CN115182039A - 一种用于uvc led的蓝宝石基氮化铝复合材料的制备方法 - Google Patents

一种用于uvc led的蓝宝石基氮化铝复合材料的制备方法 Download PDF

Info

Publication number
CN115182039A
CN115182039A CN202210556523.9A CN202210556523A CN115182039A CN 115182039 A CN115182039 A CN 115182039A CN 202210556523 A CN202210556523 A CN 202210556523A CN 115182039 A CN115182039 A CN 115182039A
Authority
CN
China
Prior art keywords
substrate
aluminum nitride
sapphire
magnetron sputtering
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210556523.9A
Other languages
English (en)
Inventor
祖红亮
李熙规
张粉红
张科
陈琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huahe Jidian Xiamen Semiconductor Technology Co ltd
Original Assignee
Huahe Jidian Xiamen Semiconductor Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huahe Jidian Xiamen Semiconductor Technology Co ltd filed Critical Huahe Jidian Xiamen Semiconductor Technology Co ltd
Priority to CN202210556523.9A priority Critical patent/CN115182039A/zh
Publication of CN115182039A publication Critical patent/CN115182039A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/06Epitaxial-layer growth by reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种用于UVC LED的蓝宝石基氮化铝复合材料的制备方法,包括如下步骤:(1)衬底预处理;(2)靶材预处理;(3)在射频电源的作用下,设备腔体中的氩气和氮气发生辉光放电,形成等离子体,Ar+离子轰击铝靶材,溅射出铝原子,铝原子与等离子体中的氮原子发生反应,在衬底上形成AlN缓冲层;(4)N2、Ar气氛下,采用磁控溅射沉积,在衬底上形成AlN薄膜;其中,磁控溅射沉积AlN薄膜时N2与Ar体积之比为1:1‑1.5。本发明提供了一种蓝宝石基氮化铝薄膜复合新材料的制备方法,极大地改善了氮化铝薄膜的质量,同时也拓宽了蓝宝石基氮化铝的应用条件,特别是在UVCLED方面的应用。

Description

一种用于UVC LED的蓝宝石基氮化铝复合材料的制备方法
技术领域
本发明涉及宽禁带半导体制备的技术领域,具体为一种用于UVC LED的蓝宝石基氮化铝复合材料的制备方法。
背景技术
UV指紫外线,UVC即为紫外线中的C波段,波长介于100-280nm,但由于200纳米以下的波长为真空紫外线,故可被空气吸收,因此UVC可穿越大气层的波长介于200-280nm。
UV能够破坏微生物的DNA(脱氧核糖核酸)或RNA(核糖核酸)分子结构,使细菌死亡或不能繁殖,从而达到杀菌的目的。在所有的紫外线中,UVC这种短波紫外线杀菌效果最强,因此被广泛运用于杀菌技术。
而UVC LED指的是发出UVC的方式,例如传统的紫外线灯一直采用的是汞灯发光,而汞具有非常大的危险性,且《水俣公约》后,汞灯已被全面禁止。而UVC LED作为新型的紫外线杀菌方式,是当今看来唯一靠谱的替代方案。因为其属于纯物理杀菌,不含任何有害物质,UVC LED元件的小型化特点给应用场景带来更多便利性,很多都是传统汞灯无法实现的。此外,UVC LED还具有启动快速、允许的开关次数更多、可用电池供电等诸多优势。
氮化铝是极具应用潜力的超宽禁带半导体材料,具有很多优良的性质,如其禁带宽度高达6.2eV,同时具有高击穿场强、高饱和电子漂移速率、高化学和热稳定性,及高导热、抗辐射等优异性能,因此氮化铝是紫外/深紫外LED、紫外LD最佳衬底材料,也是高功率、高频电子器件理想衬底材料。此外,氮化铝具有优良的压电性、高的声表面波传播速度和较高的机电耦合系数,是GHz级声表面波器件的优选压电材料。
在以往的制备方法中多采用MOCVD的方式生长氮化铝缓冲层,但是这种制备方式存在着一些缺点,首先原材料一般为有机金属化合物,有毒性且成本较高,而且对原材料纯度要求很高,另外MOCVD制备的氮化铝薄膜具有以下缺点:
1、采用MOCVD工艺在蓝宝石衬底上生长的AlN薄膜边缘裂纹很多,不利于后续LED中氮化镓层、N型层的外延生长;
2、采用MOCVD工艺在蓝宝石衬底上生长的AlN薄膜均匀性较差,导致后续UVC LED良率底;
3、采用MOCVD工艺在蓝宝石衬底上生长的AlN薄膜在-200V/-500V时抗静电能力较差;
4、采用MOCVD工艺在蓝宝石衬底上生长的AlN薄膜VF4边缘Fail率较高,导致良率下降。
基于以上缺点,本发明提供了一种蓝宝石基氮化铝薄膜复合新材料的制备方法,极大地改善了氮化铝薄膜的质量,同时也拓宽了蓝宝石基氮化铝的应用条件,特别是在UVCLED方面的应用。
发明内容
针对上述存在的技术不足,本发明的目的是提供一种用于UVC LED的蓝宝石基氮化铝复合材料的制备方法,以解决背景技术中提出的问题。
为解决上述技术问题,本发明采用如下技术方案:
本发明提供一种用于UVC LED的蓝宝石基氮化铝复合材料的制备方法,包括如下步骤:
(1)衬底预处理;
(2)靶材预处理;
(3)在射频电源的作用下,设备腔体中的氩气和氮气发生辉光放电,形成等离子体,Ar+离子轰击铝靶材,溅射出铝原子,铝原子与等离子体中的氮原子发生反应,在衬底上形成AlN缓冲层;
(4)N2、Ar气氛下,采用磁控溅射沉积,在衬底上形成AlN薄膜;其中,磁控溅射沉积AlN薄膜时N2与Ar体积之比为1:1-1.5。
优选地,所述的步骤(1)的衬底预处理为:将衬底在去离子水中超声波清洗两分钟,去除表面可能附着的无机金属离子,随后在异丙醇中超声波清洗两分钟,去除表面附着的有机物,最后通过异丙醇浸泡衬底以隔绝空气。
优选地,所述的步骤(2)的靶材预处理包括通Ar靶材预溅射和通N2靶材预溅射。
优选地,所述的磁控溅射采用的磁控溅射系统内设置高温加热单元,在磁控溅射系统内对衬底进行加热,加热温度在600℃至1300℃范围内。
优选地,所述的磁控溅射的溅射电源采用射频电源。
本发明的有益效果在于:
参照附图1-3:
与MOCVD制备的氮化铝相比,外延层边缘裂纹得到明显改善,大幅提升UVC LED芯片良率;
与MOCVD制备的氮化铝相比,氮化铝的均匀性得到大幅改善;
与MOCVD制备的氮化铝相比,在-200V/-500V时抗静电能力大幅提升;
与MOCVD制备的氮化铝相比,VF4边缘失败率低。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1-3为本发明实施例与MOCVD制备的氮化铝的对比图;
图4为衬底上形成氮化铝薄膜的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例:
本发明的实例涉及利用多功能磁控反应溅射物理气相沉积外延的氮化铝缓冲层来制造UVC LED。
在这一发明中,制造的位于衬底上的缓冲层的方法包含对衬底的预处理,同时包含随后的利用氮气或者其他气体在射频电源的作用形成的等离子体在物理气相沉积设备的腔体中与溅射出的铝原子反应,使得反应生成的氮化铝沉积于衬底表面。
本发明采布鲁克公司X射线衍射仪(XRD)来表征氮化铝薄膜的结构,用布鲁克公司生产的型原子力显微镜来观察氮化铝薄膜表面的形貌基表面粗糙度,
在这一发明中,复合材料包括衬底材料和利用磁控反应溅射所制备的氮化铝缓冲层,氮化铝缓冲层具有均方根粗糙度小于0.5nm的原子级光滑表面和在(002)方向的结晶方向,其中(002)方向的XRD摇摆曲线的半峰宽小于0.05。
本发明提供了一种用于UVC LED的蓝宝石基氮化铝复合材料的制备方法,包括如下步骤:
步骤一:衬底的预处理,本发明采用的衬底为蓝宝石衬底,在去离子水中超声波清洗两分钟,去除表面可能附着的无机金属离子,随后在异丙醇中超声波清洗两分钟,去除表面可能附着的有机物,最后异丙醇浸泡衬底以隔绝空气;
步骤二:将衬底用氮气吹干,随后放置于磁控溅射设备的进样腔中,进行抽真空,抽到一定程度真空后,关闭真空阀门,然后打开进样腔与主腔室之间的阀门,将样品传至主腔室,随后关闭阀门,对主腔室抽真空,对衬底进行加热,使加热温度达到600℃-1300℃,升温速率不超过20摄氏度每分钟;
步骤三:在加热的过程中打开氮气阀门,通入氮气,气体流量为10-15sccm,通入氩气,气体流量为10-15sccm;
步骤四:靶材预处理,待达到预设定的温度后,调整腔体气压,使气压维持在5mTorr-25mTorr,优选的为20mTorr,然后打开靶材挡板,设定射频电源功率为200W-500W,时间为13分钟,气压稳定后打开射频电源,射频电源稳定工作后,将腔体气压降为5-10mTorr,预溅射十分钟,以去除靶材表面的杂质打开衬底表面的挡板,开始正式沉积氮化铝薄膜,沉积时间为3分钟;该时间并非固定,可根据所需要的薄膜厚度来调节溅射时长;
步骤四:打开衬底表面的挡板,开始正式沉积氮化铝薄膜,沉积时间为3分钟,该时间并非固定,可根据所需要的薄膜厚度进行调节,沉积完成后,对衬底和生长完成的氮化铝薄膜进行一定时间的退火,时长在0-2小时,使得所沉积的薄膜进一步的得到优化。
步骤五:降温,降温过程中降温速率不超过20℃每分钟,待温度降低到接近室温时,将样品取出,制备过程结束。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (5)

1.一种用于UVC LED的蓝宝石基氮化铝复合材料的制备方法,其特征在于,包括如下步骤:
(1)衬底预处理;
(2)靶材预处理;
(3)在射频电源的作用下,设备腔体中的氩气和氮气发生辉光放电,形成等离子体,Ar+离子轰击铝靶材,溅射出铝原子,铝原子与等离子体中的氮原子发生反应,在衬底上形成AlN缓冲层;
(4)N2、Ar气氛下,采用磁控溅射沉积,在衬底上形成AlN薄膜;其中,磁控溅射沉积AlN薄膜时N2与Ar体积之比为1:1-1.5。
2.如权利要求1所述的一种用于UVC LED的蓝宝石基氮化铝复合材料的制备方法,其特征在于,所述的步骤(1)的衬底预处理为:将衬底在去离子水中超声波清洗两分钟,去除表面可能附着的无机金属离子,随后在异丙醇中超声波清洗两分钟,去除表面附着的有机物,最后通过异丙醇浸泡衬底以隔绝空气。
3.如权利要求1所述的一种用于UVC LED的蓝宝石基氮化铝复合材料的制备方法,其特征在于,所述的步骤(2)的靶材预处理包括通Ar靶材预溅射和通N2靶材预溅射。
4.如权利要求1所述的一种用于UVC LED的蓝宝石基氮化铝复合材料的制备方法,其特征在于,所述的磁控溅射采用的磁控溅射系统内设置高温加热单元,在磁控溅射系统内对衬底进行加热,加热温度在600℃至1300℃范围内。
5.如权利要求1所述的一种用于UVC LED的蓝宝石基氮化铝复合材料的制备方法,其特征在于,所述的磁控溅射的溅射电源采用射频电源。
CN202210556523.9A 2022-05-19 2022-05-19 一种用于uvc led的蓝宝石基氮化铝复合材料的制备方法 Pending CN115182039A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210556523.9A CN115182039A (zh) 2022-05-19 2022-05-19 一种用于uvc led的蓝宝石基氮化铝复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210556523.9A CN115182039A (zh) 2022-05-19 2022-05-19 一种用于uvc led的蓝宝石基氮化铝复合材料的制备方法

Publications (1)

Publication Number Publication Date
CN115182039A true CN115182039A (zh) 2022-10-14

Family

ID=83513515

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210556523.9A Pending CN115182039A (zh) 2022-05-19 2022-05-19 一种用于uvc led的蓝宝石基氮化铝复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN115182039A (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107768234A (zh) * 2017-09-27 2018-03-06 中国科学院长春光学精密机械与物理研究所 一种获得高质量AlN模板的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107768234A (zh) * 2017-09-27 2018-03-06 中国科学院长春光学精密机械与物理研究所 一种获得高质量AlN模板的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XU-PING KUANG ET AL.: ""Effect of deposition temperature on the microstructure and surface morphology of c-axis oriented AlN films deposited on sapphire substrate by RF reactive magnetron sputtering"", 《SUPERLATTICES AND MICROSTRUCTURES》, 9 August 2012 (2012-08-09), pages 931 - 940 *

Similar Documents

Publication Publication Date Title
EP1346085B1 (en) Method for producing group iii metal nitride based materials
CN104428441B (zh) 由物理气相沉积形成的氮化铝缓冲层和活性层
KR100343949B1 (ko) 상온에서 작동하는 자외선 수광, 발광소자용 ZnO박막의 제조 방법 및 그를 위한 장치
CN107681025B (zh) 一种GaN基白光LED外延结构及制备方法
CN113235047A (zh) 一种AlN薄膜的制备方法
CN114937721B (zh) 一种硅衬底GaN基LED外延片及其制备方法
CN110867368A (zh) 一种氧化镓外延薄膜的制备方法
CN112831768B (zh) 一种高结晶质量的氮化铪薄膜制备方法及应用
CN111334856B (zh) 用等离子体辅助分子束外延以准范德华外延生长高质量ZnO单晶薄膜的方法
CN101423927B (zh) 一种AlxIn1-xN薄膜的制备方法
CN111883651A (zh) 一种制备高质量氮化铝模板的方法
CN113862622B (zh) 一种金属化合物薄膜的制备方法
CN111243942A (zh) 利用过渡金属或合金作为缓冲层提高六方氮化硼结晶质量的方法
CN110896024B (zh) 碳化硅外延氧化镓薄膜方法及碳化硅外延氧化镓薄膜结构
CN115182039A (zh) 一种用于uvc led的蓝宝石基氮化铝复合材料的制备方法
CN108330536B (zh) PA-MBE同质外延高质量GaN单晶薄膜的制备方法
CN108538970B (zh) 一种发光二极管的制备方法
CN115896697A (zh) 一种Ga2O3薄膜禁带宽度调控的工艺方法
CN110993752A (zh) 一种以石墨烯为缓冲层的led外延生长方法
CN110993505B (zh) 基于碳化硅衬底的半导体结构制备方法及半导体结构
CN115274941A (zh) 一种外延片制备方法、外延片及led芯片
CN114717657A (zh) 基于等离子体辅助激光分子束外延生长氧化镍单晶薄膜的方法
CN1124364C (zh) 用电子回旋共振微波等离子体制备超薄氮化硅薄膜的方法
CN110993504A (zh) 基于SiC衬底的Ga2O3薄膜的制备方法及基于SiC衬底的Ga2O3薄膜
CN117690780B (zh) 氮化铝单晶复合衬底的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination