CN115179636B - 一种汽车用电池隔热罩及其加工工艺 - Google Patents

一种汽车用电池隔热罩及其加工工艺 Download PDF

Info

Publication number
CN115179636B
CN115179636B CN202210685213.7A CN202210685213A CN115179636B CN 115179636 B CN115179636 B CN 115179636B CN 202210685213 A CN202210685213 A CN 202210685213A CN 115179636 B CN115179636 B CN 115179636B
Authority
CN
China
Prior art keywords
mixture
heat shield
processing technology
battery heat
automobile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210685213.7A
Other languages
English (en)
Other versions
CN115179636A (zh
Inventor
陈德清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongguan Inoac Kenjou Automotive Co Ltd
Original Assignee
Dongguan Inoac Kenjou Automotive Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongguan Inoac Kenjou Automotive Co Ltd filed Critical Dongguan Inoac Kenjou Automotive Co Ltd
Priority to CN202210685213.7A priority Critical patent/CN115179636B/zh
Publication of CN115179636A publication Critical patent/CN115179636A/zh
Application granted granted Critical
Publication of CN115179636B publication Critical patent/CN115179636B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • B32B5/20Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material foamed in situ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/245Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it being a foam layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • B32B2262/0284Polyethylene terephthalate [PET] or polybutylene terephthalate [PBT]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0278Polyurethane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/56Damping, energy absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2101/00Manufacture of cellular products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

本发明公开了一种汽车用电池隔热罩及其加工工艺;本发明将用3‑巯基丙基三甲氧基硅烷改性后的二氧化硅纳米颗粒制备成剪切增稠液作为一种发泡剂对聚氨酯改性,改性后的聚氨酯泡沫材料通过模具在模具中热压成型,制备一种汽车用电池隔热罩。电池隔热罩具有较好的隔热、耐热性能和较强的耐冲击性能。

Description

一种汽车用电池隔热罩及其加工工艺
技术领域
本发明涉及电池隔热罩技术领域,具体为一种汽车用电池隔热罩及其加工工艺。
背景技术
蓄电池作为汽车的重要组成部分之一,其对环境温度较为敏感,在汽车运行过程中会产生大量热量,使得发动机罩下的环境温度迅速升高,造成蓄电池处于高温的工作环境中,会严重缩减电池寿命,同时会增加汽车行驶的安全隐患。
硬质聚氨酯泡沫作为一种制备汽车用电池隔热罩的材料,具有蜂窝结构,易于收集,具有较低的导电系数,泡孔尺寸仅为非发泡材料的十分之一。外力对聚氨酯泡沫材料施加弹性变形。内部受约束的空气被压缩,吸收部分冲击能量并提供出色的缓冲性能。一般来说,具有高密度和小孔的泡沫材料具有出色的物理性能。由硬质聚氨酯泡沫材料制备的电池隔热罩具有良好的缓冲、隔热、绝缘和吸音性能,但这些性能可能与其他性能发生冲突。因此,如何保留硬质聚氨酯泡沫材料的所有性能使制备的电池隔热罩同时具有良好的缓冲、隔热、绝缘和吸音性能一直是许多研究的重点。
发明内容
本发明的目的在于提供一种汽车用电池隔热罩及其加工工艺,以解决上述背景技术中提出的问题。
为了解决上述技术问题,本发明提供如下技术方案:
一种汽车用电池隔热罩的加工工艺,
S1:将二氧化硅纳米颗粒分散在3-巯基丙基三甲氧基硅烷的甲苯溶液中,搅拌,回流,离心,用甲苯和无水乙醇洗涤后真空干燥,得到改性二氧化硅纳米颗粒;将改性二氧化硅纳米颗粒分散在无水乙醇中,一次均质化后超声处理,加入聚乙二醇搅拌,二次均质化超声处理,恒温真空干燥,得到剪切增稠液;
S2:将聚醚多元醇、去离子水和剪切增稠液混合均匀,得到混合物A;将混合物A 和异氰酸酯搅拌混合,得到混合物B;当混合物B产生热量时,温度大于等于30℃时,迅速倒入放置了一层PET无纺布的模具中,并在混合物B上放置一层PET无纺布以覆盖混合物B,固化,得到改性聚氨酯泡沫,在模具中热压成型,得到汽车电池隔热罩。
进一步的,所述3-巯基丙基三甲氧基硅烷的甲苯溶液中3-巯基丙基三甲氧基硅烷的浓度为75~250mmol/L。
进一步的,所述每1g二氧化硅纳米颗粒分散在40mL3-巯基丙基三甲氧基硅烷的甲苯溶液;回流时间12h;恒温真空干燥温度为30~40℃,恒温真空干燥时间为2~3h;二氧化硅纳米颗粒的粒径为14~16nm。
进一步的,所述剪切增稠液中按质量百分比计,改性二氧化硅纳米颗粒占70%,聚乙二醇占30%。
进一步的,所述剪切增稠液的质量为聚醚多元醇质量的2~3wt%。
进一步的,所述聚醚多元醇分子量为6000~8000,异氰酸酯的比重为1.25,PET无纺布的密度为200g/m2
进一步的,所述每加入100g聚醚多元醇,加入1g去离子水和100g异氰酸酯,搅拌混合速度为1000~1200r/min。
与现有技术相比,本发明所达到的有益效果是:本发明对纳米二氧化硅进行表面硫醇改性,由改性后的纳米二氧化硅制备的剪切增稠液中亲水性聚乙二醇和疏水性硫醇改性二氧化硅颗粒之间的吸引力减小,同时表面硫醇基的增多使得二氧化硅表面的羧基减少,使得临界剪切速率增加;临界剪切速率的增加使得有聚氨酯泡沫材料制备的汽车用电池隔热罩的稳定性增强,能够吸收更多的能量,不易发生形变,进一性步增强隔热罩耐冲击。
本发明将剪切增稠液作为一种发泡剂在聚氨酯泡沫发泡过程中加入,在发泡过程中产生大量二氧化碳,增加了发泡过程中的气泡数量,同时减小气泡的孔径,减小气泡的相对体积,形成均匀泡孔,通过控制二氧化硅纳米颗粒的粒径和剪切增稠液的加入量,增强聚氨酯泡沫材料的隔热性能和耐热性能;使有聚氨酯泡沫材料制备的汽车用电池隔热罩具有良好的隔热和耐热性能。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
以下是实施例中聚乙二醇的分子量为200。
实施例1
S1:将10g粒径为14nm的二氧化硅纳米颗粒分散在浓度为75mmol/L的400mL3-巯基丙基三甲氧基硅烷的甲苯溶液中,搅拌均匀,回流12h,离心后将沉淀物用甲苯、无水乙醇洗涤后常温下真空干燥,得到改性二氧化硅纳米颗粒;将7g改性二氧化硅纳米颗粒分散在过量无水乙醇中,一次均质化后超声处理,加入3g聚乙二醇,二次均质化超声处理,在30℃下恒温真空干燥2h,待乙醇蒸发完全,得到剪切增稠液;
S2将100g聚醚多元醇、1g去离子水和2g剪切增稠液混合均匀,得到混合物A;将混合物A和100g异氰酸酯以1000r/min速度搅拌混合,得到混合物B;当混合物B产生热量时,温度大于等于30℃时,迅速倒入放置了一层PET无纺布的模具中,并在混合物 B上放置一层PET无纺布以覆盖混合物B,固化,得到改性聚氨酯泡沫,在模具中热压成型,得到汽车电池隔热罩。
试验:
热导率测量。根据ASTM C177-13的规定,使用热导率测试仪(DRX-I-SPB,湘潭华丰仪器,中国湘潭)测量热导率。每个规格取三个样品,样品尺寸为200mm×200mm× 10mm。电炉温度为50℃。
抗压测试。按照ASTM D1621-16的规定,使用万能试验机(HT-2402,HungTaInstrument )以5mm/min的测试速度测量硬质STF/PU泡沫复合材料的抗压强度。试样尺寸为50mm×50mm×20mm。
实施例2
S1:将10g粒径为15nm的二氧化硅纳米颗粒分散在浓度为75mmol/L的400mL3-巯基丙基三甲氧基硅烷的甲苯溶液中,搅拌均匀,回流12h,离心后将沉淀物用甲苯、无水乙醇洗涤后常温下真空干燥,得到改性二氧化硅纳米颗粒;将7g改性二氧化硅纳米颗粒分散在过量无水乙醇中,一次均质化后超声处理,加入3g聚乙二醇,二次均质化超声处理,在30℃下恒温真空干燥2h,待乙醇蒸发完全,得到剪切增稠液;
S2将100g聚醚多元醇、1g去离子水和2g剪切增稠液混合均匀,得到混合物A;将混合物A和100g异氰酸酯以1000r/min速度搅拌混合,得到混合物B;当混合物B产生热量时,温度大于等于30℃时,迅速倒入放置了一层PET无纺布的模具中,并在混合物 B上放置一层PET无纺布以覆盖混合物B,固化,得到改性聚氨酯泡沫,在模具中热压成型,得到汽车电池隔热罩。
试验:
热导率测量。根据ASTM C177-13的规定,使用热导率测试仪(DRX-I-SPB,湘潭华丰仪器,中国湘潭)测量热导率。每个规格取三个样品,样品尺寸为200mm×200mm× 10mm。电炉温度为50℃。
抗压测试。按照ASTM D1621-16的规定,使用万能试验机(HT-2402,HungTaInstrument )以5mm/min的测试速度测量硬质STF/PU泡沫复合材料的抗压强度。试样尺寸为50mm×50mm×20mm。
实施例3
S1:将10g粒径为16nm的二氧化硅纳米颗粒分散在浓度为75mmol/L的400mL3-巯基丙基三甲氧基硅烷的甲苯溶液中,搅拌均匀,回流12h,离心后将沉淀物用甲苯、无水乙醇洗涤后常温下真空干燥,得到改性二氧化硅纳米颗粒;将7g改性二氧化硅纳米颗粒分散在过量无水乙醇中,一次均质化后超声处理,加入3g聚乙二醇,二次均质化超声处理,在30℃下恒温真空干燥2h,待乙醇蒸发完全,得到剪切增稠液;
S2将100g聚醚多元醇、1g去离子水和2g剪切增稠液混合均匀,得到混合物A;将混合物A和100g异氰酸酯以1000r/min速度搅拌混合,得到混合物B;当混合物B产生热量时,温度大于等于30℃时,迅速倒入放置了一层PET无纺布的模具中,并在混合物 B上放置一层PET无纺布以覆盖混合物B,固化,得到改性聚氨酯泡沫,在模具中热压成型,得到汽车电池隔热罩。
试验:
热导率测量。根据ASTM C177-13的规定,使用热导率测试仪(DRX-I-SPB,湘潭华丰仪器,中国湘潭)测量热导率。每个规格取三个样品,样品尺寸为200mm×200mm× 10mm。电炉温度为50℃。
抗压测试。按照ASTM D1621-16的规定,使用万能试验机(HT-2402,HungTaInstrument )以5mm/min的测试速度测量硬质STF/PU泡沫复合材料的抗压强度。试样尺寸为50mm×50mm×20mm。
实施例4
S1:将10g粒径为16nm的二氧化硅纳米颗粒分散在浓度为75mmol/L的400mL3-巯基丙基三甲氧基硅烷的甲苯溶液中,搅拌均匀,回流12h,离心后将沉淀物用甲苯、无水乙醇洗涤后常温下真空干燥,得到改性二氧化硅纳米颗粒;将7g改性二氧化硅纳米颗粒分散在过量无水乙醇中,一次均质化后超声处理,加入3g聚乙二醇,二次均质化超声处理,在30℃下恒温真空干燥2h,待乙醇蒸发完全,得到剪切增稠液;
S2将100g聚醚多元醇、1g去离子水和2.4g剪切增稠液混合均匀,得到混合物A;将混合物A和100g异氰酸酯以1000r/min速度搅拌混合,得到混合物B;当混合物B产生热量时,温度大于等于30℃时,迅速倒入放置了一层PET无纺布的模具中,并在混合物B上放置一层PET无纺布以覆盖混合物B,固化,得到改性聚氨酯泡沫,在模具中热压成型,得到汽车电池隔热罩。
试验:
热导率测量。根据ASTM C177-13的规定,使用热导率测试仪(DRX-I-SPB,湘潭华丰仪器,中国湘潭)测量热导率。每个规格取三个样品,样品尺寸为200mm×200mm× 10mm。电炉温度为50℃。
抗压测试。按照ASTM D1621-16的规定,使用万能试验机(HT-2402,HungTaInstrument )以5mm/min的测试速度测量硬质STF/PU泡沫复合材料的抗压强度。试样尺寸为50mm×50mm×20mm。
实施例5
S1:将10g粒径为14nm的二氧化硅纳米颗粒分散在浓度为75mmol/L的400mL3-巯基丙基三甲氧基硅烷的甲苯溶液中,搅拌均匀,回流12h,离心后将沉淀物用甲苯、无水乙醇洗涤后常温下真空干燥,得到改性二氧化硅纳米颗粒;将7g改性二氧化硅纳米颗粒分散在过量无水乙醇中,一次均质化后超声处理,加入3g聚乙二醇,二次均质化超声处理,在30℃下恒温真空干燥2h,待乙醇蒸发完全,得到剪切增稠液;
S2将100g聚醚多元醇、1g去离子水和3g剪切增稠液混合均匀,得到混合物A;将混合物A和100g异氰酸酯以1000r/min速度搅拌混合,得到混合物B;当混合物B产生热量时,温度大于等于30℃时,迅速倒入放置了一层PET无纺布的模具中,并在混合物 B上放置一层PET无纺布以覆盖混合物B,固化,得到改性聚氨酯泡沫,在模具中热压成型,得到汽车电池隔热罩。
试验:
热导率测量。根据ASTM C177-13的规定,使用热导率测试仪(DRX-I-SPB,湘潭华丰仪器,中国湘潭)测量热导率。每个规格取三个样品,样品尺寸为200mm×200mm× 10mm。电炉温度为50℃。
抗压测试。按照ASTM D1621-16的规定,使用万能试验机(HT-2402,HungTaInstrument )以5mm/min的测试速度测量硬质STF/PU泡沫复合材料的抗压强度。试样尺寸为50mm×50mm×20mm。
对比例1
S1:将10g粒径为40nm的二氧化硅纳米颗粒分散在浓度为75mmol/L的400mL3-巯基丙基三甲氧基硅烷的甲苯溶液中,搅拌均匀,回流12h,离心后将沉淀物用甲苯、无水乙醇洗涤后常温下真空干燥,得到改性二氧化硅纳米颗粒;将7g改性二氧化硅纳米颗粒分散在过量无水乙醇中,一次均质化后超声处理,加入3g聚乙二醇,二次均质化超声处理,在30℃下恒温真空干燥2h,待乙醇蒸发完全,得到剪切增稠液;
S2将100g聚醚多元醇、1g去离子水和2g剪切增稠液混合均匀,得到混合物A;将混合物A和100g异氰酸酯以1000r/min速度搅拌混合,得到混合物B;当混合物B产生热量时,温度大于等于30℃时,迅速倒入放置了一层PET无纺布的模具中,并在混合物 B上放置一层PET无纺布以覆盖混合物B,固化,得到改性聚氨酯泡沫,在模具中热压成型,得到汽车电池隔热罩。
试验:
热导率测量。根据ASTM C177-13的规定,使用热导率测试仪(DRX-I-SPB,湘潭华丰仪器,中国湘潭)测量热导率。每个规格取三个样品,样品尺寸为200mm×200mm× 10mm。电炉温度为50℃。
抗压测试。按照ASTM D1621-16的规定,使用万能试验机(HT-2402,HungTaInstrument )以5mm/min的测试速度测量硬质STF/PU泡沫复合材料的抗压强度。试样尺寸为50mm×50mm×20mm。
对比例2
S1:将10g粒径为14nm的二氧化硅纳米颗粒分散在浓度为75mmol/L的400mL3-巯基丙基三甲氧基硅烷的甲苯溶液中,搅拌均匀,回流12h,离心后将沉淀物用甲苯、无水乙醇洗涤后常温下真空干燥,得到改性二氧化硅纳米颗粒;将7g改性二氧化硅纳米颗粒分散在过量无水乙醇中,一次均质化后超声处理,加入3g聚乙二醇,二次均质化超声处理,在30℃下恒温真空干燥2h,待乙醇蒸发完全,得到剪切增稠液;
S2将100g聚醚多元醇、1g去离子水和5g剪切增稠液混合均匀,得到混合物A;将混合物A和100g异氰酸酯以1000r/min速度搅拌混合,得到混合物B;当混合物B产生热量时,温度大于等于30℃时,迅速倒入放置了一层PET无纺布的模具中,并在混合物 B上放置一层PET无纺布以覆盖混合物B,固化,得到改性聚氨酯泡沫,在模具中热压成型,得到汽车电池隔热罩。
试验:
热导率测量。根据ASTM C177-13的规定,使用热导率测试仪(DRX-I-SPB,湘潭华丰仪器,中国湘潭)测量热导率。每个规格取三个样品,样品尺寸为200mm×200mm× 10mm。电炉温度为50℃。
抗压测试。按照ASTM D1621-16的规定,使用万能试验机(HT-2402,HungTaInstrument )以5mm/min的测试速度测量硬质STF/PU泡沫复合材料的抗压强度。试样尺寸为50mm×50mm×20mm。
对比例3
S1:将7g粒径为14nm的二氧化硅纳米颗粒分散在过量无水乙醇中,一次均质化后超声处理,加入3g聚乙二醇,二次均质化超声处理,在30℃下恒温真空干燥2h,待乙醇蒸发完全,得到剪切增稠液;
S2将100g聚醚多元醇、1g去离子水和2g剪切增稠液混合均匀,得到混合物A;将混合物A和100g异氰酸酯以1000r/min速度搅拌混合,得到混合物B;当混合物B产生热量时,温度大于等于30℃时,迅速倒入放置了一层PET无纺布的模具中,并在混合物 B上放置一层PET无纺布以覆盖混合物B,固化,得到改性聚氨酯泡沫,在模具中热压成型,得到汽车电池隔热罩。
试验:
热导率测量。根据ASTM C177-13的规定,使用热导率测试仪(DRX-I-SPB,湘潭华丰仪器,中国湘潭)测量热导率。每个规格取三个样品,样品尺寸为200mm×200mm× 10mm。电炉温度为50℃。
抗压测试。按照ASTM D1621-16的规定,使用万能试验机(HT-2402,HungTaInstrument )以5mm/min的测试速度测量硬质STF/PU泡沫复合材料的抗压强度。试样尺寸为50mm×50mm×20mm。
对比例4
S2将100g聚醚多元醇、1g去离子水混合均匀,得到混合物A;将混合物A和100g 异氰酸酯以1000r/min速度搅拌混合,得到混合物B;当混合物B产生热量时,温度大于等于30℃时,迅速倒入放置了一层PET无纺布的模具中,并在混合物B上放置一层PET 无纺布以覆盖混合物B,固化,得到改性聚氨酯泡沫,在模具中热压成型,得到汽车电池隔热罩。
试验:
热导率测量。根据ASTM C177-13的规定,使用热导率测试仪(DRX-I-SPB,湘潭华丰仪器,中国湘潭)测量热导率。每个规格取三个样品,样品尺寸为200mm×200mm× 10mm。电炉温度为50℃。
抗压测试。按照ASTM D1621-16的规定,使用万能试验机(HT-2402,HungTaInstrument )以5mm/min的测试速度测量硬质STF/PU泡沫复合材料的抗压强度。试样尺寸为50mm×50mm×20mm。
Figure SMS_1
Figure SMS_2
结论:
实施例1~5可以看出,当二氧化硅纳米颗粒粒径为14nm,剪切增稠液加入量为改性聚氨酯质量的1.5wt%时,制备的电池隔热罩具有较强的隔热性能,较高的抗压强度。
对比例1和对比例2中,过大的二氧化硅粒径会阻碍剪切增稠液的均匀分散,导致其发生团聚现象;而过多的剪切增稠液容易在发泡过程中发生团聚现象,两者均会使得泡孔形态不均匀且被破坏,内部受阻空气增加了复合材料的导热系数,降低了复合材料的隔热性能。
对比例3中,没有对二氧化硅颗粒改性,制备的电池隔热罩抗压强度性能较差,其原因在于对纳米二氧化硅进行表面硫醇改性,由改性后的纳米二氧化硅制备的剪切增稠液中亲水性聚乙二醇和疏水性硫醇改性二氧化硅颗粒之间的吸引力减小,同时表面硫醇基的增多使得二氧化硅表面的羧基减少,使得临界剪切速率增加;临界剪切速率的增加使得有聚氨酯泡沫材料制备的汽车用电池隔热罩的稳定性增强,能够吸收更多的能量,不易发生形变,进一性步增强隔热罩耐冲击。
对比例4中,在发泡过程中没有加入剪切增稠液,使得发泡材料的泡孔较少,且泡孔孔径较大,分布不均匀,抗压强度较差,隔热性能也较差。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种汽车用电池隔热罩的加工工艺,其特征在于:
S1:将二氧化硅纳米颗粒分散在3-巯基丙基三甲氧基硅烷的甲苯溶液中,搅拌,回流,离心,用甲苯和无水乙醇洗涤后真空干燥,得到改性二氧化硅纳米颗粒;将改性二氧化硅纳米颗粒分散在无水乙醇中,一次均质化后超声处理,加入聚乙二醇搅拌,二次均质化超声处理,恒温真空干燥,得到剪切增稠液;
S2:将聚醚多元醇、去离子水和剪切增稠液混合均匀,得到混合物A;将混合物A和异氰酸酯搅拌混合,得到混合物B;当混合物B产生热量时,温度大于等于30℃时,迅速倒入放置了一层PET无纺布的模具中,并在混合物B上放置一层PET无纺布以覆盖混合物B,固化,得到改性聚氨酯泡沫,在模具中热压成型,得到汽车电池隔热罩;
二氧化硅纳米颗粒的粒径为14~16nm;
步骤S2中,剪切增稠液的质量为聚醚多元醇质量的2~3wt%。
2.根据权利要求1所述的一种汽车用电池隔热罩的加工工艺,其特征在于:步骤S1中,3-巯基丙基三甲氧基硅烷的甲苯溶液中3-巯基丙基三甲氧基硅烷的浓度为75~250mmol/L。
3.根据权利要求1所述的一种汽车用电池隔热罩的加工工艺,其特征在于:步骤S1中,每1g二氧化硅纳米颗粒分散在40mL3-巯基丙基三甲氧基硅烷的甲苯溶液;回流时间12h;恒温真空干燥温度为30~40℃,恒温真空干燥时间为2~3h。
4.根据权利要求1所述的一种汽车用电池隔热罩的加工工艺,其特征在于:步骤S1中,剪切增稠液中按质量百分比计,改性二氧化硅纳米颗粒占70%,聚乙二醇占30%。
5.根据权利要求1所述的一种汽车用电池隔热罩的加工工艺,其特征在于:步骤S2中,聚醚多元醇分子量为6000~8000,异氰酸酯的比重为1.25,PET无纺布的密度为200g/m2。
6.根据权利要求1所述的一种汽车用电池隔热罩的加工工艺,其特征在于:步骤S2中,每加入100g聚醚多元醇,加入1g去离子水和100g异氰酸酯,搅拌混合速度为1000~1200r/min。
7.根据权利要求1~6任一项所述的一种汽车用电池隔热罩的加工工艺制备的汽车用电池隔热罩。
CN202210685213.7A 2022-06-17 2022-06-17 一种汽车用电池隔热罩及其加工工艺 Active CN115179636B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210685213.7A CN115179636B (zh) 2022-06-17 2022-06-17 一种汽车用电池隔热罩及其加工工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210685213.7A CN115179636B (zh) 2022-06-17 2022-06-17 一种汽车用电池隔热罩及其加工工艺

Publications (2)

Publication Number Publication Date
CN115179636A CN115179636A (zh) 2022-10-14
CN115179636B true CN115179636B (zh) 2023-04-18

Family

ID=83513149

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210685213.7A Active CN115179636B (zh) 2022-06-17 2022-06-17 一种汽车用电池隔热罩及其加工工艺

Country Status (1)

Country Link
CN (1) CN115179636B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116656117B (zh) * 2023-07-11 2023-11-14 扬州市天宇鞋业有限公司 一种安全鞋护足趾智能弹性体包头用材及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101585954B (zh) * 2008-05-22 2011-05-04 中国科学院过程工程研究所 一种二氧化硅中空球/聚合物复合隔热材料及其制备方法
CN105950110A (zh) * 2016-05-06 2016-09-21 上海核工程研究设计院 一种基于二氧化硅固体基材的新型剪切增稠溶液
CN107502288A (zh) * 2017-08-28 2017-12-22 湖南沃美新材料科技有限公司 一种纳米二氧化硅剪切增稠液体的制备方法
CN113026364B (zh) * 2021-03-17 2022-03-11 上海交通大学 改性纳米二氧化硅剪切增稠防护液及其制备方法和应用

Also Published As

Publication number Publication date
CN115179636A (zh) 2022-10-14

Similar Documents

Publication Publication Date Title
Gao et al. Preparation and properties of hollow glass bead filled silicone rubber foams with low thermal conductivity
CN115179636B (zh) 一种汽车用电池隔热罩及其加工工艺
CN105331112A (zh) 一种石墨烯-硅橡胶复合泡沫材料及其制备方法
CN113801361B (zh) 一种硅橡胶泡沫材料及其制备方法
CN114644795B (zh) 吸波材料及其制备方法和应用
CN114274623B (zh) 一种耐高温吸波板及其制备方法
Xu et al. Effect of surface modification of montmorillonite on the properties of rigid polyurethane foam composites
CN109294238B (zh) 一种轻质高弹耐烧蚀隔热材料及其制备方法
CN102010517A (zh) 一种超临界二氧化碳技术制备硅橡胶泡沫材料的方法
CN108129847A (zh) 一种轻量化导热片材及其制备方法和应用
Yang et al. Natural rubber latex/MXene foam with robust and multifunctional properties
Xiong et al. Mechanical and flame‐resistance properties of polyurethane‐imide foams with different‐sized expandable graphite
CN114015110A (zh) 一种低收缩率酚醛气凝胶及其制备方法
CN111574683B (zh) 一种高承载记忆棉及其制备方法与应用
Li et al. Influence of hollow carbon microspheres of micro and nano-scale on the physical and mechanical properties of epoxy syntactic foams
CN108384120B (zh) 一种低介电常数高分子基复合材料的制备工艺
CN115304920A (zh) 一种有机硅发泡材料及其制备方法和应用
Feng et al. The effects of SiO2/PEG suspension on mechanical properties of rigid polyurethane foams
CN113527733A (zh) 液态金属纤维/弹性体柔性复合材料及其制备方法、应用
CN113402889A (zh) 一种持久耐用的液体硅胶的制备方法
Zhou et al. Study on the foaming behavior of density‐controllable epoxy resin composite foam under negative pressure environment
CN118027673B (zh) 一种具有低频磁场屏蔽功能的硅橡胶及其制备方法
CN114790288B (zh) 一种高热稳定性聚酰亚胺复合泡沫材料及其制备方法和应用
CN116462889A (zh) 一种防辐射石墨烯天然橡胶复合发泡材料及其制备方法
CN113429633B (zh) 一种橡胶硫化活性剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant