CN115215651A - 一种稀土掺杂氧化镥基复合发光陶瓷的制备方法 - Google Patents

一种稀土掺杂氧化镥基复合发光陶瓷的制备方法 Download PDF

Info

Publication number
CN115215651A
CN115215651A CN202210018829.9A CN202210018829A CN115215651A CN 115215651 A CN115215651 A CN 115215651A CN 202210018829 A CN202210018829 A CN 202210018829A CN 115215651 A CN115215651 A CN 115215651A
Authority
CN
China
Prior art keywords
rare earth
based composite
sintering
luminescent ceramic
lutetium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210018829.9A
Other languages
English (en)
Inventor
唐华纯
刘全生
李中波
王能利
柏朝晖
杨冬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Ucome New Material Technology Co ltd
Changchun University of Science and Technology
Original Assignee
Shanghai Ucome New Material Technology Co ltd
Changchun University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Ucome New Material Technology Co ltd, Changchun University of Science and Technology filed Critical Shanghai Ucome New Material Technology Co ltd
Priority to CN202210018829.9A priority Critical patent/CN115215651A/zh
Publication of CN115215651A publication Critical patent/CN115215651A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties

Abstract

本发明提供了一种稀土掺杂氧化镥基复合发光陶瓷的制备方法;包括:步骤1,原料中加入烧结助剂混合;步骤2,研磨均匀,使混合后的材料充分分散;步骤3,放入真空热压烧结炉内,调整位置;步骤4,热压烧结,保温;步骤5,随炉降温,脱模,即可。本发明方法对原料的粒径没有要求;本发明采用真空热压烧结技术,获得了发光性能优异、透过率可调的稀土掺杂GLO复合发光陶瓷。本发明方法无需合成前驱粉体,无需成型等工艺步骤;而是直接将原料按照产物的化学计量比均匀混合,放置在热压炉中直接烧结,即可;本发明方法速度快、成本低。本发明方法合成过程中的高压和真空作用,陶瓷可以实现多相复合,且在较低的温度下、较短的时间内就可以获得。

Description

一种稀土掺杂氧化镥基复合发光陶瓷的制备方法
技术领域
本发明属于光电功能材料技术领域;尤其涉及一种稀土掺杂氧化镥基复合发光陶瓷的制备方法。
背景技术
随着人类科技的进步,人类对于新型光学功能材料的需求也越来越大。稀土激活氧化镥基发光材料具有发光效率高、物理化学性能优异的特点,在照明、场发射显示、等离子显示、白光LED、高能粒子探测等领域具有广阔的前景和重要的应用价值。
氧化镥基陶瓷材料具有极高的密度(9.42g/cm3左右),对各类射线(x射线、γ射线)的阻止本领异乎寻常的高,即光吸收系数高。在导热性能方面,Lu2O3基体材料的热导率(12.5w/mk)比当前广泛使用的YAG基激光材料(11W/mk)略高,具有很强的抗热震性能。Lu2O3具有立方晶系结构,便于制备多晶透明材料,是一种极具应用前景的发光基质材料。
然而,光学陶瓷制备工艺一般都较为复杂,首先需要制备超细前驱粉体,然后成型、预烧、再在高温真空条件下长时间烧结,最后还需要退火,工艺极其复杂,过程非常耗时、耗能。针对制备工艺的研究如下,波兰科学家Zych等人采用燃烧法制备出Eu3+:Lu2O3纳米粉体和微米级的烧结体,研究了前驱体对烧结性能的影响。2006年,陈等采用湿化学法合成前驱体,然后采用气氛烧结法(H2)成功制备出高光学质量的Eu3+:Lu2O3透明陶瓷,经其研究发现陶瓷在600-800nm可以达到80.3%的透过率。2010年,Trojan-Piegza等人分别在空气中、真空及N2-H2气氛中制备了Eu3+:Lu2O3闪烁陶瓷,研究了不同的陶瓷的余辉性能,研究表明,当Eu离子浓度较小时,陶瓷有着较强的且时间较长的余辉。2013年,Dulina等研究了前驱体的化学组成对Eu3+:Lu2O3陶瓷粉体的影响,通过调节沉淀剂/Lu3+的比值,采用的共沉淀法控合成了平均晶粒尺寸为40nm的前驱体,利用真空烧结技术制备了在611nm波长处41%透过率的5at%Eu3+:Lu2O3透明陶瓷。2015年,Ma等采用尿素为沉淀剂、均相沉淀法合成单分散球形颗粒的陶瓷粉体,采用1700℃、5h真空烧结制备Eu3+:Lu2O3(5mol%)透明陶瓷,在800nm处可以达到61%的透过率。可见制备氧化镥陶瓷的工艺复杂。基于此,本发明提出了一种稀土掺杂氧化镥基复合发光陶瓷的制备技术,该技术无需合成前驱粉体,无需成型,而是直接将原料按照产物的化学计量比均匀混合,放置在热压炉中利用石墨模具直接烧结。由于合成过程中的高压和真空作用,陶瓷可以实现多相复合,且在较低的温度下、较短的时间内就可以获得。
发明内容
本发明的目的是提供了一种稀土掺杂氧化镥基复合发光陶瓷的制备方法。
本发明是通过以下技术方案实现的:
本发明涉及一种稀土掺杂氧化镥基复合发光陶瓷的制备方法,包括以下步骤:
步骤1,选用Lu2O3(99.99%),Gd2O3(99.99%),Eu2O3(99.99%)为原料、烧结助剂MgO(99.99%),按照(Lu1-xGdx)2O3:yEu3+的化学计量比分别计算各原料的量,其中x可以从0到1连续可调,y为稀土发光离子的掺杂量,y的取值为0.01-5at%,其烧结助剂的含量为0.1-5wt%。
所述原料中Lu2O3,Gd2O3,Eu2O3三者的用量比为:51-70:48-25:0.001-5。
优选地,所述原料中Lu2O3,Gd2O3,Eu2O3三者的用量比为:51-60:48-35:0.001-5。
优选地,所述原料中Lu2O3,Gd2O3,Eu2O3三者的用量比为:55-60:48-40:0.001-3。
步骤2,采用精密电子天平称取相应量的Lu2O312.377g(99.99%),Gd2O37.591g(99.99%),Eu2O3(99.99%)0.021g、MgO(99.99%)0.003g原料,将称取的原料放入玛瑙研钵内;用玛瑙棒仔细研磨均匀,使混合后的材料充分分散;
步骤3,将混合均匀的原料放入预处理后的石墨模具中,然后放入真空热压烧结炉内,合理调整位置;
步骤4,开始烧结,设置烧结温度为1400~1700℃,保温时间为2~10h,压力为0~200Mpa;
步骤5,烧结完成后,随炉降温,将取出模具,脱模,即可获得发光陶瓷样品。
本发明具有以下优点:
(1)本发明选用Lu2O3(99.99%),Gd2O3(99.99%),Eu2O3(99.99%)等为原料,合成方法对原料的粒径没有要求(微纳米尺寸均可),选取烧结助剂MgO、SiO2、CaO、正硅酸乙酯等;本发明通过在热压炉中利用石墨模具成型和烧结,在高温过程中边烧结边热压,减少了前期粉体制备的复杂工艺。,本发明工艺参数如下:控制升温速率≤10℃/min,1400~1700℃下保温2~10h,压力为0-100MPa,真空度为1×10-1~1×10-3Pa,最终获得了发光性能优异、透过率可调的稀土掺杂GLO复合发光陶瓷,本发明方法速度快、成本低。
(2)本发明提出了一种稀土掺杂氧化镥基复合发光陶瓷的制备方法,无需合成前驱粉体,无需成型等工艺步骤;而是直接将原料按照产物的化学计量比均匀混合,放置在热压炉中直接烧结,即可制备得到最终的复合发光陶瓷;本发明方法合成过程中的高压和真空作用,陶瓷可以实现多相复合,且在较低的温度下、较短的时间内就可以获得。
附图说明
图1是制备稀土掺杂GLO发光陶瓷的工艺流程图;
图2是不同Gd3+含量GLO样品的XRD图;
图3是不同Eu3+含量GLO样品的XRD图;
图4是不同Gd3+含量GLO样品的发射光谱图(5at%Eu3+);
图5是不同Gd3+含量GLO样品的发射光谱图(7at%Eu3+)。
图6是本发明方法制备得到的稀土掺杂氧化镥基复合发光陶瓷的样品图。
具体实施方式
下面结合具体实施例对本发明进行详细说明。应当指出的是,以下的实施实例只是对本发明的进一步说明,但本发明的保护范围并不限于以下实施例。
实施例1
本实施例涉及一种稀土掺杂氧化镥基复合发光陶瓷的制备方法,见图1所示,步骤如下:
(1)以Lu2O3,Gd2O3,Eu2O3、MgO和正硅酸乙酯原料,其中,固定Eu3+离子含量为5at%和7at%,制备不同Gd3+离子的含量的(Lu1-xGdx)2O3:Eu3+(x=0、0.1、0.3、0.5、0.7、0.9)陶瓷,其中,烧结助剂MgO为产物质量的0.1wt%,正硅酸乙酯为0.4wt%。
(2)按照制备5g产物,采用精密电子天平称取相应量的Lu2O3,Gd2O3,Eu2O3、MgO和正硅酸乙酯,将称取的原料放入玛瑙研钵内。
(3)将称取的原料倒入玛瑙研钵内,用玛瑙棒仔细研磨30min,是粉体原料混合均匀。
(4)研磨后,将混合粉末放入预先涂覆Si3N4涂层的石墨模具内,保证粉体均匀分布,准备烧结。
(5)将处理好的模具放入真空热压烧结炉内,以5℃/min的升温速率从室温加热到1350℃,烧结2h;最后,然后在升温到1600℃,保温6h,在第二段升温时,开始加压,压力为20MP,在保温结束前1h停止加压,在此过程中,真空系统一直工作,升温结束后的真空度为102Pa,最后,随炉降温至室温,获得样品。
图2为5at%Eu3+离子掺杂不同Gd3+离子浓度GLO的样品XRD图,表明合成GLO陶瓷,当Gd3+离子浓度小时(0.5以下)为Lu2O3相,当Gd3+离子浓度大时为Gd2O3相为主,两者相非常相似,且衍射峰尖锐,强度高,结晶度好。
图3和图4分别为5at%和7at%Eu3+离子掺杂不同Gd3+离子浓度GLO的样品发光光谱图,可以看出不同Eu3+离子掺杂浓度,在不同基质中样品的发射峰位基本一致,均为Eu3+离子的典型特征发射,Eu3+离子掺杂浓度大时,发光强度高,Gd3+离子为0.5时,发光强度最强。
实施例2
本实施例涉及一种稀土掺杂氧化镥基复合发光陶瓷的制备方法,见图1所示,步骤如下:
(1)选用Lu2O3(99.99%),Gd2O3(99.99%),Eu2O3(99.99%)、MgO(99.99%)等为原料,按照(Lu0.5Gd0.5)2O3:yEu3+的化学计量比分别计算各原料的量,其中,y为稀土发光离子的掺杂量,y的取值为1-9at%,MgO为烧结助剂,其含量为0.3wt%。
(2)按照制备5g产物,采用精密电子天平称取相应量的Lu2O3,Gd2O3,Eu2O3、MgO,将称取的原料放入玛瑙研钵内。
(3)将称取的原料倒入球磨罐内,加入适量的玛瑙球,在100转/min的转速下,球磨300min,将原料混合均匀。
(4)研磨后,将混合粉末放入预先涂覆SiC涂层的石墨模具内,保证粉体均匀分布,准备烧结。
(5)将处理好的模具放入真空热压烧结炉内,以5℃/min的升温速率从室温加热到1350℃,烧结2h;最后,然后在升温到1650℃,保温8h,在第二段升温时,开始加压,压力为10MP,在保温结束前1h停止加压,在此过程中,真空系统一直工作,升温结束后的真空度为102Pa,最后,随炉降温至室温,获得样品。
图5为合成不同Eu3+离子掺杂浓度(Lu0.5Gd0.5)2O3:yEu3+陶瓷样品的XRD图。Eu3+离子的掺杂并不会改变产物晶体结构。
图6为本发明方法制备得到的稀土掺杂氧化镥基复合发光陶瓷的样品图。
实施例3
本实施例涉及一种稀土掺杂氧化镥基复合发光陶瓷的制备方法,包括以下步骤:
步骤1,选用Lu2O3(99.99%),Gd2O3(99.99%),Eu2O3(99.99%)为原料、烧结助剂MgO(99.99%),按照(Lu1-xGdx)2O3:yEu3+的化学计量比分别计算各原料的量,其中x可以从0到1连续可调,y为稀土发光离子的掺杂量,y的取值为0.01-5at%,其烧结助剂的含量为3wt%。
所述原料中Lu2O3,Gd2O3,Eu2O3三者的用量比为:55:45:0.001。
步骤2,采用精密电子天平按比例称取:Lu2O3(99.99%),Gd2O3(99.99%),Eu2O3(99.99%)、MgO(99.99%)原料,将称取的原料放入玛瑙研钵内;用玛瑙棒仔细研磨均匀,使混合后的材料充分分散;
步骤3,将混合均匀的原料放入预处理后的石墨模具中,然后放入真空热压烧结炉内,合理调整位置;
步骤4,开始烧结,设置烧结温度为1400~1700℃,保温时间为2~10h,压力为0~200Mpa;
步骤5,烧结完成后,随炉降温,将取出模具,脱模,即可获得发光陶瓷样品。
实施例4
本实施例涉及一种稀土掺杂氧化镥基复合发光陶瓷的制备方法,包括以下步骤:
步骤1,选用Lu2O3(99.99%),Gd2O3(99.99%),Eu2O3(99.99%)为原料、烧结助剂MgO(99.99%),按照(Lu1-xGdx)2O3:yEu3+的化学计量比分别计算各原料的量,其中x可以从0到1连续可调,y为稀土发光离子的掺杂量,y的取值为0.01-5at%,其烧结助剂的含量为5wt%。
所述原料中Lu2O3,Gd2O3,Eu2O3三者的用量比为:60:35:5。
步骤2,采用精密电子天平按比例称取:Lu2O3(99.99%),Gd2O3(99.99%),Eu2O3(99.99%)、MgO(99.99%)原料,将称取的原料放入玛瑙研钵内;用玛瑙棒仔细研磨均匀,使混合后的材料充分分散;
步骤3,将混合均匀的原料放入预处理后的石墨模具中,然后放入真空热压烧结炉内,合理调整位置;
步骤4,开始烧结,设置烧结温度为1400~1700℃,保温时间为2~10h,压力为0-200Mpa;
步骤5,烧结完成后,随炉降温,将取出模具,脱模,即可获得发光陶瓷样品。
实施例5
本实施例涉及一种稀土掺杂氧化镥基复合发光陶瓷的制备方法,包括以下步骤:
步骤1,选用Lu2O3(99.99%),Gd2O3(99.99%),Eu2O3(99.99%)为原料、烧结助剂MgO(99.99%),按照(Lu1-xGdx)2O3:yEu3+的化学计量比分别计算各原料的量,其中x可以从0到1连续可调,y为稀土发光离子的掺杂量,y的取值为0.01-5at%,其烧结助剂的含量为0.5%。
所述原料中Lu2O3,Gd2O3,Eu2O3三者的用量比为:51:25:0.001。
步骤2,采用精密电子天平按比例称取:Lu2O3(99.99%),Gd2O3(99.99%),Eu2O3(99.99%)、MgO(99.99%)原料,将称取的原料放入玛瑙研钵内;用玛瑙棒仔细研磨均匀,使混合后的材料充分分散;
步骤3,将混合均匀的原料放入预处理后的石墨模具中,然后放入真空热压烧结炉内,合理调整位置;
步骤4,开始烧结,设置烧结温度为1400~1700℃,保温时间为2~10h,压力为0~200Mpa;
步骤5,烧结完成后,随炉降温,将取出模具,脱模,即可获得发光陶瓷样品。
本发明选用Lu2O3(99.99%),Gd2O3(99.99%),Eu2O3(99.99%)为原料,选MgO、SiO2、CaO、正硅酸乙酯为烧结助剂,经过合成方法处理;该方法对原料的粒径没有要求(微纳米尺寸均可);本发明采用真空热压烧结技术,控制升温速率≤10℃/min,在以下条件:1400~1700℃下保温2~10h,压力为0-100MPa,真空度为1×10-1~1×10-3Pa,获得了发光性能优异、透过率可调的稀土掺杂GLO复合发光陶瓷,本发明方法速度快、成本低。本发明方法无需合成前驱粉体,无需成型等工艺步骤;而是直接将原料按照产物的化学计量比均匀混合,放置在热压炉中直接烧结,即可制备得到最终的复合发光陶瓷;本发明方法合成过程中的高压和真空作用,陶瓷可以实现多相复合,且在较低的温度下、较短的时间内就可以获得。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质。

Claims (10)

1.一种稀土掺杂氧化镥基复合发光陶瓷的制备方法,其特征在于,包括以下步骤:
步骤1,选Lu2O3,Gd2O3,Eu2O3为原料,加入烧结助剂混合;
步骤2,研磨均匀,使混合后的材料充分分散;
步骤3,放入预处理后的石墨模具中,然后放入真空热压烧结炉内,调整位置;
步骤4,热压烧结,保温;
步骤5,待烧结完成后,随炉降温,将取出模具,脱模,即可获得发光陶瓷样品。
2.如权利要求1所述的稀土掺杂氧化镥基复合发光陶瓷的制备方法,其特征在于,所述原料中Lu2O3,Gd2O3,Eu2O3三者的用量比为:51-70:48-25:0.001-5。
3.如权利要求1所述的稀土掺杂氧化镥基复合发光陶瓷的制备方法,其特征在于,步骤1中,所述烧结助剂为MgO、SiO2、CaO、正硅酸乙酯中的一种或多种混合。
4.如权利要求1所述的稀土掺杂氧化镥基复合发光陶瓷的制备方法,其特征在于,步骤1中,所述烧结助剂的用量占产物质量的0.01~5wt%。
5.如权利要求1所述的稀土掺杂氧化镥基复合发光陶瓷的制备方法,其特征在于,步骤2中,所述研磨为玛瑙研钵研磨或球磨。
6.如权利要求1所述的稀土掺杂氧化镥基复合发光陶瓷的制备方法,其特征在于,步骤2中,所述研磨的时间为10~60min。
7.如权利要求1所述的稀土掺杂氧化镥基复合发光陶瓷的制备方法,其特征在于,步骤3中,所述预处理后的石墨模具为涂覆Si3N4涂层的石墨模具。
8.如权利要求1所述的稀土掺杂氧化镥基复合发光陶瓷的制备方法,其特征在于,步骤4中,所述烧结的温度为1400~1700℃。
9.如权利要求1所述的稀土掺杂氧化镥基复合发光陶瓷的制备方法,其特征在于,步骤4中,所述保温时间为2~10h。
10.如权利要求1所述的稀土掺杂氧化镥基复合发光陶瓷的制备方法,其特征在于,步骤4中,所述热压烧结的压力为0-200Mpa,真空度为1×10-1~1×10-3Pa。
CN202210018829.9A 2022-01-09 2022-01-09 一种稀土掺杂氧化镥基复合发光陶瓷的制备方法 Pending CN115215651A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210018829.9A CN115215651A (zh) 2022-01-09 2022-01-09 一种稀土掺杂氧化镥基复合发光陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210018829.9A CN115215651A (zh) 2022-01-09 2022-01-09 一种稀土掺杂氧化镥基复合发光陶瓷的制备方法

Publications (1)

Publication Number Publication Date
CN115215651A true CN115215651A (zh) 2022-10-21

Family

ID=83606822

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210018829.9A Pending CN115215651A (zh) 2022-01-09 2022-01-09 一种稀土掺杂氧化镥基复合发光陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN115215651A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115925408A (zh) * 2022-11-18 2023-04-07 上海御光新材料科技股份有限公司 一种透明闪烁陶瓷材料及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101270283A (zh) * 2008-04-30 2008-09-24 中国计量学院 氧化钆镥荧光粉及其制备方法
CN102674837A (zh) * 2012-05-22 2012-09-19 长春理工大学 Er3+:Lu2O3透明陶瓷
US20140098411A1 (en) * 2011-09-28 2014-04-10 Woohong Kim RARE EARTH DOPED Lu2O3 POLYCRYSTALLINE CERAMIC LASER GAIN MEDIUM
CN111138192A (zh) * 2020-01-03 2020-05-12 上海应用技术大学 一种氧化镥铽磁光透明陶瓷的真空热压制备方法
CN112209714A (zh) * 2020-10-16 2021-01-12 长春理工大学 一种一次成型烧结铝基石榴石型发光陶瓷的制备技术

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101270283A (zh) * 2008-04-30 2008-09-24 中国计量学院 氧化钆镥荧光粉及其制备方法
US20140098411A1 (en) * 2011-09-28 2014-04-10 Woohong Kim RARE EARTH DOPED Lu2O3 POLYCRYSTALLINE CERAMIC LASER GAIN MEDIUM
CN102674837A (zh) * 2012-05-22 2012-09-19 长春理工大学 Er3+:Lu2O3透明陶瓷
CN111138192A (zh) * 2020-01-03 2020-05-12 上海应用技术大学 一种氧化镥铽磁光透明陶瓷的真空热压制备方法
CN112209714A (zh) * 2020-10-16 2021-01-12 长春理工大学 一种一次成型烧结铝基石榴石型发光陶瓷的制备技术

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
吴云涛等: "掺杂Eu3+或Tb3+的(Gd, Lu)2O3 粉体的发光性能", 《硅酸盐学报》 *
解伟峰等: "Lu2O3: Eu 与( Lu,Gd) 2O3: Eu 透明闪烁陶瓷的性能对比研究", 《广州化工》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115925408A (zh) * 2022-11-18 2023-04-07 上海御光新材料科技股份有限公司 一种透明闪烁陶瓷材料及其制备方法与应用
CN115925408B (zh) * 2022-11-18 2024-04-12 上海御光新材料科技股份有限公司 一种透明闪烁陶瓷材料及其制备方法与应用

Similar Documents

Publication Publication Date Title
KR101624390B1 (ko) 형광체의 제조 방법
CN109467453B (zh) 一种具有特征微观结构的荧光陶瓷及其制备方法和应用
CN101993240B (zh) 一种Ce3+掺杂硅酸镥(Lu2SiO5)多晶闪烁光学陶瓷的制备方法
CN110204324B (zh) 一种绿色荧光透明陶瓷的制备方法和应用
CN107935581B (zh) 两相均匀分布的复合石榴石闪烁陶瓷及其制备方法
CN111205081A (zh) 一种单一结构式低色温高显指荧光陶瓷及其制备方法与应用
CN113943162B (zh) 一种α-SiAlON高熵透明陶瓷材料及其制备方法
EP1934304A2 (en) Light emitting device with a ceramic siaion material
CN102924072A (zh) 一种白光led用yag透明陶瓷及其制备方法
CN112159220B (zh) 一种白光led/ld用高热稳定性高量子效率荧光陶瓷及其制备方法
CN102173773A (zh) 用于高亮度白光发光二极管的透明陶瓷及其制备方法
Dai et al. Fabrication and properties of transparent Tb: YAG fluorescent ceramics with different doping concentrations
CN115215651A (zh) 一种稀土掺杂氧化镥基复合发光陶瓷的制备方法
CN108018040A (zh) 一种荧光陶瓷材料、其制备方法以及一种低色温白光led
CN1203899A (zh) 高热导氮化铝陶瓷的制备方法
CN111393166B (zh) 一种白光led/ld用高热稳定性荧光陶瓷及其制备方法
CN112209714A (zh) 一种一次成型烧结铝基石榴石型发光陶瓷的制备技术
CN110550945B (zh) 一种LuAG:Ce透明陶瓷的制备方法及LuAG:Ce透明陶瓷
CN112028492B (zh) 一种M:YAG-Al2O3纳米层状复合透明陶瓷及其制备方法
WO2021248446A1 (zh) 一种纳米倍半氧化物荧光陶瓷及其制备方法
CN112239352A (zh) 一种复相荧光陶瓷材料及其制备方法
CN112680225B (zh) 一种提高氮化物红色荧光粉发光强度与热稳定性能的方法
CN106865990A (zh) 一种具有高效蓝光发射的透明玻璃陶瓷及制备方法
CN109020543A (zh) 一种铈掺杂焦硅酸镥钪闪烁陶瓷及其制备方法
Lee et al. Fabrication of transparent Ce3+-doped (Gd, Lu) 3Al5O12 ceramics by two-step spark plasma sintering

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20221021

RJ01 Rejection of invention patent application after publication