CN115196964A - 一种含钠的氧化钼陶瓷溅射靶材制备方法 - Google Patents

一种含钠的氧化钼陶瓷溅射靶材制备方法 Download PDF

Info

Publication number
CN115196964A
CN115196964A CN202110402233.4A CN202110402233A CN115196964A CN 115196964 A CN115196964 A CN 115196964A CN 202110402233 A CN202110402233 A CN 202110402233A CN 115196964 A CN115196964 A CN 115196964A
Authority
CN
China
Prior art keywords
sodium
molybdenum oxide
sputtering target
oxide ceramic
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110402233.4A
Other languages
English (en)
Other versions
CN115196964B (zh
Inventor
李继文
雷金坤
李召阳
刘伟
赵清
魏世忠
徐流杰
张国赏
潘昆明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Science and Technology
Original Assignee
Henan University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Science and Technology filed Critical Henan University of Science and Technology
Priority to CN202110402233.4A priority Critical patent/CN115196964B/zh
Publication of CN115196964A publication Critical patent/CN115196964A/zh
Application granted granted Critical
Publication of CN115196964B publication Critical patent/CN115196964B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明属于磁控溅射用靶材的制备领域,具体涉及一种含钠的氧化钼陶瓷溅射靶材制备方法。该含钠的氧化钼陶瓷溅射靶材制备方法包括以下步骤:1)以三氧化钼粉、铝粉、钼酸钠粉为原料,经球磨混合,得到混合粉末;混合粉末中,钠原子占钼、氧、钠、铝总原子比为3~9%,铝原子占钼、氧、钠、铝总原子比为1~3%;2)将混合粉末在真空条件下进行放电等离子烧结。本发明的含钠的氧化钼陶瓷溅射靶材制备方法,采用氧化钼和钼酸钠为原料,铝作粘接剂,通过放电等离子烧结炉(SPS)实施烧结制备工艺,降低烧结温度,降低气体含量,提高钠元素收得率,提高靶材致密度和均匀性,制备出均匀、高致密、高钠含量的含钼钠陶瓷靶材。

Description

一种含钠的氧化钼陶瓷溅射靶材制备方法
技术领域
本发明属于磁控溅射用靶材的制备领域,具体涉及一种含钠的氧化钼陶瓷溅射靶材制备方法。
背景技术
目前光伏太阳能电池已经进入第三代发展时期即薄膜电池发展时期,铜铟镓硒(CIGS)薄膜太阳能电池因其较高的电池效率、较强的抗辐射能力以及性能稳定等优点受到世界各国的高度重视。CIGS薄膜通常为多层结构,从上到下依次是:Al电极/ZnO窗口层/CdS过渡层/CIGS光吸收层/背电极/基底材料。研究表明,往CIGS薄膜结构中添加一定量的Na有助于太阳能电池吸收层晶粒生长、增加电子空位浓度,从而提高CIGS太阳能电池器件效能。传统上采用含有Na元素的材料如钠钙玻璃衬底作为钠源,增加CIGS薄膜中Na元素含量。但是此类方法存在Na元素扩散能力低,含量不易控制,均匀性差,衬底材料受限等问题。因此,在背极材料(Mo背极)中掺入一定量的Na元素则可以有效解决这一问题。
CN104073771A公开了一种使用钼酸钠及钼粉为原材料,采用先冷等静压后在石英管中多段加热的方式制得钼掺钠靶材;CN111593305A公开了一种使用氢氧化钠及钼粉为原材料,采用1500℃下的高温烧结方式制得靶材;CN103572229A公开了一种使用钠粉及钼粉为原材料,采用热压烧结的方式制得靶材。
上述方法中均存在一定的不足。如冷等静压法制备钼钠靶材设备成本较高,多端加热方式工艺复杂;高温烧结制得靶材钠回收率低;真空热压能耗大且生产效率低难以批量生产。最主要缺陷是采用钠粉或是钠的化合物为载体将其与钼粉掺杂后,由于纯钼的熔点过高(2620℃),而钠粉(97.72℃)或钼酸钠盐(687℃)熔点过低,两者相差较大;而烧结制备时,为了提高靶材致密性,一般采用远高于钠或者钠盐熔点温度实施高温烧结,直接导致钠元素的流失或挥发,钠的回收率大大降低。用钠元素含量过低且分布不均匀的靶材溅射后,提高薄膜电池转化效果并不理想。
发明内容
本发明的目的在于提供一种含钠的氧化钼陶瓷溅射靶材制备方法,以提高钠元素收得率,提高靶材致密度和均匀性。
为实现上述目的,本发明的含钠的氧化钼陶瓷溅射靶材制备方法的技术方案是:
一种含钠的氧化钼陶瓷溅射靶材制备方法,包括以下步骤:
1)以三氧化钼粉、铝粉、钼酸钠粉为原料,经球磨混合,得到混合粉末;混合粉末中,钠原子占钼、氧、钠、铝总原子比为3~9%,铝原子占钼、氧、钠、铝总原子比为1~3%;
2)将混合粉末在真空条件下进行放电等离子烧结。
本发明的含钠的氧化钼陶瓷溅射靶材制备方法,采用氧化钼和钼酸钠为原料,铝作粘接剂,通过放电等离子烧结炉(SPS)实施烧结制备工艺,降低烧结温度,降低气体含量,提高钠元素收得率,提高靶材致密度和均匀性,制备出均匀、高致密、高钠含量的含钼钠陶瓷靶材。
为进一步提高靶材的致密、均匀性,优选的,步骤1)中,三氧化钼粉的粒度为75μm-95μm。钼酸钠粉的粒度为75μm-120μm。铝粉的粒度为145μm-155μm。
为达到更佳的烧结效果,优选的,步骤2)中,放电等离子烧结的压强为30-35MPa,温度为500℃-510℃,保温时间为4-6min。更优选的,由室温升温至500℃-510℃的速度为30-50℃/min。更优选为40-50℃/min。
为进一步保证制靶过程的安全,优选的,步骤1)中,所述球磨混合采用湿混球磨法,分散介质为无水乙醇。无水乙醇的加入量(体积)不低于原料粉末及磨球的总和,不大于球磨罐总体积的三分之二。
优选的,放电等离子烧结后随炉冷却,再进行机械加工。所述机械加工包括车外圆、车平面、抛磨平面。更优选的,将经过机械加工后的靶材用酒精、水清洗,干燥,真空包装。
附图说明
图1为本发明实施例1所制备的靶材的SEM图;
图2为本发明实施例1所制备的靶材的EDS能谱图;
图3为本发明实施例1所制备的靶材的面扫描钠元素分析图。
具体实施方式
与现有技术相比,本发明的目的是克服现有含钼钠陶瓷靶材制备工艺的不足,并从选材角度出发,采用放电等离子烧结技术,以氧化钼、钼酸钠、铝粉为原料,通过湿混球磨法,经干燥、研磨后放入烧结炉内进行烧结,最终制备得到掺钠三氧化钼靶材。本发明有易选材、Na回收率高且掺入量可控、靶材致密均匀、且能够实现低成本批量生产的优点。
本发明从选材入手,选用三氧化钼为基体材料,钼酸钠为载体,铝粉为粘结剂,选材便捷经济且无多余杂质引入,杂质元素含量相对较低。
本发明无后续工序,在烧结过程中也无需惰性气体保护,整个工序简单,工艺参数易于控制。
下面结合具体实施例对本发明的实施方式作进一步说明。以下实施例中,三氧化钼粉,粒度为75μm-95μm,其中MoO3≥99%;铝粉,粒度为145μm-155μm,其中Al≥98%;钼酸钠粉,其中Na2MoO4·2H2O≥99.99%,粒度为75-120μm。
一、本发明的含钠的氧化钼陶瓷溅射靶材制备方法的具体实施例
实施例1
本实施例的含钠的氧化钼陶瓷溅射靶材制备方法,包括以下步骤:
1)混料:用天平准确称量三氧化钼、钼酸钠分别为23.17g、6.15g分多次放入球磨罐中,待三氧化钼及钼酸钠粉末称取完后在罐中放入200g玛瑙磨球,然后在球磨罐中倒入无水乙醇直至总体积为球磨罐体积的三分之二,最后加入0.69g铝粉,将球磨罐密封装入球磨机中,设置转速200rpm,球磨时间10h。其中,Na占钼、氧、钠、铝总原子比(Na的原子分数)为6%,Al占钼、氧、钠、铝总原子比(Al的原子分数)为3%。
原子百分比计算时不计入水,上述原料称量中,如含有结晶水,按含有结晶水计算。
2)干燥:混合完的混合物倒入烧杯中,将烧杯放入真空干燥炉内,设置温度60℃,为了充分干燥,设置干燥时长10h。
3)研磨:因放电等离子烧结(SPS)需要粉末颗粒尽可能小,故将干燥完的钼钠混合物放入陶瓷研磨器中研磨,用200目的筛网筛出。
4)烧结:称取7.6g研磨后的粉末,装入带有石墨纸保护层的石墨模具中,石墨模具规格为Φ20mm,然后将装有粉末的石墨模具放入放电等离子烧结炉内,把热电偶插入石墨模具,盖好炉盖,旋紧螺丝扣,启动电源,检查水箱循环水是否正常,打开真空泵抽空至5Pa,设置工艺为压头压力1.12T,第一步工艺设置在10min内温度升到500℃,压头压力由0T到1.12T(35MPa),第二步工艺为在5min中内保持温度500℃,压头压力保持1.12T,然后随炉冷却,待压头温度在30℃以下后取出石墨模具,最后取出烧结后的靶材。
5)机械加工:通过机械加工清除靶材表面的石墨保护层,包括车外圆、车平面、抛磨平面;用酒精将靶材表面清洗干净,再用蒸馏水清洗后用风筒冷风吹干,最后进行真空包装。
在其他实施情形下,将步骤2)、步骤3)重复进行1~3次,可以获得成分更加均匀的靶材。
实施例2
本实施例的含钠的氧化钼陶瓷溅射靶材制备方法,与实施例1介绍的不同之处在于,Na的原子分数为9%。用天平准确称取用天平准确称量三氧化钼、钼酸钠、铝粉的质量分别为20.05g、9.26g、0.69g。所制备的掺钠三氧化钼材料致密,表面平整,无空洞,品质优良。
实施例3
本实施例的含钠的氧化钼陶瓷溅射靶材制备方法,与实施例2介绍的不同之处在于,Na的原子分数为3%。用天平准确称取用天平准确称量三氧化钼、钼酸钠、铝粉的质量分别为26.26g、3.06g、0.68g。所制备的掺钠三氧化钼材料致密,表面平整,无空洞,品质优良。
实施例4
本实施例的含钠的氧化钼陶瓷溅射靶材制备方法,与实施例1介绍的不同之处在于,Al的原子分数为2%。用天平准确称取用天平准确称量三氧化钼、钼酸钠、铝粉的质量分别为23.41g、6.14g、0.46g。所制备的掺钠三氧化钼材料致密,表面平整,无空洞,品质优良。
二、实验例
实验例1
本实验例对实施例1所得靶材进行SEM分析,结果如图1所示。
由图1可以看出,实施例1的方法所得靶材的致密性好。
实验例2
本实验例对实施例1所得靶材进行EDS检测,结果如图2和图3所示。
由图2可以看出,Na的含量较高,最高达6%,由于石墨纸的保护层以及Al粉做粘结剂,靶材中含有较低的C及Al。
由图3的面扫面元素分析可以看出,Na的在整个面内分布均匀。由此可见,实施例的方法钠的回收率高,基于球磨过程各成分的混合均匀性,所得靶材总体表现出均匀、高致密、高钠含量的特点。

Claims (10)

1.一种含钠的氧化钼陶瓷溅射靶材制备方法,其特征在于,包括以下步骤:
1)以三氧化钼粉、铝粉、钼酸钠粉为原料,经球磨混合,得到混合粉末;混合粉末中,钠原子占钼、氧、钠、铝总原子比为3~9%,铝原子占钼、氧、钠、铝总原子比为1~3%;
2)将混合粉末在真空条件下进行放电等离子烧结。
2.如权利要求1所述的含钠的氧化钼陶瓷溅射靶材制备方法,其特征在于,步骤1)中,三氧化钼粉的粒度为75μm-95μm。
3.如权利要求1所述的含钠的氧化钼陶瓷溅射靶材制备方法,其特征在于,步骤1)中,钼酸钠粉的粒度为75μm-120μm。
4.如权利要求1所述的含钠的氧化钼陶瓷溅射靶材制备方法,其特征在于,步骤1)中,铝粉的粒度为145μm-155μm。
5.如权利要求1所述的含钠的氧化钼陶瓷溅射靶材制备方法,其特征在于,步骤2)中,放电等离子烧结的压强为30-35MPa,温度为500℃-510℃,保温时间为4-6min。
6.如权利要求5所述的含钠的氧化钼陶瓷溅射靶材制备方法,其特征在于,由室温升温至500℃-510℃的速度为30-50℃/min。
7.如权利要求1~6中任一项所述的含钠的氧化钼陶瓷溅射靶材制备方法,其特征在于,步骤1)中,所述球磨混合采用湿混球磨法,分散介质为无水乙醇。
8.如权利要求1所述的含钠的氧化钼陶瓷溅射靶材制备方法,其特征在于,放电等离子烧结后随炉冷却,再进行机械加工。
9.如权利要求8所述的含钠的氧化钼陶瓷溅射靶材制备方法,其特征在于,所述机械加工包括车外圆、车平面、抛磨平面。
10.如权利要求9所述的含钠的氧化钼陶瓷溅射靶材制备方法,其特征在于,将经过机械加工后的靶材用酒精、水清洗,干燥,真空包装。
CN202110402233.4A 2021-04-14 2021-04-14 一种含钠的氧化钼陶瓷溅射靶材制备方法 Active CN115196964B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110402233.4A CN115196964B (zh) 2021-04-14 2021-04-14 一种含钠的氧化钼陶瓷溅射靶材制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110402233.4A CN115196964B (zh) 2021-04-14 2021-04-14 一种含钠的氧化钼陶瓷溅射靶材制备方法

Publications (2)

Publication Number Publication Date
CN115196964A true CN115196964A (zh) 2022-10-18
CN115196964B CN115196964B (zh) 2023-07-25

Family

ID=83573757

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110402233.4A Active CN115196964B (zh) 2021-04-14 2021-04-14 一种含钠的氧化钼陶瓷溅射靶材制备方法

Country Status (1)

Country Link
CN (1) CN115196964B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116444269A (zh) * 2023-03-30 2023-07-18 先导薄膜材料(安徽)有限公司 一种掺杂型钼靶材的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002187721A (ja) * 2000-12-19 2002-07-05 Honda Motor Co Ltd 多元系セラミックス粉末およびその製造方法
US20050184636A1 (en) * 2005-05-26 2005-08-25 Osram Sylvania Inc. Translucent PCA Ceramic, Ceramic Discharge Vessel, and Method of Making
CN104073771A (zh) * 2014-07-01 2014-10-01 河北工业大学 一种钼掺钠溅射靶材的制备方法
CN104894517A (zh) * 2015-04-08 2015-09-09 无锡舒玛天科新能源技术有限公司 钠掺杂钼旋转靶材及其制备方法
CN106583733A (zh) * 2016-11-10 2017-04-26 洛阳科威钨钼有限公司 一种高致密钼合金板材的制备方法
CN110904374A (zh) * 2019-12-17 2020-03-24 株洲硬质合金集团有限公司 一种钠掺杂钼合金材料的制备方法
CN111527234A (zh) * 2017-10-06 2020-08-11 普兰西股份有限公司 用于沉积氧化钼层的靶材料

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002187721A (ja) * 2000-12-19 2002-07-05 Honda Motor Co Ltd 多元系セラミックス粉末およびその製造方法
US20050184636A1 (en) * 2005-05-26 2005-08-25 Osram Sylvania Inc. Translucent PCA Ceramic, Ceramic Discharge Vessel, and Method of Making
CN104073771A (zh) * 2014-07-01 2014-10-01 河北工业大学 一种钼掺钠溅射靶材的制备方法
CN104894517A (zh) * 2015-04-08 2015-09-09 无锡舒玛天科新能源技术有限公司 钠掺杂钼旋转靶材及其制备方法
CN106583733A (zh) * 2016-11-10 2017-04-26 洛阳科威钨钼有限公司 一种高致密钼合金板材的制备方法
CN111527234A (zh) * 2017-10-06 2020-08-11 普兰西股份有限公司 用于沉积氧化钼层的靶材料
CN110904374A (zh) * 2019-12-17 2020-03-24 株洲硬质合金集团有限公司 一种钠掺杂钼合金材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
安耿等: "钼溅射靶材的应用、制备及发展", 《中国钼业》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116444269A (zh) * 2023-03-30 2023-07-18 先导薄膜材料(安徽)有限公司 一种掺杂型钼靶材的制备方法

Also Published As

Publication number Publication date
CN115196964B (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
JP5923569B2 (ja) Cu−Ga系スパッタリングターゲット
WO2014097963A1 (ja) 酸化亜鉛系透明導電膜
CN101775578B (zh) 制备ZnAl靶材的方法以及制得的ZnAl靶材
US20120205242A1 (en) Cu-In-Ga-Se QUATERNARY ALLOY SPUTTERING TARGET
CN113735565B (zh) 低锡含量ito溅射靶材、制备方法及薄膜太阳能电池
CN104835869B (zh) 铜铟镓硒薄膜太阳能电池及其制备方法
CN112813397B (zh) 一种钼钠合金板状靶材的制备方法
WO2011089984A1 (ja) 酸化物蒸着材と蒸着薄膜並びに太陽電池
CN105585317B (zh) 一种锡酸镉靶材及其制备方法
CN114620996A (zh) 一种高效太阳能电池用旋转陶瓷靶材
CN112456971A (zh) 一种氧化镍基陶瓷靶材材料的冷等静压成型制备方法
CN104073771A (zh) 一种钼掺钠溅射靶材的制备方法
CN105705674B (zh) Cu-Ga合金溅射靶及其制造方法
CN115196964B (zh) 一种含钠的氧化钼陶瓷溅射靶材制备方法
CN101695997A (zh) 铜锌锡硒光电材料的制备方法
EP2921467B1 (en) Oxide sinter, sputtering target using same, and oxide film
CN112376022B (zh) 一种旋转钼管靶材的制备方法
CN112802924B (zh) 一种铜钾锌锡硫吸收层的制备方法
KR20120105682A (ko) 사성분계 산화아연 박막, 이의 제조 방법 및 이를 포함하는 전자 소자
CN117070906A (zh) 一种溅射用氧化亚铜靶材及其制备方法和应用
CN104810417A (zh) 薄膜太阳能电池光吸收层及其制备方法
CN117185778A (zh) 一种高密度氧化铟铈靶材及其制备方法
CN117986010A (zh) 一种氧化锡基靶材及其制备方法和应用
CN112210762A (zh) 一种铜锌锡硒(CZTSe)或铜锌锡硫(CZTS)四元靶材的制备方法
CN116732480A (zh) 一种高性能氧化锌透明导电薄膜的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant