CN115216490A - 一种非组培方式的不结球白菜再生方法 - Google Patents
一种非组培方式的不结球白菜再生方法 Download PDFInfo
- Publication number
- CN115216490A CN115216490A CN202211006214.0A CN202211006214A CN115216490A CN 115216490 A CN115216490 A CN 115216490A CN 202211006214 A CN202211006214 A CN 202211006214A CN 115216490 A CN115216490 A CN 115216490A
- Authority
- CN
- China
- Prior art keywords
- chinese cabbage
- placing
- agrobacterium
- absorbent cotton
- suspension
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8201—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
- C12N15/8202—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
- C12N15/8205—Agrobacterium mediated transformation
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H4/00—Plant reproduction by tissue culture techniques ; Tissue culture techniques therefor
- A01H4/008—Methods for regeneration to complete plants
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8216—Methods for controlling, regulating or enhancing expression of transgenes in plant cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/89—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microinjection
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Biotechnology (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Cell Biology (AREA)
- Developmental Biology & Embryology (AREA)
- Botany (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Environmental Sciences (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
本发明公开了一种非组培方式的不结球白菜再生方法,该方法包括以下步骤:将经过催芽处理的不结球白菜种子置于穴盘内生长;在幼苗长至子叶展开期或两叶一心期时,将幼苗顶端分生组织用新刀片切去,确保子叶一并切去,仅留有下胚轴,将农杆菌悬浮液用微量注射器注射至幼苗伤口处;悬浮液的农杆菌细胞中含有pMKV057双元质粒载体;将蘸有农杆菌悬浮液的脱脂棉球置于幼苗伤口处保湿,黑暗条件下放置两天后取下脱脂棉球,将幼苗继续培养得到再生植株。本发明方法避免了传统方法中的从愈伤组织经脱分化、再分化形成再生芽的阶段,为后续利用非组培方式对遗传转化顽拗型蔬菜作物进行基因编辑提供了新的解决思路。
Description
技术领域
本发明属于植物再生技术领域,尤其涉及一种非组培方式的不结球白菜再生方法。
背景技术
遗传转化技术在作物性状改良上发挥了重要作用,改良的优异性状包括产量、品质、生物和非生物胁迫抗性等方面。其中,基于CRISPR/Cas9的基因编辑技术因具有操作简便、编辑效率高、支持多靶点编辑、编辑形式多样等优势,成为作物遗传改良的新兴技术,已在许多作物性状改良上发挥了重要作用,但是该方法是基于组织培养的遗传转化方法,过程严重依赖于作物的再生和转化体系。对于遗传转化体系较为成熟的作物,如小麦、水稻、番茄等,基因编辑技术应用相对容易实现。然而,对于大多数蔬菜作物而言,遗传转化体系并不成熟,这也成为限制CRISPR/Cas9基因编辑技术在蔬菜作物上应用的关键瓶颈问题。蔬菜作物中从外植体中诱导分化形成再生芽过程非常困难,受基因型、外植体状态、培养基类型、生长调节剂类型及含量、培养环境等诸多因素影响,或者T-DNA系统转化插入受体基因组的效率极低。因此,建立非组培方式的遗传转化体系是实现蔬菜基因编辑的关键环节,亟待实现技术突破。
发明内容
为克服现有技术的缺点和不足,本发明的目的在于提供一种非组培方式的不结球白菜再生方法。
本发明是这样实现的,一种非组培方式的不结球白菜再生方法,该方法包括以下步骤:
(1)将经过催芽处理的不结球白菜种子置于穴盘内生长;
(2)在幼苗长至子叶展开期或两叶一心期时,将幼苗顶端分生组织用新刀片切去,确保子叶一并切去,仅留有下胚轴,将农杆菌悬浮液用微量注射器注射至幼苗伤口处;其中,所述悬浮液的农杆菌细胞中含有pMKV057双元质粒载体,该pMKV057双元质粒载体上含有编码生长调节因子的基因;
(3)将蘸有所述农杆菌悬浮液的脱脂棉球置于幼苗伤口处保湿,黑暗条件下放置两天后取下脱脂棉球,将幼苗在光周期为16小时光照/8小时黑暗、25℃~28℃温度的条件下继续培养,得到再生植株。
优选地,所述农杆菌悬浮液的OD600=0.8。
优选地,所述生长调节因子为WUS和IPT。
植物分生组织是由几个主要的发育调节因子(Developmental Regulators,DRs),如WUS(WUSCHEL)、IPT(ISOPENTENYL TRANSFERASE)、STM(SHOOT MERISTEMLESS)和MP(MONOPTEROS)决定的,通过在体细胞中特定表达DRs可直接诱导分生组织再生。基于上述理论,本发明运用含有wus和ipt基因的pMKV057双元质粒载体通过诱导分生组织的形成而直接获得再生植株。
相比于现有技术的缺点和不足,本发明具有以下有益效果:本发明构建的方法创新点体现在不是通过传统优化外源激素配方来诱导再生芽的生成,而是通过将生长调节因子构建于pMKV057双元质粒载体上,该载体转化到农杆菌内,以该农杆菌悬浮液直接诱导形成再生芽,避免了传统方法中的从愈伤组织经脱分化、再分化形成再生芽的阶段,操作方便、成功率高,并且能为后续利用非组培方式对遗传转化顽拗型蔬菜作物进行基因编辑提供了新的解决思路。
附图说明
图1是本发明涉及的pMKV057载体的结构示意图;
图2是本发明方法中农杆菌注射方式示意图;
图3是本发明实施例中不结球白菜的再生过程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
一、材料准备
1、pMKV057双元质粒载体购自淼灵生物http://www.miaolingbio.com/,该载体上克隆有wus和ipt基因,如图1所示。
2、含有wus和ipt的pMKV057质粒转入农杆菌GV3101
(1)取-80℃保存的农杆菌感受态于室温或手心片刻待其部分融化,处于冰水混合状态时插入冰中;
(2)每100μL感受态加入0.01~1μg质粒,用手拨打管底混匀,依次于冰上静置5分钟、液氮5分钟、37℃水浴5分钟、冰浴5分钟;
(3)加入700μL无抗生素的LB液体培养基,于28℃振荡培养2~3小时;
(4)6000rpm离心一分钟收菌,留取100μL左右上清轻轻吹打重悬菌块涂布于含50μg/mLKan,20μg/mL Rif抗生素的LB平板上,倒置放于28℃培养箱培养2~3天;对长出的单菌落进行PCR验证,保存获得的阳性菌落。
3、农杆菌悬浮液的制备过程
将阳性菌落接入5mLLB液体培养基中(含50μg/mL Kan,20μg/mL Rif抗生素),28℃,200rpm,过夜培养后按照1%比例转接菌液至50mL LB液体培养基中(含50μg/mL Kan,20μg/mL Rif抗生素,20μM乙酰丁香酮),继续培养农杆菌浓度达到OD600=0.4-0.6,5000rpm,室温,离心10min收集菌体,用MS液体培养基(含10mM MgCl2,150μM乙酰丁香酮),重新悬浮菌体,将农杆菌浓度调至OD600=0.8后,28℃静置2h后,进行注射。
二、非组培方式的不结球白菜的再生
(1)将经过催芽处理的不结球白菜种子置于穴盘内生长,待幼苗长至子叶展开期或两叶一心期;
(2)在幼苗长至子叶展开期或两叶一心期时,将幼苗顶端分生组织用新刀片切去,确保子叶一并切去,仅留有下胚轴(如图2所示),将农杆菌悬浮液用微量注射器注射至幼苗伤口处,注射的量以不溢出或渗出幼苗伤口为准;
(3)将蘸有悬浮液的脱脂棉球至于伤口处保湿,黑暗条件下放置两天后,光周期为16小时(光照)/8小时(黑暗)条件下培养继续培养,培养时温度为25℃,直至植株再生(如图3所示),从图3中可以看出,不结球白菜的再生情况非常良好。
本发明构建的方法创新点体现在不是通过传统优化外源激素配方来诱导再生芽的生成,而是通过将生长调节因子构建于pMKV057双元质粒载体上,该载体转化到农杆菌内,以该农杆菌悬浮液直接诱导形成再生芽,避免了传统方法中的从愈伤组织经脱分化、再分化形成再生芽的阶段,操作方便、成功率高,并且能为后续利用非组培方式对遗传转化顽拗型蔬菜作物进行基因编辑提供了新的解决思路。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
Claims (3)
1.一种非组培方式的不结球白菜再生方法,其特征在于,该方法包括以下步骤:
(1)将经过催芽处理的不结球白菜种子置于穴盘内生长;
(2)在幼苗长至子叶展开期或两叶一心期时,将幼苗顶端分生组织用新刀片切去,确保子叶一并切去,仅留有下胚轴,将农杆菌悬浮液用微量注射器注射至幼苗伤口处;其中,所述悬浮液的农杆菌细胞中含有pMKV057双元质粒载体,该pMKV057双元质粒载体上含有编码生长调节因子的基因;
(3)将蘸有所述农杆菌悬浮液的脱脂棉球置于幼苗伤口处保湿,黑暗条件下放置两天后取下脱脂棉球,将幼苗在光周期为16小时光照/8小时黑暗、25℃~28℃温度的条件下继续培养,得到再生植株。
2.如权利要求1所述的非组培方式的不结球白菜再生方法,其特征在于,所述农杆菌悬浮液的OD600=0.8。
3.如权利要求1所述的非组培方式的不结球白菜再生方法,其特征在于,所述生长调节因子为WUS和IPT。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211006214.0A CN115216490A (zh) | 2022-08-22 | 2022-08-22 | 一种非组培方式的不结球白菜再生方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211006214.0A CN115216490A (zh) | 2022-08-22 | 2022-08-22 | 一种非组培方式的不结球白菜再生方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115216490A true CN115216490A (zh) | 2022-10-21 |
Family
ID=83616682
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211006214.0A Pending CN115216490A (zh) | 2022-08-22 | 2022-08-22 | 一种非组培方式的不结球白菜再生方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115216490A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116042694A (zh) * | 2022-11-24 | 2023-05-02 | 中国科学院南京土壤研究所 | 禾本科狼尾草属植物非组培遗传转化方法 |
-
2022
- 2022-08-22 CN CN202211006214.0A patent/CN115216490A/zh active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116042694A (zh) * | 2022-11-24 | 2023-05-02 | 中国科学院南京土壤研究所 | 禾本科狼尾草属植物非组培遗传转化方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Damm et al. | Regeneration of fertile plants from protoplasts of different Arabidopsis thaliana genotypes | |
Liu et al. | Efficient Agrobacterium tumefaciens-mediated transformation of soybeans using an embryonic tip regeneration system | |
CN111690678B (zh) | 一种利用发根农杆菌转化获得整株转基因木本植株的方法 | |
CN101445808B (zh) | 以花生种子休眠芽胚轴为外植体的农杆菌介导的遗传转化方法 | |
CN115216490A (zh) | 一种非组培方式的不结球白菜再生方法 | |
CN113322274B (zh) | 一种快速实现甘薯转基因的方法 | |
JP4858790B2 (ja) | 植物生長調整補助剤を使用した再分化植物体の作製方法 | |
Sevón et al. | Efficient plant regeneration from hairy root-derived protoplasts of Hyoscyamus muticus | |
CN113528534B (zh) | GhMYB44基因在棉花愈伤组织分化发育中的应用 | |
JP4329410B2 (ja) | 植物生長調整補助剤及び該植物生長調整補助剤を使用した再分化植物体の作製方法 | |
Konzak et al. | Anther culture methods for doubled haploid production in wheat | |
CN110106200B (zh) | 玉米bbm1基因在提高植物遗传转化效率中的应用 | |
CN1995359A (zh) | 农杆菌介导的大型番茄的转化方法 | |
CN109880847B (zh) | 一种高效的高山离子芥转基因植株的制备方法 | |
CN102719475A (zh) | 一种利用棉花分生组织进行遗传转化的方法 | |
CN117844849B (zh) | 一种蒙古冰草的遗传转化方法 | |
CN113481235B (zh) | 一种简化的农杆菌介导的玉米茎尖遗传转化方法 | |
JP2020156413A (ja) | 植物における組換えタンパク質の発現量増加方法 | |
Curtis | Lettuce (Lactuca sativa L.) | |
CN116063433B (zh) | 一种调控油菜种子含油量的基因及应用 | |
CN117721112B (zh) | 红树植物白骨壤的内源启动子amdrep8及其用途 | |
KR20050028255A (ko) | 마커-프리 형질전환식물체 생산을 위한 신규 방법 | |
CN118726376A (zh) | 一种增强马铃薯耐旱性的基因AtCAH1及其表达蛋白和应用 | |
CN118792346A (zh) | 一种农杆菌介导的甘蓝型油菜遗传转化方法 | |
CN104195097A (zh) | 促进转烟草促早花基因NtFT5烟草生根的培养基及获得短周期烟草的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |