CN115161319B - 一种响应潜艇金属Ni2+离子的启动子元件及其制备的电化学信号输出传感器和应用 - Google Patents

一种响应潜艇金属Ni2+离子的启动子元件及其制备的电化学信号输出传感器和应用 Download PDF

Info

Publication number
CN115161319B
CN115161319B CN202210638979.XA CN202210638979A CN115161319B CN 115161319 B CN115161319 B CN 115161319B CN 202210638979 A CN202210638979 A CN 202210638979A CN 115161319 B CN115161319 B CN 115161319B
Authority
CN
China
Prior art keywords
promoter element
metal
ions
signal output
submarine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210638979.XA
Other languages
English (en)
Other versions
CN115161319A (zh
Inventor
杨建明
王兆宝
马冉
汤若昊
李美洁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Agricultural University
Original Assignee
Qingdao Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Agricultural University filed Critical Qingdao Agricultural University
Priority to CN202210638979.XA priority Critical patent/CN115161319B/zh
Publication of CN115161319A publication Critical patent/CN115161319A/zh
Application granted granted Critical
Publication of CN115161319B publication Critical patent/CN115161319B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/25Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving enzymes not classifiable in groups C12Q1/26 - C12Q1/66
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/32Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving dehydrogenase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/01Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
    • C12Y102/01002Formate dehydrogenase (1.2.1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y603/00Ligases forming carbon-nitrogen bonds (6.3)
    • C12Y603/01Acid-ammonia (or amine)ligases (amide synthases)(6.3.1)
    • C12Y603/01005NAD+ synthase (6.3.1.5)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/9015Ligases (6)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/902Oxidoreductases (1.)
    • G01N2333/90203Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种响应潜艇金属Ni2+离子的启动子元件及其制备的电化学信号输出传感器和应用。所述启动子元件的核苷酸序列如SEQ ID NO.2所示或者如SEQ ID NO.3所示,其具有显著提高金属Ni2+检测灵敏度的能力。本发明还利用所述启动子元件转录表达NAD+合成酶和甲酸脱氢酶基因制备得到了电化学信号输出传感器,其通过提高胞内电子池(NAD+)总量和NADH/NAD+的比值,实现了感应潜艇金属Ni2+离子后电化学信号的输出,为筛选高效诱导型启动子及检测方式提供了新的思路和方法,并提高了金属Ni2+检测的准确性、安全性和效率。

Description

一种响应潜艇金属Ni2+离子的启动子元件及其制备的电化学 信号输出传感器和应用
技术领域
本发明属于分子生物学技术领域,具体涉及一种响应潜艇金属Ni2+离子的启动子元件及其制备的电化学信号输出传感器和应用。
背景技术
潜艇由于其隐蔽性高、打击力强的特点,已经成为现代海军的重要组成部分。同时,潜艇作为海洋军事侦查的重要力量,对敌方能够造成巨大威胁。因此,如何实现我国海岸线周边活动潜艇的高效准确探测,是我国海洋防务重点关注的领域。当前潜艇探测方法主要分为声呐探潜和非声探潜,其中非声探潜包括红外、电磁信号检测等等。然而,这些传统的探潜方式存在易暴露、干扰大等不同程度的局限性。近年来,随着现代微生物学及分子生物学技术的快速发展,微生物传感器技术开始受到广泛关注。微生物传感器可以感应环境中各类因素的细微变化,并向外界输出易于被检测的生物信号。因此,基于潜艇舰体及循环水管道释放的金属离子检测的微生物传感器的开发具有重要前景。通过对潜艇合金组成及海水中金属离子分析发现,潜艇合金中含金属镍,而海水中几乎不含该金属元素,因此金属Ni2+可作为响应潜艇金属离子的生物传感器的诱导物。目前,开发用于检测潜艇金属离子的生物传感器的主要挑战是高效感应元件的筛选。
沼泽红假单胞菌(Rhodopseudomonas palustris)是一种紫色非硫细菌(purplenon-sulfur bacteria,PNSB),在自然界中分布很广泛,主要分布在光照充足的厌氧水环境中,它们既能在厌氧光照条件下以低级脂肪酸、多种二羧酸、醇类、糖类、芳香族化合物等低分子有机物作为光合作用的电子供体进行光能异养生长,又能在黑暗有氧条件下以有机物为呼吸基质进行好氧异养生长。同时,该假单胞菌属在生长时需要金属Ni元素作为微量元素,且其基因组中存在金属Ni相关的编码基因。另外,在海水中传统光学信号的传输受到很多因素的干扰,所以通过荧光信号等建立的传感器具有很大的局限性。而结合微生物生理代谢的特点,利用感应金属Ni2+离子的启动子元件实现NAD+合成酶和甲酸脱氢酶基因的响应表达,提高胞内电子池(NAD+)总量和NADH/NAD+的比值,通过构建电化学装置实现感应金属Ni2+离子后电化学信号的输出,为筛选探潜的高效微生物传感器提供了新的思路和方法。
发明内容
本发明的目的在于提供一种响应潜艇金属Ni2+离子的启动子元件及其制备的电化学信号输出传感器和应用。本发明基于转录组学筛选到高效响应潜艇金属Ni2+离子的启动子元件,并利用该启动子元件与NAD+合成酶、甲酸脱氢酶基因制备得到电化学信号输出传感器,通过提高胞内电子池(NAD+)总量和NADH/NAD+的比值,实现了感应潜艇金属Ni2+离子后电化学信号的高输出。
为实现上述发明目的,本发明采用以下技术方案予以实现:
本发明提供了一种响应潜艇金属Ni2+离子的启动子元件,所述启动子元件的核苷酸序列如SEQ ID NO.2所示或者如SEQ ID NO.3所示。
进一步的,所述启动子元件来源于沼泽红假单胞菌,是利用转录组学筛选得到的。
进一步的,利用转录组学筛选到的核苷酸序列如SEQ ID NO.2所示的启动子元件P0724能够以高灵敏度响应潜艇金属Ni2+离子。
进一步的,由所述启动子元件P0724经定向进化优化后,得到的核苷酸序列如SEQID NO.3所示的启动子元件P0724-1对潜艇金属Ni2+离子的响应灵敏度显著提高。
本发明还提供了一种包含所述的启动子元件的电化学信号输出传感器,所述电化学信号输出传感器中包括响应潜艇金属Ni2+离子的启动子元件、NAD+合成酶基因和甲酸脱氢酶基因。
进一步的,所述电化学信号输出传感器中同时包含响应潜艇金属Ni2+离子的启动子元件、NAD+合成酶基因和甲酸脱氢酶基因。
进一步的,所述NAD+合成酶基因的核苷酸序列如SEQ ID NO.4所示;所述甲酸脱氢酶基因的核苷酸序列如SEQ ID NO.5所示。
进一步的,所述NAD+合成酶基因来源于Rhodopseudomonas palustris;所述甲酸脱氢酶基因来源于Candida boidinii。
本发明还提供了所述的电化学信号输出传感器的制备方法,包括以下步骤:
(1)利用金属Ni2+溶液刺激沼泽红假单胞菌,提取刺激后的沼泽红假单胞菌的RNA进行转录组学分析,找到上调基因;
(2)以沼泽红假单胞菌的基因组为模板,扩增所述上调基因,得到待验证启动子;
(3)将所述待验证启动子与荧光报告基因进行连接,并利用金属Ni2+溶液进行荧光检测验证,筛选得到能够响应潜艇金属Ni2+离子的启动子元件;
(4)将所述启动子元件与NAD+合成酶基因、甲酸脱氢酶基因分别连接,克隆至表达载体pBBR1MCS-5中,得到含有启动子元件的重组表达质粒pBBR1MCS-5-P-NADs-fdh-P;
(5)将所述重组表达质粒pBBR1MCS-5-P-NADs-fdh-P通过接合转移的方式接合至沼泽红假单胞菌中,得到重组工程菌Rpal(pBBR1MCS-5-P-NADs-fdh-P),即为电化学信号输出传感器。
进一步的,所述荧光报告基因为绿色荧光蛋白基因eGFP,其核苷酸序列如SEQ IDNO.1所示。
进一步的,所述重组工程菌Rpal(pBBR1MCS-5-P-NADs-fdh-P)能够在感应金属Ni2+离子后诱导表达NAD+合成酶和甲酸脱氢酶,实现胞内电子池(NAD+)总量和NADH/NAD+比值的提高。
本发明还提供了所述的启动子元件在用于制备检测金属Ni2+离子的表达盒、试剂盒或制剂中的应用。
进一步的,检测所述金属Ni2+离子的浓度不低于0.1μmol/L。
本发明还提供了所述的启动子元件或者所述的电化学信号输出传感器在用于制备检测潜艇金属的电化学装置中的应用。
进一步的,所述电化学装置是利用碳毡、Ag/AgCl校正电极与含有启动子元件的工程菌或者电化学信号输出传感器共同组成的。
进一步的,当所述电化学装置检测到潜艇金属Ni2+离子时,其电流密度明显增加,导致电化学信号输出明显提高。
进一步的,所述潜艇金属为Ni2+离子,其浓度不低于0.1μmol/L。
本发明与现有技术相比,具有以下优点和有益效果:
本发明通过用金属Ni2+离子刺激沼泽红假单胞菌(Rhodopseudomonaspalustris),分析转录组学变化,筛选得到响应金属Ni2+离子的启动子元件,并通过定向进化进一步提高其检测灵敏度,得到的启动子元件P0724-1具有显著提高潜艇金属Ni2+检测灵敏度的能力。本发明的筛选方法简单,使用方便,安全性高。本发明的方法颠覆了传统检测技术,能够通过金属Ni2+刺激后沼泽红假单胞菌转录组学的变化,有目的性和选择性的从沼泽红假单胞菌基因组中筛选可受金属Ni2+诱导感应元件。
本发明进一步将金属Ni2+诱导感应的元件启动子与NAD+合成酶基因和甲酸脱氢酶基因连接表达,实现胞内电子池(NAD+)总量和NADH/NAD+比值的提高,可通过电化学装置实现电化学信号的输出。这不仅为获得高效诱导型启动子和构建高效探潜微生物传感器提供了新的思路和方法,同时筛选出的启动子元件可用于生态系统中的环境污染物的检测,高效微生物电化学传感器的开发对军事、反恐和环保等都有重要的意义。
附图说明
图1为筛选出的P0724新型启动子酶标仪检测结果。
图2为优化后的P0724-1新型启动子酶标仪检测结果。
图3为搭建的沼泽红假单胞菌三电极体系电化学装置。
图4为工程菌Rpal(pBBR1MCS-5-P-NADs-fdh-P)感应有无金属Ni2+离子后电化学信号输出图。
具体实施方式
以下结合具体实施例对本发明的技术方案做进一步详细的说明。
实施例1:高效感应金属Ni2+离子的启动子元件的筛选及定向进化
(1)用终浓度为1μmol/L的金属Ni2+溶液刺激沼泽红假单胞菌后,以等体积水刺激作为阴性对照,分别提取RNA,进行高通量转录组测序分析。
(2)将转录差异表达基因的预测启动子区域分别与绿色荧光蛋白基因eGFP(如SEQID NO.1所示)连接后克隆到pACYCDuet-1质粒,验证正确后,设置金属Ni2+溶液诱导后进行荧光检测,用酶标仪(Biotek)恒温30℃实时监测菌株荧光强度,每20min进行一次检测,共监测12h。
利用转录组学数据初筛时共构建筛选了76个启动子,其中P0724启动子在不同浓度金属Ni2+溶液中有较强的响应,并且随着溶液中金属Ni2+浓度的升高,荧光值也逐渐增强(图1),其核苷酸序列如SEQ ID NO.2所示。表明本发明通过一定浓度金属Ni2+溶液刺激沼泽红假单胞菌进行转录组学研究的方法,筛选出了一个能够感应金属Ni2+的启动子元件P0724
(3)利用易错PCR扩增P0724启动子片段,连接eGFP筛选载体转化后,对共计约6000个转化子进行后续筛选,结果经过定向进化后筛选获得感应效果更好的P0724-1启动子,其酶标仪检测结果如图2所示,核苷酸序列如SEQ ID NO.3所示,响应金属Ni2+的荧光强度明显增强,且在检测最低浓度0.1μmol/L时,也出现较为明显的荧光信号,相比于未定向进化前的启动子,检测限明显提高。
实施例2:工程菌Rpal(pBBR1MCS-5-P-NADs-fdh-P)的构建
(1)以Rhodopseudomonas palustris基因组为模板,分别PCR扩增获得P0724-1启动子片段和NADs基因片段(如SEQ ID No.4所示),以Candida boidinii基因组为模板,PCR扩增获得fdh基因片段(如SEQ ID No.5所示),验证回收后,通过overlap PCR获得P0724-1-NADs和P0724-1-fdh融合片段,进一步overlap PCR后获得P0724-1-NADs-fdh-P0724-1片段。
①以P0724-1启动子为模板,使用引物F1(GGATCCCCCGGGCTGCAGGAATTCCGGCAGCATCGTGGTCGGGATGA)和R1(CTTCGGTCATGGCGGTCTCCGGCCGGTGAGCA),扩增获得P0724-1-1片段;
②以P0724-1启动子为模板,使用引物F2(AACGATCTTCATGGCGGTCTCCGGCCGGTGAGCA)和R2(ACTAAAGGGAACAAAAGCTGGGTACCCGGCAGCATCGTGGTCGGGATGA),扩增获得P0724-1-2片段;
③以Rhodopseudomonas palustris基因组为模板,使用引物F11(GAGACCGCCATGACCGAAGCCGCCCGCCTGA)和R11(CGATAAGAAATAACTACCCCTCGAACGCCTCGCT),扩增获得NADs基因片段;
④以Candida boidinii基因组为模板,使用引物F22(CGAGGGGTAGTTATTTCTTATCGTGTTTACCG)和R22(AGACCGCCATGAAGATCGTTTTAGTCTTAT),扩增获得fdh片段;
⑤以P0724-1-1片段和NADs基因片段为模板,使用引物F1(GGATCCCCCGGGCTGCAGGAATTCCGGCAGCATCGTGGTCGGGATGA)和R11(CGATAAGAAATAACTACCCCTCGAACGCCTCGCT),overlapPCR融合后扩增获得P0724-1-NADs片段;
⑥以P0724-1-2片段和fdh片段为模板,使用引物F22(CGAGGGGTAGTTATTTCTTATCGTGTTTACCG)和R2(ACTAAAGGGAACAAAAGCTGGGTACCCGGCAGCATCGTGGTCGGGATGA),overlap PCR融合后扩增获得P0724-1-fdh片段;
⑦以P0724-1-NADs片段和P0724-1-fdh片段为模板,使用引物F1(GGATCCCCCGGGCTGCAGGAATTCCGGCAGCATCGTGGTCGGGATGA)和R2(ACTAAAGGGAACAAAAGCTGGGTACCCGGCAGCATCGTGGTCGGGATGA),overlap PCR融合后获得P0724-1-NADs-fdh-P0724-1片段。
(2)使用无缝克隆技术将P0724-1-NADs-fdh-P0724-1片段与线性化的pBBR1MCS-5质粒片段进行in-fusion,融合体系转化至E.coli S17-1感受态细胞。
(3)进行菌落PCR验证,进一步测序获得连接正确的E.coli S17-1/pBBR1MCS-5-P-NADs-fdh-P菌株。
(4)质粒pBBR1MCS-5-P-NADs-fdh-P接合转移至Rpal菌中,详细步骤如下:
①沼泽红假单胞菌CGA009于PM(乙酸钠)液体培养基中30℃光照静置培养,重组菌株(E.coli S17-1/pBBR1MCS-5-P-NADs-fdh-P)于带有Gm抗生素的10ml LB液体培养基中,37℃,200rpm,过夜活化。
②待CGA009生长至OD660=0.4时,1%转接重组菌株于液体LB中,37℃,200rpm,培养3h。
③于超净台中,取2ml CGA009菌液和1ml重组菌菌液于1.5ml EP管中,4℃,10000rpm,离心1min;完全去除上清,分别用1ml无菌PM液体培养基,冲悬菌体,4℃,10000rpm,离心1min。重复1次。
④完全去除上清,CGA009与重组菌株中分别加入100μl和200μl无菌PM液体培养基冲悬。
⑤吸取100μl冲悬重组菌菌液,加入至CGA009菌液中,混匀;吸取所有混合菌液,缓慢的滴至CA平板的正中央。
⑥在超净台中静置3h以上至菌液完全干后封口,30℃暗培养箱中,正置24h后,倒置36h培养。
⑦超净台中,用接菌环挑取CA平板菌落边缘隆起的菌体,三区画线至PMS-Gm平板,倒置于30℃暗培养箱中培养。
⑧出现单菌落后,挑取3个单菌落,小三区画线至PMS-10%蔗糖平板,倒置于30℃暗培养箱中培养。
⑨在PMS-10%蔗糖平板上用10μl枪头挑取52个单菌落,分别画至PMS-Gm-10%蔗糖平板和PMS-10%蔗糖平板,倒置于30℃暗培养箱中培养。
⑩出现单菌落后,进行菌落PCR验证,进一步测序后,获得工程菌Rpal(pBBR1MCS-5-P-NADs-fdh-P)。
实施例3:工程菌Rpal(pBBR1MCS-5-P-NADs-fdh-P)三电极体系化学装置的构建(图3)
(1)准备3cm×4cm、3cm×3cm的碳毡和Ag/AgCl校正电极分别作为对电极、工作电极和参比电极;配置20mM的碳酸氢钠溶液作为电子受体;配置饱和KCl琼脂作为盐桥;准备灭菌的50mL离心管及不加电子供体的培养基。
(2)100mL琼脂微波炉加热,快速加入30g KCl并搅拌,在凝固之前,用胶头滴管吸入饱和KCl琼脂,待凝固之后在滴管上部加入饱和KCl溶液,以连接参比电极;
(3)用超纯水洗净碳毡,将碳毡使用丙酮浸泡并超声30min,重复两次后浸泡24h;随后用1mol/L HCl浸泡超声30min,重复两次后再浸泡24h;最后用超纯水超声30min,重复两次,浸泡24h后用超纯水洗净,放置烘箱烘干。
(4)将制备好的碳毡电极,用钛丝引入到100mL蓝盖瓶反应器中,工作电极要被对电极充分覆盖,以保证工作电极充分利用以及唯一变量性。
(5)待转接的工程菌Rpal(pBBR1MCS-5-P-NADs-fdh-P)培养至OD=1.0,5000×g离心5min收集菌体,使用不加电子供体的培养基洗涤重悬,将50mL的菌液加入到50mL不含电子供体的血清瓶培养基中,放入光照培养箱中,完成该工程菌三电极体系电化学装置的构建。
实施例4:工程菌感应有无金属Ni2+离子后电化学装置的检测及信号输出
(1)三电极体系中绿色接工作电极,红色接对电极,白色是参比电极。
(2)参数设置:Sample Interval(sec)为60s;Sampling Time为1e+007;QuietTime(sec)为1000s;Scales during Run为1;Sensitivity(A/V)为1e-003。
(3)装置中分别设置无金属Ni2+离子和0.1μmol/L金属Ni2+离子,启动电化学装置后,记录i-t曲线。
如图4所示,无金属Ni2+离子时,电化学装置记录的最高电流密度约为1-2μA/cm2,而0.1μmol/L金属Ni2+离子响应后,出现明显的电化学信号,最高电流密度达到近35μA/cm2,表明金属探测元件响应潜艇金属Ni2+离子后,通过NAD+合成酶和甲酸脱氢酶的基因表达增强,实现胞内电子池(NAD+)总量和NADH/NAD+的比值得到提升,最终通过电化学装置实现了电化学信号的增强。
以上实施例仅用以说明本发明的技术方案,而非对其进行限制;尽管参照前述实施例对本发明进行了详细的说明,对于本领域的普通技术人员来说,依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明所要求保护的技术方案的精神和范围。
序列表
<110> 青岛农业大学
<120> 一种响应潜艇金属Ni2+离子的启动子元件及其制备的电化学信号输出传感器和应用
<141> 2022-06-08
<160> 13
<170> SIPOSequenceListing 1.0
<210> 1
<211> 717
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
atgagtaaag gagaagaact tttcactgga gttgtcccaa ttcttgttga attagatggt 60
gatgttaatg ggcacaaatt ttctgtcagt ggagagggtg aaggtgatgc aacatacgga 120
aaacttaccc ttaaatttat ttgcactact ggaaaactac ctgttccatg gccaacactt 180
gtcactactt tcgcgtatgg tcttcaatgc tttgcgagat acccagatca tatgaaacag 240
catgactttt tcaagagtgc catgcccgaa ggttatgtac aggaaagaac tatatttttc 300
aaagatgacg ggaactacaa gacacgtgct gaagtcaagt ttgaaggtga tacccttgtt 360
aatagaatcg agttaaaagg tattgatttt aaagaagatg gaaacattct tggacacaaa 420
ttggaataca actataactc acacaatgta tacatcatgg cagacaaaca aaagaatgga 480
atcaaagtta acttcaaaat tagacacaac attgaagatg gaagcgttca actagcagac 540
cattatcaac aaaatactcc aattggcgat ggccctgtcc ttttaccaga caaccattac 600
ctgtccacac aatctgccct ttcgaaagat cccaacgaaa agagagacca catggtcctt 660
cttgagtttg taacagctgc tgggattacc catggtatgg atgaattgta caaataa 717
<210> 2
<211> 450
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
cggcagcatc gtggtcggga tgacgctgta tggcgagccg gccagcgggc tccgggtgtt 60
gtgcctgtcg atgatcgtcg ccggcatgat cgggctgaag ctcagcactc ccgcctaggc 120
agcccaacca aggcggcgat tgacaaagca ggcccgcttc catttgatcg cgcccgttca 180
ggtgtgccgg gaatcgtccg gcacagggaa gccggtgcgg gcccaagctt atggccgcaa 240
acccaaatcc ggcgctgcgc ccgcaactgt gagcggtgag cgatccttca atcggccact 300
gggcagcact tgcccgggaa ggcgaaggat tgcgacgacc cgtgagccag gagaccggcc 360
tgagtacgtc atcttccacc gtgcggcgcg cgcggctgga gcggtccgcc gcacaggtga 420
caggatgctg ctcaccggcc ggagaccgcc 450
<210> 3
<211> 450
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
cggcagcatc gtggtcggga tgacgctgta tggcgagccg gccagagggc tccgggtgtt 60
gtgcctgtcg atgatcgtcg ccggcatgat ggggctgaag ctcagctctc cggcctaggc 120
agcccaaccc aggcggcgat tgacaaagca ggcccgctac catatgatcg cgccggttca 180
ggtgtgccgg gaatcgtcag gcacagggaa gccggtgcgg gcccaagctc atggctgcaa 240
acccaaatcc ggcgctgcac ccgcaactgt gagcggtgag ggatccttca atcggccact 300
gggcagcact tgaccgggaa ggtgaaggat tgcgacgact cgtgagccag gagaccggcc 360
tgtgtacgtc atcttccacc gtgcggcgcg cgcggctgga gcggtccgcc gcacgggtga 420
caggatgctg ctcaccggcc ggagaccgcc 450
<210> 4
<211> 1755
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
atgaccgaag ccgcccgcct gacgatctcg ctcgcccagc tcaacccgac ggtcggcgac 60
attgccggca atgccgacaa ggcgcgtgcg gcgcgccgcc gcgcggcggc cgatggcgcc 120
gatctcgtcg tctatccgga gttgttcatc gccggctacc cgccggaaga tctggtgctg 180
aagccggcat tccaggcagc ctgccgtgcc gcgatcgagg acctggcgcg cgaaaccgcc 240
gacggcggcc cggcgatgct gatcggctcg ccgtgggtcg ataacggcaa gctgtacaat 300
gcctgcgcgc tgctcgacgg cggccggatc gcggcgatcc gccataaggt caatctgccg 360
aactacggcg tgttcgatga aaagcgggtg ttcgcccgcg gcccggtgtc gggtccggtg 420
acgatccgtg gcgtccggat cggcgtgccg atctgcgagg acacctggct cgaagagtcc 480
gaagactacg agaacgtggt ggagtgcctg gccgaaaccg gcgccgagct tctggtcgta 540
ccgaacggct cgccttacgc gcgcggcaag aacgacatgc ggatgtcggt gtcggtggcg 600
cgggtcaccg agagcgatct gccgctggtc tatgtcaatc aggtcggcgg tcaggacgaa 660
ctggtgttcg acggcgcgtc gttcgttctc aacgccgatc gcacattggc ggcgcagctg 720
cccggcttcg tcgagagcgt caccacgctg agcttcgtca agggcgcggc gggctggcgc 780
tgcgacggcc cggtcgcacc ggtgatcgaa ggcgacgagg cggactacgc agcctgcgtg 840
ctcggcttgc gcgactatgt ccgcaagaac ggcttccccg gcgtgctgct cggcatctcc 900
ggcggcatcg actcggcgct gtgcgcggcg atcgcggtcg acgcactcgg tgccgacaag 960
gttcgcggcg tgatgctgcc gttccgctac accgcgcaga tctcgctcga cgatgccggc 1020
cgcctcgcga gcgcactcgg cttcggctac gaggtgctgc cgatcgcgca ggctgtcgaa 1080
ggcttcgagg cgattctggc gaagccgttc gcggggctgg agcgcgacat caccgaggag 1140
aacctgcagg cgcgcacccg cggcacgctg ctgatggcga tctccaacaa gaccggcgcg 1200
atggtggtga ccaccggcaa caagtcggag atgagcgtcg gctacgccac gctgtacggc 1260
gacatgaacg gcggcttcaa cccgatcaag gacatctaca agacgcaggt gttccggttg 1320
tcgtccttgc gcaatcgctg gaagccggac gacgcgctcg gcccggacgg cgaggtgatc 1380
cccgaaagca tcatcatccg cccgccgacc gcggagctgc gcgagaacca gaccgaccag 1440
gattcgctgc cgccctacga cgtgctcgat gccatcctcg aacggctggt cgaacgcgag 1500
gagccgctgg cgagtattgt cgccgacggc ttcgacaagg acaccgtcgt ccgcatcgac 1560
cgcctcctga acatcgccga atacaagcgc cgccaggccg cgcccggcgt caaagtcacc 1620
cgcaaaaact tcggccgcga ccgccgctac cccatcacca accgttttcg cgacaaagcg 1680
gaagtactgc cggcgccgga cgagtctctg gtgacgaagg ctgggcgggc gtcgagcgag 1740
gcgttcgagg ggtag 1755
<210> 5
<211> 1095
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
atgaagatcg ttttagtctt atatgatgct ggtaagcacg ctgctgatga agaaaaatta 60
tatggttgta ctgaaaataa attaggtatt gctaattggt taaaagatca aggtcatgaa 120
ctaattacta cttctgataa agaaggtgaa acaagtgaat tggataaaca tatcccagat 180
gctgatatta tcatcaccac tcctttccat cctgcttata tcactaagga aagacttgac 240
aaggctaaga acttaaaatt agtcgttgtc gctggtgttg gttctgatca cattgattta 300
gattatatta atcaaacagg taagaaaatc tcagtcttgg aagttacagg ttctaatgtt 360
gtctctgttg ctgaacacgt tgtcatgacc atgcttgtct tggttagaaa tttcgttcca 420
gcacatgaac aaattattaa ccacgattgg gaggttgctg ctatcgctaa ggatgcttac 480
gatatcgaag gtaaaactat tgctaccatt ggtgctggta gaattggtta cagagtcttg 540
gaaagattac tcccttttaa tccaaaagaa ttattatact acgattatca agctttacca 600
aaagaagctg aagaaaaagt tggtgctaga agagttgaaa atattgaaga attagttgct 660
caagctgata tcgttacagt taatgctcca ttacacgcag gtacaaaagg tttaattaat 720
aaggaattat tatctaaatt taaaaaaggt gcttggttag tcaataccgc aagaggtgct 780
atttgtgttg ctgaagatgt tgcagcagct ttagaatctg gtcaattaag aggttacggt 840
ggtgatgttt ggttcccaca accagctcca aaggatcacc catggagaga tatgagaaat 900
aaatatggtg ctggtaatgc catgactcct cactactctg gtactacttt agatgctcaa 960
acaagatacg ctgaaggtac taaaaatatc ttggaatcat tctttactgg taaatttgat 1020
tacagaccac aagatattat cttattaaat ggtgaatacg ttactaaagc ttacggtaaa 1080
cacgataaga aataa 1095
<210> 6
<211> 47
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
ggatcccccg ggctgcagga attccggcag catcgtggtc gggatga 47
<210> 7
<211> 32
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
cttcggtcat ggcggtctcc ggccggtgag ca 32
<210> 8
<211> 34
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
aacgatcttc atggcggtct ccggccggtg agca 34
<210> 9
<211> 49
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
actaaaggga acaaaagctg ggtacccggc agcatcgtgg tcgggatga 49
<210> 10
<211> 31
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
gagaccgcca tgaccgaagc cgcccgcctg a 31
<210> 11
<211> 34
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 11
cgataagaaa taactacccc tcgaacgcct cgct 34
<210> 12
<211> 32
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 12
cgaggggtag ttatttctta tcgtgtttac cg 32
<210> 13
<211> 30
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 13
agaccgccat gaagatcgtt ttagtcttat 30

Claims (8)

1.一种响应潜艇金属Ni2+离子的启动子元件,其特征在于,所述启动子元件的核苷酸序列如SEQ ID NO.2所示或者如SEQ ID NO.3所示。
2.一种包含权利要求1所述的启动子元件的电化学信号输出传感器,其特征在于,所述电化学信号输出传感器中包括响应潜艇金属Ni2+离子的启动子元件、NAD+合成酶基因和甲酸脱氢酶基因。
3.根据权利要求2所述的电化学信号输出传感器,其特征在于,所述NAD+合成酶基因的核苷酸序列如SEQ ID NO.4所示;所述甲酸脱氢酶基因的核苷酸序列如SEQ ID NO.5所示。
4.权利要求1所述的启动子元件在用于制备检测金属Ni2+离子的表达盒、试剂盒或制剂中的应用。
5.根据权利要求4所述的应用,其特征在于,检测所述金属Ni2+离子的浓度不低于0.1 μmol/L。
6.权利要求1所述的启动子元件或者权利要求2所述的电化学信号输出传感器在用于制备检测潜艇金属Ni2+的电化学装置中的应用。
7.根据权利要求6所述的应用,其特征在于,所述电化学装置是利用碳毡、Ag/AgCl校正电极与含有启动子元件的重组工程菌或者电化学信号输出传感器共同组成的。
8.根据权利要求6所述的应用,其特征在于,当所述电化学装置检测到潜艇金属Ni2+离子时,其电流密度明显增加,导致电化学信号输出明显提高。
CN202210638979.XA 2022-06-08 2022-06-08 一种响应潜艇金属Ni2+离子的启动子元件及其制备的电化学信号输出传感器和应用 Active CN115161319B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210638979.XA CN115161319B (zh) 2022-06-08 2022-06-08 一种响应潜艇金属Ni2+离子的启动子元件及其制备的电化学信号输出传感器和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210638979.XA CN115161319B (zh) 2022-06-08 2022-06-08 一种响应潜艇金属Ni2+离子的启动子元件及其制备的电化学信号输出传感器和应用

Publications (2)

Publication Number Publication Date
CN115161319A CN115161319A (zh) 2022-10-11
CN115161319B true CN115161319B (zh) 2024-06-07

Family

ID=83484580

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210638979.XA Active CN115161319B (zh) 2022-06-08 2022-06-08 一种响应潜艇金属Ni2+离子的启动子元件及其制备的电化学信号输出传感器和应用

Country Status (1)

Country Link
CN (1) CN115161319B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108707558A (zh) * 2018-04-25 2018-10-26 江苏世邦生物工程科技有限公司 用于修复重金属污染土壤的微生物制剂及其制备方法和应用
CN114480388A (zh) * 2022-01-11 2022-05-13 青岛农业大学 一种响应爆炸物分子的新型启动子元件的筛选和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108707558A (zh) * 2018-04-25 2018-10-26 江苏世邦生物工程科技有限公司 用于修复重金属污染土壤的微生物制剂及其制备方法和应用
CN114480388A (zh) * 2022-01-11 2022-05-13 青岛农业大学 一种响应爆炸物分子的新型启动子元件的筛选和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
铁和镍对光合细菌生长和产氢的影响;杨素萍, 赵春贵, 曲音波, 钱新民;微生物学报;20030404(第02期);第257-263页 *

Also Published As

Publication number Publication date
CN115161319A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
CN107037103B (zh) 一种检测鼠伤寒沙门氏菌的电化学生物传感器及其制备方法
CN102174557A (zh) 一种表面展示家蚕乙醇脱氢酶重组芽孢及其制备方法
CN112725339B (zh) 一种提高爆炸物分子检测灵敏度的启动子元件及其筛选方法和应用
CN115161319B (zh) 一种响应潜艇金属Ni2+离子的启动子元件及其制备的电化学信号输出传感器和应用
CN101921724A (zh) 一种用于监测环境中Hg2+污染的重组工程菌及其应用
CN112940971A (zh) 一种调控群体感应淬灭的代尔夫特菌及其分离方法和应用
CN114480388B (zh) 一种响应爆炸物分子的新型启动子元件的筛选和应用
CN113583931B (zh) 魏氏柠檬酸杆菌ansB基因敲除突变株及其应用
CN115125256B (zh) 一种潜艇金属探测元件及其构建的电化学探测传感器和应用
CN110257413A (zh) 一种重组质粒及其在鉴定嗜酸性喜温硫杆菌基因表达中的应用
AU2021104715A4 (en) A method for detecting the colonization ability of bacteria in spirodela polyrrhiza
CN107102047B (zh) 一种检测鼠伤寒沙门氏菌的生物传感器
CN109371044A (zh) 一种稻瘟菌基因Movan及其应用
Sharma et al. Agrobacterium‐mediated delivery of marker genes to Phanerochaete chrysosporium mycelial pellets: a model transformation system for white‐rot fungi
Grant et al. Luminescence based detection of Erwinia carotovora subsp. carotovora in soil
CN104877997B (zh) 一个特异响应渗透胁迫信号的启动子及应用
CN104805048A (zh) 一株检测铅的大肠埃希氏菌
CN108893471B (zh) 一个特异响应氧化胁迫信号的启动子P-osi及其应用
CN107119059A (zh) 可用于临床检测的黄嘌呤氧化酶、其编码基因及其应用
CN115125264B (zh) 一种含有电信号报告元件的探潜微生物传感器及其制备方法和应用
CN106085939A (zh) 一种检测酰基高丝氨酸内酯(ahl)的方法
CN106414743A (zh) 提高微生物生物质合成能力的方法及其改良微生物
CN115141787B (zh) 一种潜艇微生物传感器及其制备方法和应用
JP3726132B2 (ja) キチン質分解酵素を遺伝子標識に利用した細菌モニタリング法
CN114381464B (zh) 一种基于转录组学分析的爆炸物分子检测感应元件及其构建方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant