要开发高比容量、高安全性、长循环寿命、低成本的二次电池。锂金属因为具有高的理论比容量(3860mAh/g)和低的氧化还原电位(-3.040V vs.标准氢电极)是最理想的高能量密度负极材料。参见图1,然而使用金属锂电池在循环过程中容易产生锂枝晶,锂枝晶在液态电解液体系中会穿透隔膜,引起安全问题,即使是微量的枝晶生长,也会带来死锂生成等副作用,导致电池库伦效率低,循环性能极差;而在固态电池体系,大多数离子电导率高的固态电解质均与锂金属不稳定,且同样存在枝晶的生长问题,影响电池库伦效率和循环性能。因此,为了获得高能量密度的锂金属电池,需要找到能够有效抑制枝晶生长的方法。
发明内容
鉴于此,本申请实施例提供一种金属负极,该金属负极包括液态金属层,液态金属溶液具备优异的溶锂性能,可以从根本上抑制枝晶的形核和生长,以解决碱金属电池中枝晶生长带来的电池安全性能、电化学性能下降的问题。
具体地,本申请实施例第一方面提供一种金属负极,包括液态金属层,所述液态金属层包括储液材料层和分布于所述储液材料层中的液态金属溶液,所述液态金属溶液包括碱金属、第一有机组分和第二有机组分,所述第一有机组分包括具备电子接受能力的芳香烃类小分子化合物和含芳香烃类基团的聚合物中的至少一种,所述第二有机组分包括能够络合碱金属离子的醚类小分子、胺类小分子、硫醚类小分子、聚醚类聚合物、聚胺类聚合物和聚硫醚类聚合物中的至少一种。其中,液态金属溶液具有较高离子电导和电子电导能力,且具有优异的流动性,因而可以在电池充放电循环过程中快速有效地溶解沉积生长在负极表面的碱金属枝晶(例如锂枝晶),从根本上抑制枝晶的生长,因此可以在极大的电流密度下实现无枝晶沉积,提高电池安全性能和电化学性能;而且,通过将液态金属溶液吸附固定于储液材料层中,可与电池电解质、正极直接进行叠放装配,从而大大降低电池的装配难度。
本申请实施方式中,金属负极为碱金属负极,可以是锂负极、钠负极、钾负极、锂合金负极、钠合金负极或钾合金负极,液态金属溶液中包括碱金属,即含有碱金属元素,具体地,碱金属可以是金属锂、金属钠或金属钾,碱金属可以多种化学状态存在。相应地,碱金属离子可以是锂离子、钠离子或钾离子。
本申请实施方式中,所述金属负极还包括层叠设置于所述液态金属层一侧的固态碱金属层。固态碱金属层可以是金属锂层、锂合金层、金属钠层、钠合金层、金属钾层或钾合金层。固态碱金属层可作为负极的碱金属储备层,提高电池库伦效率和长循环性能。
本申请实施方式中,所述芳香烃类小分子化合物包括联苯、萘、菲、蒽、并四苯、芘及其衍生物中的至少一种;所述含芳香烃类基团的聚合物含有联苯、萘、菲、蒽、并四苯、芘芳香基团中的至少一种。芳香烃类物质具有良好的接受电子的能力。
本申请实施方式中,所述醚类小分子包括乙醚、甲醚、乙二醇二甲醚、乙二醇二乙醚、二乙二醇二甲醚、三乙二醇二甲醚、四乙二醇二甲醚、聚乙二醇二甲醚、四氢呋喃、1,3-二氧环戊烷、二丙醚、二异丙醚、乙基丁基醚、二丁醚、二戊醚、二异戊醚、二己醚、2-甲基四氢呋喃、4-甲基-1,3-二氧环戊烷、二甲氧基甲烷、1,2-二甲氧基丙烷、二氧戊烷、1,4-二氧六环、环氧乙烷、环氧丙烷、1,1-二乙氧基乙烷、12-冠醚-4、15-冠醚-5和18-冠醚-6中的一种或多种;
所述胺类小分子包括乙二胺二甲胺、乙二胺四甲胺和二乙二胺四甲胺中的一种或多种;
所述硫醚类小分子包括乙二硫醇二甲硫醚、乙二硫醇二乙硫醚、二乙二硫醇二甲硫醚和四乙二硫醇二甲硫醚中的一种或多种。
本申请实施方式中,所述聚醚类聚合物包括聚环氧乙烷和聚环氧丙烷中的至少一种;所述聚胺类聚合物包括聚乙二胺和聚甲基乙二胺中的至少一种;所述聚硫醇类聚合物包括聚乙二硫醇和甲氧基聚乙二硫醇中的至少一种。
本申请实施方式中,所述液态金属层中,所述第一有机组分与所述第二有机组分的摩尔量之比为(0.1-50)∶10;所述碱金属与所述第二有机组分的摩尔量之比为(0.1-20)∶10。各组分在适合比例下液态金属溶液具有较高的离子电导率和电子电导率。
本申请实施方式中,所述液态金属溶液的室温电子电导率不低于6mS/cm,室温离子电导率不低于3mS/cm。以锂金属电池为例,液态金属溶液具有较高的电子电导和离子电导率,可以在快速消溶枝状锂的同时保持液态金属溶液中孤立的单质锂的电接触,防止死锂的生成。
本申请实施方式中,储液材料层作为骨架结构,用于吸附和支撑液态金属溶液。所述储液材料层包括具有多孔结构,且与所述液态金属溶液不发生反应的材料。
本申请实施方式中,所述储液材料层包括多壁碳纳米管纸、泡沫纸、玻璃纤维、有机纤维中的一种或多种。上述材料具有较好的机械强度,并具备多孔结构。
本申请实施方式中,所述储液材料层的孔隙率在30%-95%范围内。适合的孔隙率可以保证储液材料层111具有较好吸液能力,也能保证其一定的机械强度。
本申请实施方式中,所述储液材料层的厚度为0.05μm-1500μm。储液材料层太厚会降低电池的能量密度,而太薄溶解碱金属的能力会降低,适合的储液材料层厚度能够保证液态金属层具有较高的溶解碱金属的能力,同时保证电池具有较高的能量密度。
本申请实施方式中,还包括固态电解质层,所述固态电解质层包括固态电解质本体和设置在所述固态电解质本体至少一侧表面的界面保护层,所述固态电解质层与所述液态金属层接触层叠,所述固态电解质本体与所述液态金属层之间具有所述界面保护层。界面保护层可以提高固态电解质与液态金属溶液(电位~0.3V vs Li+/Li)的化学和电化学稳定性。
本申请实施方式中,所述固态电解质层的离子电导率大于0.1mS/cm。固态电解质层具有较大的离子电导率能够保证碱金属离子的快速传输。
本申请实施方式中,所述界面保护层包括聚合物和碱金属盐,所述聚合物包括聚醚类、聚含氟烯烃类、聚酯类、聚腈类、聚丙烯酸类聚合物中的至少一种。聚合物可以形成均匀致密膜层,有效防止液态金属层与固态电解质本体接触。
本申请实施方式中,所述聚醚类包括聚环氧乙烷(PEO)、聚环氧丙烷(PPO)中的一种或多种;所述聚含氟烯烃类包括聚偏二氟乙烯(PVDF);所述聚酯类包括聚碳酸酯(PC);所述聚腈类包括聚丙烯腈(PAN);所述聚丙烯酸类包括聚甲基丙烯酸甲酯(PMMA)。
本申请实施方式中,所述碱金属盐包括碱金属的双三氟甲基磺酰亚胺盐、双氟磺酰亚胺盐、三氟甲磺酸盐、六氟磷酸盐、四氟硼酸盐、高氯酸盐中的一种或多种。碱金属盐可以提高界面保护层的离子传输能力。
本申请实施方式中,所述界面保护层中,所述聚合物和所述碱金属盐的质量比为1:10至10:1。适合的聚合物和碱金属盐的质量比可以保证界面保护层具有聚合物膜层的基础性能(如高致密度、柔韧性、均匀性等),同时保证界面保护层具有较好的离子传输能力。
本申请实施方式中,所述界面保护层包括硫化物层,所述硫化物层包括β-Li3PS4、MoS2、CuS、Li2S中的一种或多种。
本申请实施方式中,所述界面保护层的厚度为0.02μm-200μm。
本申请实施方式中,所述固态电解质本体包括无机固态电解质,所述无机固态电解质包括硫化物固体电解质、氧化物固体电解质、氢化物固态电解质、卤化物固态电解质、硼化物固态电解质、磷化物固态电解质中的任意一种。
可选地,所述硫化物固体电解质包括硫代-锂快离子导体型、玻璃态硫化物固体电解质中的任意一种。所述氧化物固体电解质包括钙钛矿型固体电解质、石榴石型固体电解质、钠快离子导体型固体电解质、锂快离子导体型固体电解质、玻璃态氧化物固体电解质中的任意一种。所述氢化物固态电解质包括LiBH4、LiBH4-LiX(X=Cl、Br、I)、LiNH2、Li3AlH6、Li2NH中的一种或多种。所述卤化物固态电解质包括Li3OCl、Li3YX6(X=Cl、Br)、Li3InX6(X=Cl、Br)中的一种或多种。所述硼化物、磷化物固态电解质包括Li2B4O7、Li3PO4、Li2O-B2O3-P2O5中的一种或多种。
本申请实施例金属负极,可以在碱金属沉积时快速溶解枝晶,可在超大电流密度下(例如大于15mA/cm2)达到无枝晶的效果,从而使高能量密度的碱金属电池具有快充性能。
第二方面,本申请实施例提供一种金属负极的制备方法,包括:
将液态金属溶液加入到储液材料层中,使所述液态金属溶液分布于所述储液材料层中形成液态金属层;所述液态金属溶液包括碱金属、第一有机组分和第二有机组分,所述第一有机组分包括具备电子接受能力的芳香烃类小分子化合物和含芳香烃类基团的聚合物中的至少一种,所述第二有机组分包括能够络合碱金属离子的醚类小分子、胺类小分子、硫醚类小分子、聚醚类聚合物、聚胺类聚合物和聚硫醚类聚合物中的至少一种。
本申请实施方式中,所述制备方法还包括:
将界面保护层原料配成溶液,采用提拉法在固态电解质本体的至少一侧表面形成界面保护层,得到固态电解质层;或者将界面保护层原料配成浆料,再将所述浆料涂覆在固态电解质本体的至少一侧表面形成界面保护层,得到固态电解质层。
本申请实施例提供的金属负极的制备方法,工艺简单,适合扩大化生产制备。
第三方面,本申请实施例提供一种电池,包括正极、金属负极、以及设置于所述正极与所述金属负极之间的电解质,所述金属负极包括本申请实施例第一方面所述的金属负极。电池的具体结构形式不限,可以是扣式电池、软包电池等。本申请实施例电池,通过采用上述金属负极,可以提高电池的电池安全性能和电化学性能。
当所述金属负极还包括固态电解质层时,所述固态电解质层充当所述电解质,所述固态电解质层位于所述正极和所述液态金属层之间。
本申请实施方式中,所述电池经充放电循环后,所述固态电解质层与所述液态金属层之间的界面具有正离子碎片和负离子碎片,所述正离子碎片包括C4H7、C2H3、C2H5、C3H7、C3H5、C3H3中的一种或多种,所述负离子碎片包括CH2OF、CHO2、C7H5中的一种或多种。
本申请一实施方式中,所述正极包括正极集流体和设置在所述正极集流体上的固态正极材料层,所述固态正极材料层包括电解质粉末、正极活性物质和导电添加剂。
本申请另一实施方式中,所述正极包括储液层和分布于储液层中的液态正极材料,所述液态正极材料包括正极活性物质、碱金属盐、导电添加剂和有机溶剂。
本申请实施方式中,所述正极活性物质包括有机多硫化物、环己六酮、蒽醌及其衍生物中的一种或多种,所述有机溶剂包括醚类和/或碳酸酯类电解液溶剂。
本申请实施方式中,所述有机多硫化物包括二苯基多硫化物、二甲基多硫化物、吡啶基多硫化物、二苯基硒硫化物中的一种或多种。
本申请实施例还提供一种电子设备,包括壳体、以及收容于所述壳体内的电子元器件和电池,所述电池为所述电子元器件供电,所述电池包括本申请实施例第三方面所述的电池。
附图说明
图1为现有技术中锂金属电池中锂枝晶生长及死锂生成的示意图;
图2至图6为本申请实施例提供的金属负极10的结构示意图;
图7至图9为本申请实施例提供的电池100的结构示意图;
图10为本申请实施例提供的电子设备200的结构示意图;
图11为本申请实施例中对称电池①的结构示意图;
图12为本申请实施例中对称电池②的结构示意图;
图13为本申请实施例1中对称电池①的电压-电流密度曲线;
图14为本申请实施例1中具有β-LPS界面保护层的固态电解质层在循环后的表面SEM(Scanning Electron Microscope,扫描电子显微镜)图;
图15为本申请实施例1中对称电池②在固定电流密度下循环的电压-时间曲线;
图16为本申请实施例1中对称电池②液态金属样品锂金属片与液态金属层接触的界面处物质静态下的ssNMR7Li谱(ssNMR为Solid State Nuclear Magnetic Resonance简写,固体核磁共振技术);
图17为本申请实施例2中对称电池①经测试2a的电压-电流密度曲线;
图18为本申请实施例2中对称电池①经测试2b的电压-电流密度曲线;
图19为本申请实施例2中具有PEO界面保护层的固态电解质层在循环后的表面SEM图;
图20为本申请实施例2中对称电池②的电压-时间循环图;
图21为本申请实施例3提供的全电池的首圈和第二圈充放电电压-容量曲线;
图22为本申请实施例3提供的全电池的库伦效率和充放电容量随循环次数的变化曲线;
图23为本申请实施例4提供的全电池首圈充放电电压-容量曲线;
图24为对比例1中的对称电池极化电压-电流密度曲线;
图25为对比例2中的金属Li/LPS@PEO/金属Li对称电池电压-时间循环图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例进行说明。
参见图2至图4,本申请实施例提供一种金属负极10,可用于作为碱金属电池的负极,金属负极10包括液态金属层11,液态金属层11包括储液材料层111和分布于储液材料层111中的液态金属溶液(图中未示出),液态金属溶液包括碱金属、第一有机组分和第二有机组分,第一有机组分包括具备电子接受能力的芳香烃类小分子化合物和含芳香烃类基团的聚合物中的至少一种,第二有机组分包括能够络合碱金属离子的醚类小分子、胺类小分子、硫醚类小分子、聚醚类聚合物、聚胺类聚合物和聚硫醚类聚合物中的至少一种。液态金属溶液具有优异的消融碱金属的能力,且具有优异的流动性,因而可以在电池充放电循环过程中快速有效地溶解沉积生长在负极表面的碱金属枝晶(例如锂枝晶),从根本上抑制枝晶的生长,因此可以在极大的电流密度(大于15mA/cm2)下实现无枝晶沉积,提高电池安全性能和电化学性能;而且,通过将液态金属溶液吸附固定于储液材料层中,可与电池电解质、正极直接进行叠放装配,从而大大降低电池的装配难度。
本申请实施方式中,金属负极10为碱金属负极,可以是锂负极、钠负极、钾负极、锂合金负极、钠合金负极或钾合金负极,液态金属溶液中包括碱金属,即含有碱金属元素,具体地,碱金属可以是金属锂、金属钠或金属钾,碱金属可以多种化学状态存在。相应地,碱金属离子可以是锂离子、钠离子或钾离子,即第二有机组分为能够络合锂离子、钠离子或钾离子的物质。
本申请一些实施方式中,如图2所示,金属负极10还包括负极集流体12,液态金属层11直接设置于负极集流体12上,即液态金属层11与负极集流体12接触层叠。本申请另一些实施方式中,如图3所示,金属负极10还包括固态碱金属层13,液态金属层11直接设置于碱金属层13上,即液态金属层11与固态碱金属层13接触层叠。本申请另一些实施方式中,如图4所示,金属负极10还可以是包括负极集流体12和设置在负极集流体12上的固态碱金属层13,液态金属层11设置在固态碱金属层13上,即液态金属层11与固态碱金属层13接触层叠。负极集流体12具体可以是铜箔。固态碱金属层13具体可以是金属锂层、锂合金层、金属钠层、钠合金层、金属钾层或钾合金层。固态碱金属层13可作为负极的碱金属储备层,提高电池库伦效率和长循环性能。
本申请实施方式中,液态金属溶液在室温下为液态,其由碱金属单质、第一有机组分和第二有机组分混合得到。该液态金属溶液在常温下便能制备,制备过程简单、低耗,不需要高温加热等繁杂工序。其中,第一有机组分具备电子接受能力,第二有机组分具备络合碱金属离子的能力,使得液态金属溶液在具有溶解碱金属性能的同时,具有较高的电子电导和离子电导能力。本申请实施方式中,液态金属溶液的室温电子电导率不低于6mS/cm,室温离子电导率不低于3mS/cm。以锂金属电池为例,液态金属溶液具有较高的电子电导和离子电导率,可以在快速消溶枝状锂的同时保持液态金属溶液中孤立的单质锂的电接触,防止死锂的生成。
本申请实施方式中,芳香烃类小分子化合物包括联苯、萘、菲、蒽、并四苯、芘及其衍生物中的至少一种;含芳香烃类基团的聚合物含有联苯、萘、菲、蒽、并四苯、芘芳香基团中的至少一种。芳香烃类小分子化合物和含芳香烃类基团的聚合物具有共轭π键,从而具备电子接受能力。
本申请实施方式中,醚类小分子包括乙醚、甲醚、乙二醇二甲醚、乙二醇二乙醚、二乙二醇二甲醚、三乙二醇二甲醚、四乙二醇二甲醚、聚乙二醇二甲醚、四氢呋喃、1,3-二氧环戊烷、二丙醚、二异丙醚、乙基丁基醚、二丁醚、二戊醚、二异戊醚、二己醚、2-甲基四氢呋喃、4-甲基-1,3-二氧环戊烷、二甲氧基甲烷、1,2-二甲氧基丙烷、二氧戊烷、1,4-二氧六环、环氧乙烷、环氧丙烷、1,1-二乙氧基乙烷、12-冠醚-4、15-冠醚-5和18-冠醚-6中的一种或多种。胺类小分子包括乙二胺二甲胺、乙二胺四甲胺和二乙二胺四甲胺中的一种或多种。硫醚类小分子包括乙二硫醇二甲硫醚、乙二硫醇二乙硫醚、二乙二硫醇二甲硫醚和四乙二硫醇二甲硫醚中的一种或多种。聚醚类包括聚环氧乙烷和聚环氧丙烷中的至少一种。聚胺类包括聚乙二胺和聚甲基乙二胺中的至少一种。聚硫醇类包括聚乙二硫醇和甲氧基聚乙二硫醇中的至少一种。本申请实施方式中,第一有机组分在第二有机组分中相对具有较大溶解度时,有利于增大液态金属溶液溶解碱金属的能力。例如,联苯在醚类小分子溶剂中溶解度高,且醚类小分子与碱金属离子的络合能力强,能够有效提升液态金属溶液溶解碱金属的能力。
本申请中,小分子是相对聚合物而言,小分子即非聚合态的化合物。例如芳香烃类小分子化合物即为非聚合态的芳香烃类化合物。醚类小分子即为与聚醚相对的非聚合态醚类。
本申请实施方式中,液态金属层11中,第一有机组分与第二有机组分的摩尔量之比为(0.1-50)∶10。碱金属与第二有机组分的摩尔量之比为(0.1-20)∶10。上述适合比例下液态金属溶液具有较高的离子电导率和电子电导率。其中,第一有机组分的量可以根据其在第二有机组分中的溶解度进行调节,第一有机组分加入太多不能完全溶解,加入太少不能有效提高溶液电导率。第二有机组分相对碱金属的量也不能太少,太少不能有效提高溶液电导率。一些实施方式中,第一有机组分与第二有机组分的摩尔量之比为(0.5-3)∶10。一些实施方式中,碱金属与第二有机组分的摩尔量之比为(0.5-2)∶10。上述适合比例下液态金属溶液具有更高的离子电导率和电子电导率。液态金属层11中的碱金属元素可以通过ICP(Inductive Coupled Plasma Emission Spectrometer,电感耦合等离子光谱)发生仪进行测得。第一有机组分可以是通过液相色谱法测得。
本申请实施方式中,储液材料层111用于吸附固定液态金属溶液,通过将液态金属溶液吸附固定于储液材料层111中,形成一体的层结构,使得储液材料层111具有良好的离子、电子通路,可减小电池极化电压。储液材料层111可以保持液态金属溶液与负极集流体或固态碱金属层接触的有效性。本申请实施方式中,储液材料层111包括具有多孔结构,且与液态金属溶液不发生化学反应的材料。具体地,储液材料层111的材质包括但不限于是多壁碳纳米管纸、泡沫纸、玻璃纤维、有机纤维中的一种或多种。泡沫纸具体可以是聚烯烃、聚氨酯、尼龙等高分子材质。
本申请实施方式中,储液材料层111的孔隙率可以是在30%-95%范围内。具体地,储液材料层111的孔隙率例如可以是30%、40%、50%、60%、70%、80%、90%、95%。储液材料层111的孔隙率具体可以根据需要吸附的液态金属溶液的量进行选择。可以理解地,孔隙率越大,能够吸附的液态金属溶液的量越多。适合的孔隙率可以保证储液材料层111具有较好吸液能力,也能保证其一定的机械强度。
本申请实施方式中,储液材料层111的厚度为0.05μm-1500μm。储液材料层111太厚会降低电池的能量密度,而太薄溶解碱金属的能力会降低,适合的储液材料层111厚度能够保证液态金属层具有较高的溶解碱金属的能力,同时保证电池具有较高的能量密度。一些实施方式中,储液材料层111的厚度为1μm-1000μm。
参见图5和图6,本申请一些实施方式中,金属负极10还包括固态电解质层14,固态电解质层14包括固态电解质本体141和设置在固态电解质本体141至少一侧表面的界面保护层142,固态电解质层14与液态金属层11接触层叠,固态电解质本体141与液态金属层11之间具有界面保护层142。固态电解质层14包括具有高离子电导率的固态电解质本体以及对液态金属溶液化学/电化学稳定的界面保护层,一方面可以起到隔膜的作用防止负极碱金属接触正极造成短路,另一方面可以起到电解质的作用进行锂离子的快速传输,而且界面保护层142可以提高固态电解质层14与液态金属溶液(电位~0.3V vs Li+/Li)的化学/电化学稳定性,使固态电解质层14能够与液态金属层11良好兼容。一些实施方式中,固态电解质本体141的一侧表面设置有界面保护层142。当固态电解质本体141仅一侧表面具有界面保护层142时,固态电解质层14具有界面保护层142的一侧与液态金属层11接触层叠。另一些实施方式中,如图5所示,固态电解质本体141的两侧表面设置有界面保护层142。另一些实施方式中,如图6所示,固态电解质本体141的整个外表面均设置有界面保护层142。
通过固态电解质层14与液态金属层11的配合,可以更好地抑制碱金属电池中枝晶生长,提高电池的充放电倍率性能和循环稳定性。而且,由于液态金属层11具有较好的流动性,与负极集流体12或固态碱金属层13、以及与固态电解质层14保持接触良好,界面阻抗低,因此在保证电池正极与固态电解质层14有较好接触的前提下,采用本申请实施例金属负极10的碱金属电池无需额外施加大的外部压力,就可以保持碱金属电池的长效工作,获得高倍率无枝晶效果。而且采用本申请实施例金属负极10的碱金属电池具有较高极限电流密度,可实现高倍率充电,并保证良好的长循环性能。
本申请实施方式中,固态电解质层14的离子电导率大于0.1mS/cm。固态电解质层14具有较大的离子电导率能够保证碱金属离子的快速传输。
本申请实施方式中,固态电解质本体141呈膜状或片状,可以是包括无机固态电解质,无机固态电解质具有较高离子电导率,无机固态电解质可以是包括硫化物固体电解质、氧化物固体电解质、氢化物固态电解质、卤化物固态电解质、硼化物固态电解质、磷化物固态电解质中的一种或多种。
可选地,硫化物固体电解质包括硫代-锂快离子导体型、玻璃态硫化物固体电解质中的一种或多种。氧化物固体电解质包括钙钛矿型固体电解质、石榴石型固体电解质、钠快离子导体型固体电解质(即NASICON型固体电解质)、锂快离子导体型固体电解质(即LISICON型固体电解质)、玻璃态氧化物固体电解质中的一种或多种。氢化物固态电解质包括LiBH4、LiBH4-LiX(X=Cl、Br、I)、LiNH2、Li3AlH6、Li2NH中的一种或多种。卤化物固态电解质包括Li3OCl、Li3YX6(X=Cl、Br)、Li3InX6(X=Cl、Br)中的一种或多种。硼化物、磷化物固态电解质包括Li2B4O7、Li3PO4、Li2O-B2O3-P2O5中的一种或多种。
界面保护层142与液态金属层11化学和电化学稳定,可提升电池循环寿命。本申请一些实施方式中,界面保护层142包括聚合物和碱金属盐,聚合物包括聚醚类、聚含氟烯烃类、聚酯类、聚腈类、聚丙烯酸类聚合物中的至少一种。具体地,聚合物可以但不限于是聚环氧所述聚醚类包括聚环氧乙烷(PEO)、聚环氧丙烷(PPO)中的一种或多种;所述聚含氟烯烃类包括聚偏二氟乙烯(PVDF);所述聚酯类包括聚碳酸酯(PC);所述聚腈类包括聚丙烯腈(PAN);所述聚丙烯酸类包括聚甲基丙烯酸甲酯(PMMA)。聚合物可以形成均匀致密膜层,有效防止液态金属层11与固态电解质本体141接触。
本申请实施方式中,碱金属盐包括碱金属的双三氟甲基磺酰亚胺盐MTFSI、双氟磺酰亚胺盐MFSI、三氟甲磺酸盐MCF3SO3、六氟磷酸盐MPF6、四氟硼酸盐MBF4、高氯酸盐MClO4中的一种或多种,M为Li、Na或K。例如,锂盐可以是双三氟甲基磺酰亚胺锂LiTFSI、双氟磺酰亚胺锂LiFSI、三氟甲磺酸锂LiCF3SO3、六氟磷酸锂LiPF6、四氟硼酸锂LiBF4、高氯酸锂LiClO4中的一种或多种。碱金属盐可以提高界面保护层142的离子传输能力。
本申请实施方式中,界面保护层142中,聚合物和碱金属盐的质量比可以是1:10至10:1。适合的聚合物和碱金属盐的质量比可以保证界面保护层142具有聚合物膜层的基础性能(如高致密度、柔韧性、均匀性等),同时保证界面保护层142具有较好的离子传输能力。具体地,例如可以是1:10、1:9、1:8、1:7、1:6、1:5、1:4、1:3、1:2、1:1、2:1、3:1、4:1、5:1、6:1、7:1、8:1、9:1、10:1。
本申请另一些实施方式中,界面保护层142包括硫化物层,硫化物层可以是包括无机硫化物,具体地,硫化物层可以是包括β-Li3PS4(β-LPS)、MoS2、CuS、Li2S中的一种或多种硫化物。硫化物层可以是通过液态法(具体如提拉法)制备,从而可形成厚度均匀致密的膜层结构,有利于电池性能的提升。
本申请实施方式中,固态电解质层14整体呈膜状或片状。界面保护层142的厚度可以是0.02μm-200μm。一些实施方式中,界面保护层142的厚度可以是20μm-100μm。另一些实施方式中,界面保护层142的厚度可以是30μm-80μm,也可以是50μm-60μm。
本申请实施例金属负极,可以在碱金属沉积时快速溶解枝晶,即使在超大电流密度下(大于15mA/cm2)也能达到无枝晶的效果,从而使高能量密度的碱金属电池具有快充性能。
相应地,本申请实施例提供一种上述金属负极的制备方法,包括:
将液态金属溶液加入到储液材料层中,使液态金属溶液分布于储液材料层中形成液态金属层;液态金属溶液包括碱金属、第一有机组分和第二有机组分,第一有机组分包括具备电子接受能力的芳香烃类小分子化合物和含芳香烃类基团的聚合物中的至少一种,第二有机组分包括能够络合碱金属离子的醚类小分子、胺类小分子、硫醚类小分子、聚醚类聚合物、聚胺类聚合物和聚硫醚类聚合物中的至少一种。
液态金属溶液由碱金属单质、第一有机组分和第二有机组分混合制备得到。液态金属溶液的制备具体可以是包括:取第一有机组分加入至第二有机组分中获得透明溶液,再将小尺寸的碱金属单质逐渐加入到上述透明溶液中,持续搅拌直到完全溶解,得到液态金属溶液。小尺寸的碱金属单质例如可以是碱金属丝。
其中,将液态金属溶液加入到储液材料层中,具体可以是:将液态金属溶液滴加到储液材料层使其充分浸润,即使储液材料层吸附饱满液态金属溶液。滴加操作可以是采用滴管。
本申请实施方式中,上述制备方法还包括:
将界面保护层原料配成溶液,采用提拉法在固态电解质本体的至少一侧表面形成界面保护层,得到固态电解质层;或者将界面保护层原料配成浆料,再将浆料涂覆在固态电解质本体的至少一侧表面形成界面保护层,得到固态电解质层。
当界面保护层为硫化物层时,可以是采用提拉法制备。例如,界面保护层为β-LPS电解质时,制备方法可以包括:
步骤一:将Li2S、P2S5和S原料溶解在四氢呋喃(THF)和乙腈(ACN)中,得到β-LPS前驱体溶液;步骤二:将固态电解质本体在上述β-LPS前驱体溶液中提拉,随后在加热台上烘烤干燥;步骤三:重复步骤二,将经过多次提拉-烘烤后的固态电解质本体放入烘箱中烘干,得到固态电解质层。烘箱的温度可以是150℃-280℃,例如230℃。
当界面保护层包括聚合物和碱金属盐时,可以是采用涂覆法制备。例如,界面保护层采用PEO时,制备方法可以包括:
步骤一:取PEO和LiTFSI溶于乙腈(ACN)中,搅拌,待PEO完全溶解后获得均匀的浆料;步骤二:取适量的上述浆料滴注在固态电解质本体的表面并涂均匀;步骤三:在加热台上烘烤干燥。搅拌可以是在20-30℃下搅拌12-36h,例如25℃下搅拌24h。
本申请实施方式中,液态金属层与固态电解质层均能够以独立的产品形态存在,在组装成电池时,将液态金属层与固态电解质层具有界面保护层的一侧贴合。
本申请实施方式中,固态电解质本体可以是采用业内常用的粉末压片法、湿法涂布法、流延法等方法将具有较高室温离子电导率的无机固态电解质制成膜状或片状。
本申请提供的金属负极的制备方法工艺简单,可大规模化生产。
参见图7,本申请实施例还提供一种电池100,包括正极20、金属负极10、设置于正极20与金属负极10之间的电解质30、以及电池壳40。电池100为碱金属二次电池,具体可以是锂金属电池、钠金属电池或钾金属电池。
需要说明的是,参见图8和图9,当金属负极10包括固态电解质层14时,固态电解质层14可以充当电解质30,固态电解质层14位于正极20和液态金属层11之间。
电池100的具体结构形式不限,可以是如图8所示的扣式电池、也可以是如图9所示的软包电池等。参见图8和图9,金属负极10为碱金属负极,具体可以是锂负极、钠负极、钾负极、锂合金负极、钠合金负极或钾合金负极。金属负极10可以是包括负极集流体12和液态金属层11,也可以是包括固态碱金属层13和液态金属层11,还可以是同时包括负极集流体12、固态碱金属层13和液态金属层11。对于图8的扣式电池,电池壳40可以是不锈钢型电池壳;对于图9的软包电池,电池壳40可以是铝塑膜,软包电池还需要引出正负极极耳50。一些实施例中,电池壳40可以直接充当电极集流体。
本申请实施方式中,电池100经充放电循环后,固态电解质层14与液态金属层11之间的界面具有正离子碎片和负离子碎片,正离子碎片包括C4H7、C2H3、C2H5、C3H7、C3H5、C3H3中的一种或多种,负离子碎片包括CH2OF、CHO2、C7H5中的一种或多种。正离子碎片和负离子碎片还可以是包括上述列举之外的碎片。界面生成富含烯烃类碎片的界面层,可以提高界面的循环稳定性。该结果可通过飞行时间-二次离子质谱(TOF-SIMS)检测出。
本申请实施方式中,以包含固态金属层13的锂金属电池为例,固态金属层13与液态金属层11接触的界面处物质的固态核磁(ssNMR)在静态7Li谱(0Hz)中在锂金属单质的化学位移250ppm附近无信号峰,表明界面处锂的化学状态以锂离子的形式存在,液态金属层11具有良好的溶解锂的能力。
参见图8和图9,正极20包括正极集流体21和设置在正极集流体21上的正极材料层22。本申请实施方式中,正极20可以是固态型正极,也可以是液态型正极。一实施方式中,正极20为固态型正极,正极20包括正极集流体21和设置在正极集流体21上(即一侧表面)的固态正极材料,固态正极材料层包括电解质粉末、正极活性物质、导电添加剂、以及粘结剂。电解质粉末、正极活性物质和导电添加剂可以根据需要按一定质量比例混合。正极活性物质可以碱金属电池常用的正极活性物质,本申请不作特殊限定,例如可以是S、Li2S、NCM(镍钴锰型三元材料)、NCA(镍钴铝型三元材料)、LiCoO2(LCO)、LiFePO4、LiNbO3中的一种或多种。正极活性物质表面可以是含有固态电池正极材料常用的缓冲包覆层,缓冲包覆层的材质可以但不限于是包括LiNbO3、LiTaO3、Li3PO4、Li4Ti5O12中的一种或多种。导电添加剂可以是但不限于是VGCF(气相生长碳纤维)、Super P、多壁碳纳米管(MWCNT)中的一种或多种。粘结剂可以是但不限于是聚偏二氟乙烯(PVDF)。电解质粉末可以是各种无机固态电解质粉末,例如硫化物固体电解质、氧化物固体电解质、氢化物固态电解质、卤化物固态电解质、硼化物固态电解质、磷化物固态电解质等。正极20采用的电解质粉末可以是与固态电解质层14中的固态电解质本体的成分相同或不同。正极集流体21可以是铝箔。
当正极20为固态型正极时,可采用液相涂布法将正极活性物质、电解质粉末、导电剂、粘接剂混合制备成浆料并涂布在正极集流体21上烘干,或采用干法将正极活性物质、电解质粉末、导电剂、粘接剂混合制备成膜复合在正极集流体21上。
本申请另一实施方式中,正极20为液态型正极,正极20包括储液层和分布于储液层中的液态正极材料,储液层可以是设置在正极集流体21上(即一侧表面)。液态正极材料被吸附固定在储液层内,储液层的材料可以是多壁碳纳米管纸、泡沫纸、玻璃纤维、有机纤维中的任意一种。一些实施方式中,液态正极材料包括正极活性物质、碱金属盐、导电添加剂和有机溶剂。本申请实施方式中,正极活性物质可包括有机多硫化物、环己六酮、蒽醌及其衍生物中的一种或多种。具体地,有机多硫化物可包括二苯基多硫化物、二甲基多硫化物、吡啶基多硫化物、二苯基硒硫化物中的一种或多种。碱金属盐包括碱金属的双三氟甲基磺酰亚胺盐MTFSI、双氟磺酰亚胺盐MFSI、三氟甲磺酸盐MCF3SO3、六氟磷酸盐MPF6、四氟硼酸盐MBF4、高氯酸盐MClO4中的一种或多种,M为Li、Na或K。例如,锂盐可以是双三氟甲基磺酰亚胺锂LiTFSI、双氟磺酰亚胺锂LiFSI、三氟甲磺酸锂LiCF3SO3、六氟磷酸锂LiPF6、四氟硼酸锂LiBF4、高氯酸锂LiClO4中的一种或多种。导电添加剂可以是VGCF、Super P、多壁碳纳米管(MWCNT)中的一种或多种。有机溶剂可包括醚类和/或碳酸酯类电解液溶剂。具体地,有机溶剂可以是乙醚、甲醚、乙二醇二甲醚、二乙二醇二甲醚、三乙二醇二甲醚、四乙二醇二甲醚、聚乙二醇二甲醚、四氢呋喃、1,3-二氧环戊烷、二丙醚、二异丙醚、乙基丁基醚、二丁醚、二戊醚、二异戊醚、二己醚、2-甲基四氢呋喃、4-甲基-1,3-二氧环戊烷、二甲氧基甲烷、1,2-二甲氧基丙烷、二氧戊烷、1,4-二氧六环、环氧乙烷、环氧丙烷、1,1-二乙氧基乙烷、碳酸乙烯酯、碳酸二乙酯、碳酸丙烯酯、碳酸二甲酯中的一种或多种。
当正极20为液态型正极时,可将液态正极活性物质、碱金属盐、导电添加剂加入到有机溶剂中,得到均匀的正极溶液,并将正极溶液滴加到正极储液层中。
以锂金属电池为例,本申请一具体实施方式中,扣式电池的制备具体可以是:
取扣式电池负极壳,将一定厚度的金属锂或锂铜复合带放入负极壳中,当负极为锂铜复合带时,铜的一侧朝下;将液态金属层和固态电解质层依次叠放在金属锂或锂铜复合带的上方,保证液态金属层直接接触锂金属;将正极放置在固态电解质层上,再将扣式电池垫片和弹簧片一次叠放在正极上方,再将正极壳覆盖在弹簧片上,并使用扣电压机封装,得到扣式电池。
以锂金属电池为例,本申请一具体实施方式中,软包电池的制备具体可以是:
将液态金属层和固态电解质层依次叠放在金属锂或锂铜复合带的上方,保证液态金属层直接接触锂金属;将正极放置在固态电解质层上,并注意引出正负极极耳;再将上述堆叠结构封装进铝塑膜电池外包装中,即可得到软包电池。
如图10所示,本申请实施例还提供一种电子设备200,该电子设备200可以是手机、也可以是平板电脑、智能穿戴产品、无人机、电动汽车等电子产品,电子设备200包括壳体201,以及位于壳体201内部的电子元器件和电池(图中未示出),其中,电池为本申请实施例上述提供的电池100,壳体201可包括组装在电子设备前侧的显示屏和组装在后侧的后盖,电池可固定在后盖内侧,为电子设备200内的电子元器件供电。电子设备200采用电池100进行供电,可以获得较好的续航能力和高安全性。
下面分多个实施例对本申请实施例进行进一步的说明。
实施例1
本实施例制备了扣式电池,其中,液态金属层中的液态金属溶液为Li-Bp-DME体系,联苯(Bp)作为电子接受分子、乙二醇二甲醚(DME)作为溶剂,按照摩尔量比,将液态金属溶液标记为:Li1.5BP3DME10(下标表示摩尔量比)。采用电导率笔测得该液态金属溶液室温下的总电导率为12.2mS/cm,采用直流极化法测得该液态金属溶液室温下的电子电导率为8.54mS/cm,则离子电导率为3.66mS/cm。液态金属层中的储液材料层选用直径为10mm、厚度为400μm、孔隙率为80%的玻璃纤维,取300μL液态金属溶液滴加到玻璃纤维上让其充分浸润。固态电解质层由Li7P3S11型固态电解质本体与β-LPS界面保护层构成。Li7P3S11型固态电解质本体由粉末压片法获得,其厚度为0.7mm,直径为15mm,固态电解质本体的离子电导率为0.6mS/cm。本实施例中金属负极采用锂金属片,其直径为10mm,厚度为600μm。本实施例中的正极采用的正极活性物质为表面包覆铌酸锂缓冲包覆层的钴酸锂、导电添加剂为SuperP、电解质粉末为Li7P3S11粉末、粘接剂为PVDF,正极通过溶液涂布的方式将正极浆料涂覆在铝箔上制得。
将锂金属片、液态金属层、固态电解质层和正极依次叠放封装,获得本实施例的扣式电池。按照其核心结构,将该电池标记为:Li//Li1.5BP3DME10//β-LPS/Li7P3S11//LCO。
为了验证本实施例中液态金属层抑制枝晶生长的能力,组装了对称电池①测试其极限电流密度。对称电池①的结构示意图如图11所示,其包括依次设置的负极壳41、液态金属层11,固态界面保护层142、固态电解质本体141、固态界面保护层142、液态金属层11、正极壳42。如前述方法制备好各层后,按照图11所示顺序组装成扣式电池。其中,液态金属层11与本实施例1的液态金属层相同,固态电解质本体141和界面保护层142与本实施例1的固态电解质本体、界面保护层相同。该对称电池①标记为:Li1.5BP3DME10//β-LPS/Li7P3S11/β-LPS//Li1.5BP3DME10
另外,为了验证本实施例中的液态金属层和固态电解质层的组合结构与锂金属之间的稳定性,在对称电池①的基础上增加锂金属片,对称电池②的结构示意图如图12所示,其包括依次设置的负极壳41、锂金属片13、液态金属层11,固态界面保护层142、固态电解质本体141、固态界面保护层142、液态金属层11、锂金属片13、正极壳42。该对称电池②标记为:Li//Li1.5BP3DME10//β-LPS/Li7P3S11/β-LPS//Li1.5BP3DME10//Li。
将对称电池①进行如下测试:
1a、在30℃下,用蓝电测试仪测试上述对称电池①,以0.1mA电流开始逐步升高电流,进行充放电循环测试,直至出现短路或者电压到达检测仪器截止电压(-5V至5V)。
1b、将测试结束的电池拆解,对固态电解质层表面进行扫描电子显微镜(SEM)测试,记录其形貌;并采用TOF-SIMS测试电解质表面的物质碎片组成。
将对称电池②进行如下测试:
1c、在30℃下,用蓝电测试仪在0.127mA/cm2的电流密度和0.254mAh/cm2的单位面容量进行充放电循环测试。
1d、将测试后的电池拆解,选取锂金属片与液态金属层接触的界面处物质(具体为将锂金属片表面的黑色反应层刮下来),进行固态核磁(ssNMR)测试。
测试1a所得对称电池电压、电流密度随循环时间的变化如图13所示,从图中曲线可以看出采用本申请实施例金属负极的电池,在到达仪器截止电压时,电流密度高达15.24mA/cm2,单位面容量高达15.24mAh/cm2,循环过程中并未出现电压突降的现象,表明未发生短路。
测试1b中SEM的结果如图14所示,循环后的液态金属层与固态电解质层之间形成一个致密、平整的界面,该界面在长时间循环后仍保持稳定。而TOF-SIMS的结果显示,该界面层的物质除了含有S、O、PS2、PS、POS、Li、Li3O、Li2S、Li3CO3等离子碎片外,还包含CH2OF、CHO2等负离子碎片和C4H7、C2H3、C2H5、C3H7等正离子碎片,说明界面生成了一个富含烯烃类的界面层,提高了界面的循环稳定性。
测试1c的电池电压-时间循环数据如图15所示。从图中可知,电池在循环了100h后,极化电压仅为0.4V,说明在实际的锂金属电池中,锂金属片与本申请液态金属层和固态电解质层构成的结构组合具有较好的兼容性,该结构组合在锂金属片表面仍发挥了很好的溶锂特性。
测试1d所测得的静态7Li谱(0Hz)如图16所示,谱图中在锂金属单质的化学位移250ppm附近无检出信号,说明液态金属溶液对锂金属具有高效消溶的作用。
实施例2
本实施例制备了扣式电池,其中,液态金属层中的液态金属溶液为Li-Bp-DME体系,联苯(Bp)作为电子接受分子、乙二醇二甲醚(DME)作为溶剂,按照摩尔量比,将液态金属溶液标记为:Li1.5BP3DME10(下标表示摩尔量比)。液态金属层中的储液材料层选用直径为10mm、厚度为500μm、孔隙率为60%的多壁碳纳米管纸,取250μL液态金属溶液滴加到多壁碳纳米管纸上让其充分浸润。固态电解质层由Li7P3S11型固态电解质本体与PEO界面保护层构成。Li7P3S11型固态电解质本体由粉末压片法获得,其厚度为0.5mm,直径为15mm,固态电解质本体的离子电导率为0.6mS/cm。本实施例中金属负极采用锂金属片,其直径为10mm,厚度为100μm。本实施例中的正极采用的正极活性物质为表面包覆铌酸锂界面保护层的NCM、导电添加剂为SuperP、电解质粉末为Li7P3S11粉末、粘接剂为PVDF,正极通过溶液涂布的方式将正极浆料涂覆在铝箔上制得。
将锂金属片、液态金属层、固态电解质层和正极依次叠放封装,获得本实施例的扣式电池。按照其核心结构,将该电池标记为:Li//Li1.5BP3DME10//PEO/Li7P3S11//NCM。
为了验证本实施例中液态金属层抑制枝晶生长的能力,按照图11的示意图组装了对称电池①测试其极限电流密度。对称电池①标记为:Li1.5BP3DME10//PEO/Li7P3S11/PEO//Li1.5BP3DME10
另外,为了验证该实施例中的液态金属层和固态电解质层的组合结构与锂金属之间的稳定性,在对称电池①的基础上增加锂金属片,按照图12的示意图组装了对称电池②标记为:Li//Li1.5BP3DME10//PEO/Li7P3S11/PEO//Li1.5BP3DME10//Li。
将对称电池①进行如下测试:
2a、在30℃下,用蓝电测试仪测试上述对称电池①,以0.1mA电流开始逐步升高电流,进行充放电循环测试,直至出现短路或者电压到达检测仪器截止电压(-5V至5V)。
2b、30℃下,以0.1mA电流开始逐步升高电流,进行充放电循环测试,其中在5mA、6mA、7mA、8mA、9mA、10mA等电流数值下循环3圈,直至出现短路或者电压到达检测仪器截止电压(-5V至5V)。
2c、将测试结束的电池拆解,对固态电解质层表面进行扫描电子显微镜(SEM)测试,记录其形貌;并采用TOF-SIMS测试电解质表面的物质碎片组成。
将对称电池②进行如下测试:
2d、在30℃下,用蓝电测试仪在0.127mA/cm2的电流密度和0.254mAh/cm2的单位面容量进行充放电循环测试。
测试2a所得对称电池电压、电流密度随循环时间的变化如图17所示,从图中曲线可以看出采用本申请实施例金属负极的电池,在到达仪器截止电压时,电流密度高达17.78mA/cm2,单位面容量高达17.78mAh/cm2,循环过程中并未出现电压突降的现象,表明未发生短路。
测试2b所得对称电池电压、电流密度随循环时间的变化如图18所示,从图中曲线可以看出采用本申请实施例金属负极的电池,在到达仪器截止电压时,电流密度仍然高达10.16mA/cm2,且在循环过程中并未出现电压突降的现象,表明未发生短路。本实施例说明,尽管部分电流下循环圈数从一圈延长至三圈,总循环时间同时延长,在此情况下,采用本申请实施例金属负极的电池依然具有非常优异的抑制锂枝晶生长、防止电池短路的性能。
测试2c中SEM的结果如图19所示,循环后的液态金属与固态电解质之间形成一个高致密、平整的界面,该界面在长时间循环后仍保持稳定。而TOF-SIMS的结果显示,该界面层的物质除了含有S、O、PS2、PS、POS、Li、Li3O、Li2S、Li3CO3等离子碎片外,还包含CH2OF、CHO2、C7H5等负离子碎片和C4H7、C2H3、C2H5、C3H7、C3H5、C3H3等正离子碎片。说明界面生成了一个富含烯烃类的界面层,提高了界面的循环稳定性,且烯烃类离子碎片的种类比β-LPS界面保护层的碎片种类多。
测试2d所得对称电池②的电压-时间循环数据如图20所示。初始极化电压为0.1V,在110h循环过程中,极化电压在第5圈增大,后又回到0.1V,这可能是由于PEO界面层的活化造成的极化电压的波动。该对称电池展示了较好的循环稳定性,这显示了负极使用液态负极材料(即液态金属溶液)与固态金属锂的组合具有实用化的潜力。其中液态负极材料可以抑制锂枝晶的产生,提升电池的循环寿命和安全性;金属锂片可以提供更高的容量,促进电池能量密度的提升。
实施例3
本实施例制备了扣式电池,其中,液态金属溶液选用Li-Bp-DME(Li1.5BP3DME10)溶液,固态电解质本体选用Li6PS5Cl,PEO为界面保护层材料,玻璃纤维为储液材料层材料,正极包含商用钴酸锂材料(包覆锆酸锂界面保护层)作为活性物质、Li6PS5Cl为电解质粉末、VGCF为导电添加剂,组装成扣式全电池。其他参数与实施例1相同。
将所得扣式电池在2.5-4.0V电压范围进行充放电测试,充放电倍率为0.1C。所得首圈和第二圈的充放电的电压-容量曲线如图21所示,前8圈的库伦效率和充放电容量如图22所示。图21显示该实施例电池首圈充电比容量达到154.7mAh/g,首圈放电比容量为136mAh/g,首次库伦效率87.9%。第二圈放电容量135.3mAh/g,库伦效率98.1。图22显示,该电池在后续循环中保持了稳定的放电容量,且库伦效率接近99%。该实施例测试结果说明包含本申请液态金属层和固态电解质层的组合结构的扣式全电池可以有效的充放电工作。
同时按照实施例1的方式采用本申请负极组装成对称电池①:Li-Bp-DME//PEO/Li6PS5Cl/PEO//Li-Bp-DME,并按照1a的方式进行测试,测得采用本申请实施例金属负极的电池,极限电流密度高达15.52mA/cm2
实施例4
本实施例制备了软包电池,本实施例中选用Li7P3S11作为固态电解质本体,PEO为界面保护层材料,玻璃纤维为储液材料层材料,液态金属溶液选用Li-Bp-DME(Li1.5BP3DME10)溶液,其他参数与实施例1相同。正极为液态正极层,选用蒽醌、LiTFSI、Super P、碳酸丙烯酯的混合物,组装软包型全电池。
将所得软包电池在1.6-2.5V电压范围进行充放电测试,所得首圈充放电的电压-容量曲线如图23所示。图23显示首圈充电比容量达到163.2mAh/g,首圈放电比容量为104.4mAh/g。该实施例测试结果说明包含本申请液态金属层和固态电解质层的组合结构的软包型全电池可以有效的充放电工作。
同时按照实施例1的方式采用本申请负极组装成对称电池①:Li-Bp-DME//PEO/Li7P3S11/PEO//Li-Bp-DME,并按照1a的方式进行测试,测得采用本申请实施例金属负极的电池,极限电流密度高达16.16mA/cm2
对比例1
本对比例选用Li7P3S11作为固态电解质,无电解质界面保护层,仅采用金属锂为电极,在手套箱内(O2<0.1ppm,H2O<0.1ppm)组装Li//Li7P3S11//Li对称电池并进行逐步增大电流密度的循环测试。
该电池电压-时间循环数据如图24所示,当电流密度增大到0.4mA/cm2时,极化电压稳定,但当电流密度进一步增大时,极化电压曲线迅速降低至0附近,出现短路。说明锂金属在无任何界面保护层时与硫化物固态电解质的极限电流密度仅为0.4mA/cm2
对比例2
本对比例选用Li7P3S11作为固态电解质,PEO为固态界面保护层材料,仅采用金属锂为电极,在手套箱内(O2<0.1ppm,H2O<0.1ppm)组装Li//PEO/Li7P3S11/PEO//Li对称电池,测得极限电流密度为0.2mA/cm2,并在30℃下以0.127mA/cm2的电流密度和0.254mAh/cm2的单位面容量进行充放电循环测试。
该电池电压-时间循环数据如图25所示,从图25可见电压不稳定,有微短路现象产生。说明去除液态金属层后,仅使用金属锂负极组装的全固态电池,即使有PEO作为界面保护层,仍存在锂枝晶生长问题。
对比例3
本对比例采用表面保护层为氧氮化锂磷(LiPON)的金属锂负极,电解液为双三氟甲烷磺酰亚胺锂(LiTFSI)溶解在1,3-二氧戊环(DOL)和二甲氧基乙烷(DME)溶剂中,组装Li/LiPON//LiTFSI-DOL:DME//LiPON/Li对称电池并测试极限电流密度。
对比例4
本对比例采用表面保护层为氮化锂和氟化锂混合物的金属锂负极,电解质为Li3PS4固态电解质,组装成Li/Li3N-LiF//Li3PS4//Li3N-LiF/Li对称电池并测试极限电流密度。
对比例5
本对比例采用金属锂片作为负极,固态电解质采用电子阻隔材料(EBS)包覆的Li6.4La3Zr1.4Ta0.6O12,组装成Li//LLZTO@EBS//Li对称电池并测试极限电流密度。
将按照本申请实施例1-4与对比例1-5中的锂负极-电解质策略组装的锂对称电池的极限电流密度的测试结果总结在表1中。
表1不同锂负极-电解质策略组装的对称电池极限电流密度结果对比表
Figure BDA0003027375180000141
Figure BDA0003027375180000151
由实施例1至4的极限电流密度结果可知,采用本申请实施例所提供的金属负极的对称电池,可具有超高(大于15mA/cm2)的极限电流密度。而且由实施例1和实施例2可知PEO作为硫化物固态电解质保护层的结构组合效果比β-LPS作为保护层更佳,获得了17.78mA/cm2的超高极限电流密度。相比之下对比例1金属锂直接与硫化物固态电解质的组合,以及对比例2金属锂与具有PEO保护层的硫化物固态电解质的组合所得的锂对称电池,极限电流密度均小于1mA/cm2。另外,对比例3-5的锂对称电池的极限电流密度也远小于本申请实施例的电池。这表明本申请提供的金属负极对于抑制枝晶的生长效果十分显著,在业内达到较高水平。另外,本申请实施例1和实施例2中在对称电池①的基础上,引入锂金属片作为电极,分别选用带有β-LPS保护层和PEO保护层的硫化物固态电解质,结合有机液态金属溶液组成的对称电池②,在0.127mA/cm2的电流密度和0.254mAh/cm2的单位面容量进行充放电,循环100h后极化电压仍保持稳定,且极化电压小,说明液态金属层和固态电解质层与锂金属兼容性强,作为锂金属上的结构组合层,同样可以很好的起到抑制枝晶的作用。另外,实施例3中通过在正极端采用固态型正极组装成全电池,实施例4中通过在正极端引入液态型的正极材料组装成全电池,验证了本申请提供的金属负极在锂金属全电池体系也能可靠的工作。

Claims (30)

1.一种金属负极,其特征在于,包括液态金属层,所述液态金属层包括储液材料层和分布于所述储液材料层中的液态金属溶液,所述液态金属溶液包括碱金属、第一有机组分和第二有机组分,所述第一有机组分包括具备电子接受能力的芳香烃类小分子化合物和含芳香烃类基团的聚合物中的至少一种,所述第二有机组分包括能够络合碱金属离子的醚类小分子、胺类小分子、硫醚类小分子、聚醚类聚合物、聚胺类聚合物和聚硫醚类聚合物中的至少一种。
2.如权利要求1所述的金属负极,其特征在于,所述芳香烃类小分子化合物包括联苯、萘、菲、蒽、并四苯、芘及其衍生物中的至少一种;所述含芳香烃类基团的聚合物含有联苯、萘、菲、蒽、并四苯、芘芳香基团中的至少一种。
3.如权利要求1或2所述的金属负极,其特征在于,所述醚类小分子包括乙醚、甲醚、乙二醇二甲醚、乙二醇二乙醚、二乙二醇二甲醚、三乙二醇二甲醚、四乙二醇二甲醚、聚乙二醇二甲醚、四氢呋喃、1,3-二氧环戊烷、二丙醚、二异丙醚、乙基丁基醚、二丁醚、二戊醚、二异戊醚、二己醚、2-甲基四氢呋喃、4-甲基-1,3-二氧环戊烷、二甲氧基甲烷、1,2-二甲氧基丙烷、二氧戊烷、1,4-二氧六环、环氧乙烷、环氧丙烷、1,1-二乙氧基乙烷、12-冠醚-4、15-冠醚-5和18-冠醚-6中的一种或多种;
所述胺类小分子包括乙二胺二甲胺、乙二胺四甲胺和二乙二胺四甲胺中的一种或多种;
所述硫醚类小分子包括乙二硫醇二甲硫醚、乙二硫醇二乙硫醚、二乙二硫醇二甲硫醚和四乙二硫醇二甲硫醚中的一种或多种。
4.如权利要求1或2所述的金属负极,其特征在于,所述聚醚类聚合物包括聚环氧乙烷和聚环氧丙烷中的至少一种;所述聚胺类聚合物包括聚乙二胺和聚甲基乙二胺中的至少一种;所述聚硫醇类聚合物包括聚乙二硫醇和甲氧基聚乙二硫醇中的至少一种。
5.如权利要求1-4任一项所述的金属负极,其特征在于,所述液态金属层中,所述第一有机组分与所述第二有机组分的摩尔量之比为(0.1-50)∶10;所述碱金属与所述第二有机组分的摩尔量之比为(0.1-20)∶10。
6.如权利要求1-5任一项所述的金属负极,其特征在于,所述液态金属溶液的室温电子电导率不低于6mS/cm,室温离子电导率不低于3mS/cm。
7.如权利要求1-6任一项所述的金属负极,其特征在于,所述储液材料层包括具有多孔结构,且与所述液态金属溶液不发生反应的材料。
8.如权利要求7所述的金属负极,其特征在于,所述储液材料层包括多壁碳纳米管纸、泡沫纸、玻璃纤维、有机纤维中的一种或多种。
9.如权利要求7或8所述的金属负极,其特征在于,所述储液材料层的孔隙率在30%-95%范围内。
10.如权利要求7-9任一项所述的金属负极,其特征在于,所述储液材料层的厚度为0.05μm-1500μm。
11.如权利要求1-10任一项所述的金属负极,其特征在于,还包括固态电解质层,所述固态电解质层包括固态电解质本体和设置在所述固态电解质本体至少一侧表面的界面保护层,所述固态电解质层与所述液态金属层接触层叠,所述固态电解质本体与所述液态金属层之间具有所述界面保护层。
12.如权利要求11所述的金属负极,其特征在于,所述固态电解质层的离子电导率大于0.1mS/cm。
13.如权利要求11或12所述的金属负极,其特征在于,所述界面保护层包括聚合物和碱金属盐,所述聚合物包括聚醚类、聚含氟烯烃类、聚酯类、聚腈类、聚丙烯酸类聚合物中的至少一种。
14.如权利要求13所述的金属负极,其特征在于,所述聚醚类包括聚环氧乙烷、聚环氧丙烷中的一种或多种;所述聚含氟烯烃类包括聚偏二氟乙烯;所述聚酯类包括聚碳酸酯;所述聚腈类包括聚丙烯腈;所述聚丙烯酸类包括聚甲基丙烯酸甲酯。
15.如权利要求13或14所述的金属负极,其特征在于,所述碱金属盐包括碱金属的双三氟甲基磺酰亚胺盐、双氟磺酰亚胺盐、三氟甲磺酸盐、六氟磷酸盐、四氟硼酸盐、高氯酸盐中的一种或多种。
16.如权利要求13-15任一项所述的金属负极,其特征在于,所述界面保护层中,所述聚合物和所述碱金属盐的质量比为1:10至10:1。
17.如权利要求11或12任一项所述的金属负极,其特征在于,所述界面保护层包括硫化物层,所述硫化物层包括β-Li3PS4、MoS2、CuS、Li2S中的一种或多种。
18.如权利要求11-17任一项所述的金属负极,其特征在于,所述界面保护层的厚度为0.02μm-200μm。
19.如权利要求11-18任一项所述的金属负极,其特征在于,所述固态电解质本体包括无机固态电解质,所述无机固态电解质包括硫化物固体电解质、氧化物固体电解质、氢化物固态电解质、卤化物固态电解质、硼化物固态电解质、磷化物固态电解质中的一种或多种。
20.如权利要求1-19所述的金属负极,其特征在于,所述金属负极还包括层叠设置于所述液态金属层一侧的固态碱金属层。
21.一种金属负极的制备方法,其特征在于,包括:
将液态金属溶液加入到储液材料层中,使所述液态金属溶液分布于所述储液材料层中形成液态金属层;所述液态金属溶液包括碱金属、第一有机组分和第二有机组分,所述第一有机组分包括具备电子接受能力的芳香烃类小分子化合物和含芳香烃类基团的聚合物中的至少一种,所述第二有机组分包括能够络合碱金属离子的醚类小分子、胺类小分子、硫醚类小分子、聚醚类聚合物、聚胺类聚合物和聚硫醚类聚合物中的至少一种。
22.如权利要求21所述的金属负极的制备方法,其特征在于,还包括:
将界面保护层原料配成溶液,采用提拉法在固态电解质本体的至少一侧表面形成界面保护层,得到固态电解质层;或者将界面保护层原料配成浆料,再将所述浆料涂覆在固态电解质本体的至少一侧表面形成界面保护层,得到固态电解质层。
23.一种电池,其特征在于,包括正极、金属负极、以及设置于所述正极与所述金属负极之间的电解质,所述金属负极包括权利要求1-20任一项所述的金属负极。
24.如权利要求23所述的电池,其特征在于,当所述金属负极还包括固态电解质层时,所述固态电解质层充当所述电解质,所述固态电解质层位于所述正极和所述液态金属层之间。
25.如权利要求24所述的电池,其特征在于,所述电池经充放电循环后,所述固态电解质层与所述液态金属层之间的界面具有正离子碎片和负离子碎片,所述正离子碎片包括C4H7、C2H3、C2H5、C3H7、C3H5、C3H3中的一种或多种,所述负离子碎片包括CH2OF、CHO2、C7H5中的一种或多种。
26.如权利要求23-25任一项所述的电池,其特征在于,所述正极包括正极集流体和设置在所述正极集流体上的固态正极材料层,所述固态正极材料层包括电解质粉末、正极活性物质和导电添加剂。
27.如权利要求23-25任一项所述的电池,其特征在于,所述正极包括储液层和分布于所述储液层中的液态正极材料,所述液态正极材料包括正极活性物质、碱金属盐、导电添加剂和有机溶剂。
28.如权利要求27所述的电池,其特征在于,所述正极活性物质包括有机多硫化物、环己六酮、蒽醌及其衍生物中的一种或多种,所述有机溶剂包括醚类和/或碳酸酯类电解液溶剂。
29.如权利要求28所述的电池,其特征在于,所述有机多硫化物包括二苯基多硫化物、二甲基多硫化物、吡啶基多硫化物、二苯基硒硫化物中的一种或多种。
30.一种电子设备,包括壳体、以及收容于所述壳体内的电子元器件和电池,所述电池为所述电子元器件供电,所述电池包括如权利要求23-29任一项所述的电池。
CN202110419798.3A 2021-04-19 2021-04-19 金属负极、电池和电子设备 Pending CN115224239A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110419798.3A CN115224239A (zh) 2021-04-19 2021-04-19 金属负极、电池和电子设备
PCT/CN2022/087470 WO2022222894A1 (zh) 2021-04-19 2022-04-18 金属负极、电池和电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110419798.3A CN115224239A (zh) 2021-04-19 2021-04-19 金属负极、电池和电子设备

Publications (1)

Publication Number Publication Date
CN115224239A true CN115224239A (zh) 2022-10-21

Family

ID=83604348

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110419798.3A Pending CN115224239A (zh) 2021-04-19 2021-04-19 金属负极、电池和电子设备

Country Status (2)

Country Link
CN (1) CN115224239A (zh)
WO (1) WO2022222894A1 (zh)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3912536A (en) * 1971-03-27 1975-10-14 Montedison Spa Negative electrode for solid electrolyte cells
WO2010053962A1 (en) * 2008-11-04 2010-05-14 California Institute Of Technology Hybrid electrochemical generator with a soluble anode
CN105098140B (zh) * 2014-08-06 2016-08-24 中国科学院物理研究所 液态金属负极材料和室温液态金属电池、制备方法和用途
CN105742727B (zh) * 2014-12-09 2018-05-22 中国科学院物理研究所 一种二次电池、用途及其负极的制备方法
CN109066020A (zh) * 2018-08-02 2018-12-21 云南经济管理学院 一种新型半固态钠空气电池及其制备方法
CN110247112A (zh) * 2019-06-25 2019-09-17 哈尔滨工业大学 一种“三明治”结构的高润湿性硫化物基复合电解质及其制备方法与应用
CN113540401B (zh) * 2020-04-21 2023-03-24 华为技术有限公司 金属负极及其制备方法和二次电池
CN112820935A (zh) * 2020-12-31 2021-05-18 长三角物理研究中心有限公司 一种基于硫化物固态电解质的新型电池

Also Published As

Publication number Publication date
WO2022222894A1 (zh) 2022-10-27

Similar Documents

Publication Publication Date Title
CN107591511B (zh) 用于锂电池的复合膜材料及其制备方法和应用
CN105990608B (zh) 电解质和锂基电池
Balducci et al. Development of safe, green and high performance ionic liquids-based batteries (ILLIBATT project)
US9005820B2 (en) Lithium secondary battery using ionic liquid
JP5228576B2 (ja) リチウムイオン二次電池及び電気自動車用電源
CN110178252A (zh) 用于二次电池的负极的预锂化方法
JP6139243B2 (ja) 非水電解液蓄電素子
JP5410277B2 (ja) シアノ基を有する非水電解液添加剤及びこれを用いた電気化学素子
KR101440347B1 (ko) 다층 구조의 이차전지용 음극 및 이를 포함하는 리튬 이차전지
CN101192663A (zh) 可充电锂电池的电极以及利用该电极制造的可充电锂电池
KR102255538B1 (ko) 이차전지용 폴리머 전해질 및 이를 포함하는 이차전지
KR20140064925A (ko) 리튬-황 (Li-S) 유형의 전기화학 전지 및 그 제조 방법
CN107112581A (zh) 锂离子电池
KR102557725B1 (ko) 복합 음극 활물질, 상기 복합 음극 활물질을 포함하는 음극 및 상기 음극을 포함하는 리튬 이차전지
KR101520138B1 (ko) 음극 활물질 및 이를 포함하는 전기 화학 소자
KR102660380B1 (ko) 리튬-이온 유형의 축전지의 제조 방법
US20120107699A1 (en) Lithium ion battery
US10797354B2 (en) All-solid state secondary battery, particles for all-solid state secondary battery, solid electrolyte composition for all-solid state secondary battery, and electrode sheet for all-solid state secondary battery, and methods for manufacturing same
CN112397694A (zh) 可再充电锂电池
CN107799726A (zh) 电极活性材料的化学锂化
KR20160040020A (ko) 전극 조립체 및 이를 포함하는 리튬 이차전지
KR100416150B1 (ko) 리튬 이차 전지의 제조 방법 및 이 제조 방법으로 제조된리튬 이차 전지
GB2543828A (en) High energy density metal ion cathode
WO2022222894A1 (zh) 金属负极、电池和电子设备
KR20190052285A (ko) 리튬-황 전지의 수명 향상 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination