CN115155331A - 丙烯酰氧基封端的pdms制备薄膜复合膜、制备方法和用途 - Google Patents

丙烯酰氧基封端的pdms制备薄膜复合膜、制备方法和用途 Download PDF

Info

Publication number
CN115155331A
CN115155331A CN202210665583.4A CN202210665583A CN115155331A CN 115155331 A CN115155331 A CN 115155331A CN 202210665583 A CN202210665583 A CN 202210665583A CN 115155331 A CN115155331 A CN 115155331A
Authority
CN
China
Prior art keywords
pdms
acryloxy
terminated pdms
film
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210665583.4A
Other languages
English (en)
Other versions
CN115155331B (zh
Inventor
刘公平
潘阳
金万勤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN202210665583.4A priority Critical patent/CN115155331B/zh
Publication of CN115155331A publication Critical patent/CN115155331A/zh
Application granted granted Critical
Publication of CN115155331B publication Critical patent/CN115155331B/zh
Priority to US18/333,528 priority patent/US11951446B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
    • B01D71/701Polydimethylsiloxane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • B01D67/00113Pretreatment of the casting solutions, e.g. thermal treatment or ageing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0013Casting processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0016Coagulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0018Thermally induced processes [TIPS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/105Support pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/104Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/34Use of radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/34Use of radiation
    • B01D2323/345UV-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/38Graft polymerization
    • B01D2323/385Graft polymerization involving radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/50Control of the membrane preparation process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/82Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74 characterised by the presence of specified groups, e.g. introduced by chemical after-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明公开了一种丙烯酰氧基封端的PDMS制备薄膜复合膜、制备方法和用途,利用丙烯酰氧基之间的高UV反应性得到一种简便的UV诱导单体聚合策略,以实现PDMS薄膜复合(TFC)膜的制备。丙烯酰氧基封端的PDMS单体之间的高UV反应性诱导浇铸液快速固化,从而实现超薄选择层的形成和基底孔穿透的抑制。通过优化UV波长、辐照时间和聚合物浓度,制备的AC‑PDMS TFC膜的CO2透过率达到9635 GPU,CO2/N2选择性为11.5。基于材料特性的紫外光诱导单体聚合策略为制备超薄PDMS膜提供了一种高效、新颖的策略途径,可用于分子分离。

Description

丙烯酰氧基封端的PDMS制备薄膜复合膜、制备方法和用途
技术领域
本发明属于膜材料技术领域,具体涉及一种以丙烯酰氧基封端的PDMS制备薄膜复合膜的方法。
背景技术
薄膜复合膜(TFC)在实际过程中具有快速和选择性渗透的明显优势,获得超薄选择性层的关键因素之一是控制孔隙渗透的程度。孔隙渗透对膜的影响是一把双刃剑。一方面,聚合物和基质之间的机械联锁对于确保界面附着力和机械性能至关重要。另一方面,过度的孔隙渗透增加了阻力和质量传输距离。为了获得积极的整体效果,必须根据膜材料的特性定制制造方法。
聚二甲基硅氧烷(PDMS)作为具有优异渗透性的代表性膜材料,在纳滤、渗透汽化和气体分离等领域备受关注。然而,无缺陷超薄PDMS膜的制造仍然面临巨大挑战,主要是由于难以控制铸膜液的可加工性和支撑体的孔渗。聚二甲基硅氧烷作为一种具有高渗透性的典型膜材料得到了广泛的研究并应用于气体分离过程中。但是为了制备超薄的选择层需要较低的PDMS铸膜液浓度,这就导致了高流动性的液体会不可避免的侵入支撑体的孔道中,造成严重的孔渗现象。为了解决此问题,一些课题组使用高渗透性的聚合物或者多种无机材料在支撑体表面制备过渡层,但是这种策略使制膜过程复杂化。
发明内容
为了解决上述制备PDMS复合薄膜的挑战,本发明选用了一种新型的丙烯酰氧基封端的PDMS,这种PDMS可以实现选择层的快速固化而不需要对单体采取额外的改性。本质上,这种硅橡胶的交联方式是基于单体封端的丙烯氧基在紫外线照射下直接发生的加成反应。这个过程要比传统OH-PDMS与交联剂之间的缩合反应的反应速度要快1-2个数量级。铸膜液的快速固化有效地抑制了孔渗现象,因此可以形成完整无缺陷的PDMS选择层并对CO2/N2体系表现出优异的分离性能。进一步成功制备了A4尺寸的PDMS复合薄膜,这证明该方法具有很大的放大潜力。整体的制备流程如图1所示:(a)AC-PDMS复合薄膜的制备基于丙烯酰氧基封端的PDMS在紫外线照射下的快速加成反应。(b)在制备OH-PDMS复合膜时产生的孔渗问题,该工程基于封端基羟基与交联剂之间的缩合反应。
具体的技术方案是:
丙烯酰氧基封端的PDMS制备薄膜复合膜,包括支撑层以及其表面的选择分离层,所述的选择分离层具有如下所示的结构:
Figure BDA0003692817830000021
式中,R是含有1-16个碳原子的带支链或不带支链的烷基;所述的分离膜应用于气体分离。
所述的支撑层的材质是多孔材料。
所述的多孔材料选自多孔陶瓷或者多孔聚合物。
所述的选择分离层的厚度0.1-5μm。
丙烯酰氧基封端的PDMS制备薄膜复合膜的制备方法,包括如下步骤:
步骤1,丙烯酰氧基封端的PDMS和光引发剂溶解于溶剂中,获得涂膜液;
步骤2,将涂膜液涂覆于支撑层的表面,再通过紫外光照射使丙烯酰氧基封端的PDMS固化,经过热处理后获得复合膜。
所述的步骤1中,涂膜液中丙烯酰氧基封端的PDMS的浓度1-25wt%,且丙烯酰氧基封端的PDMS和光引发剂的重量比5-15:1;溶剂选自非极性溶剂,所述的非极性溶剂是烃类溶剂或酯类溶剂。
所述的步骤1中,还包括对涂膜液的粘度进行调节的步骤:通过对涂膜液采用紫外线间歇照射并搅拌,使粘度控制在35-55cP。
所述的步骤1中,丙烯酰氧基封端的PDMS具有如下所示的结构:
Figure BDA0003692817830000022
式中,R是含有1-16个碳原子的带支链或不带支链的烷基。
所述的步骤2中,支撑层经过了预先的水填充处理。
所述的步骤2中,紫外光照射的时间是1-30s。
所述的步骤2中,紫外光是选自UVA、UVB或者UVC中的一种或几种的混合,优选采用UVA和UVC的混合光源。
所述的步骤2中,热处理是在60-90℃下5-30min。
上述的丙烯酰氧基封端的PDMS制备薄膜复合膜在用于气体分离中的应用。
所述的气体分离是指对混合气体中的CO2进行透过分离,或者是对O2/N2的分离。
有益效果
本发明使用丙烯酰氧基封端的PDMS实现薄膜复合膜(TFC)的制备。丙烯酰氧基之间的高紫外反应性可以使铸膜液快速固化,从而实现超薄选择层(260nm)的形成和抑制孔渗程度。通过优化紫外线波长、照射时间和聚合物浓度,制备的AC-PDMS TFC膜的CO2渗透率达到了9635GPU,CO2/N2选择性为11.5。基于材料特性的策略为生产超薄膜在分子分离中的实际应用提供了一种新颖而有效的途径。
附图说明
图1.(a)AC-PDMS复合薄膜的制备示意图,(b)在制备OH-PDMS复合膜时产生的孔渗问题;
图2.紫外光源对AC-PDMS TFC膜分离性能的影响(测试条件:纯气,0.1MPa,25℃);
图3.使用不同种类光源制备的复合膜表面的XPS C1s谱图;
图4.AC-PDMS和PDMS膜的TG曲线;
图5辐照时间(预聚过程)和有机物浓度对AC-PDMS/正庚烷黏度的影响;
图6辐照时长(固化阶段)对性能的影响(AC-PDMS/PANTFC膜,测试条件:纯气,0.1MPa,25℃);
图7(a)AC-PDMS/PAN和OH-PDMS/PAN的气体分离性能(纯气体,0.1Mpa,25℃);(b)AC-PDMS复合膜和PDMS复合膜的横截面SEM图像;(c)AC-PDMS复合膜和OH-PDMS复合膜的横截面SEM图像和Si元素EDX谱图;垂直的黄线代表检测深度,选择层的厚度增加到2μm以满足实验精度;(d)不同均质膜和AC-PDMS铸膜液的FTIR光谱;(e)FTIR光谱的部分放大图;
图8.(a)OH-PDMS和AC-PDMS的聚合物结构示意图;(b)AC-PDMS的介电弛豫过程,内插表是AC-PDMS和OH-PDMS的脆性因子;(c)AC-PDMS和PDMS的XRD谱图。
具体实施方式
本发明首次采用丙烯酰氧基封端的PDMS来实现薄膜复合膜的快速制备。为实现PDMS TFC膜的制备,开发了一种简便、高效的单体UV聚合策略。通过优化紫外光波长、粘度和辐照时间,制备的AC-PDMS TFC膜的CO2透过率显著提高,达到9635GPU,CO2/N2选择性为11.5。与传统的羟基封端PDMS相比,以丙烯酰氧基封端的单体之间的直接加成反应导致浇铸液的快速固化,并有效抑制了孔穿透。此外,仅基于材料特性和浇铸方法的策略简化了薄膜复合膜的制备过程,显示出扩大规模的潜力。同时,AC-PDMS独特的交联方法改变了链段的堆积状态,进一步影响了质量传递行为。最后,该工作技术有望应用于不同类型膜过程的高效分子分离。简化和扩展TFC膜的制造工艺,以有效捕获CO2
以下实施例中所采用的材料及其来源为:
丙烯酰氧基封端的PDMS(Mw=2500),羟基封端的PDMS(Mw=8000),光引发剂1173(2-羟基-2-甲基苯丙酮),正硅酸四乙酯(TEOS),二丁基二月桂酸锡(DBTDL)和正庚烷从Sigma-Aldrich公司购买。所有购买的化学试剂无需进一步提纯可以直接使用。聚丙烯腈(PAN)支撑体由北京海诚世洁过滤设备公司提供,孔径为25nm。
实施例1
1.1膜制备过程
1.1.1制备AC-PDMS/PAN复合膜
将一定量的丙烯酰氧基封端的PDMS(AC-PDMS)预聚体溶解在正庚烷中搅拌10分钟以获得均匀的溶液,控制PDMS在铸膜液中的质量浓度5-25%,在涂膜过程中选择层太薄的膜表面更容易产生缺陷。然后将光引发剂1173加入到溶剂中,聚合物和光引发剂的质量比为10:1。为了获得涂膜时合适的黏度需要将铸膜液暴露在紫外线下几分钟以完成预交联。上述步骤必须在氮气气氛中进行。在涂膜之前,需要将PAN支撑体浸入水中以减轻孔渗。AC-PDMS复合膜由具有适当间隙的铸造刀片制造。将复合膜放入UV固化机中进行进一步照射。光源的波长分别采用UVA、UVC或两者的组合进行对比试验,UVA采用365nm,UVC采用254nm。最后,将复合膜在80℃下热处理10min,以蒸发掉多余的溶剂。A4尺寸复合膜的制备与上述程序一致,控制PDMS在铸膜液中的质量浓度10%。
2.2.2制备OH-PDMS/PAN复合膜
将羟基PDMS的预聚体与交联剂(TEOS)和催化剂(DBTDL)溶解在正庚烷中。聚合物、交联剂和催化剂的比例为100:10:1。在涂膜之前需将PAN支撑体浸泡在水中以防止可能的孔渗。当铸膜液达到合适的黏度后,使用可以调整高度的刮刀进行刮膜。将刮好的膜置于室温中干燥24小时,最后将复合膜80℃干燥12小时。
2.2.3制备AC-PDMS和OH-PDMS均质膜
将一定量的AC-PDMS的铸膜液倒入培养皿中,聚合物的浓度为10wt%。将这些培养皿放入手套箱中以隔离氧气。因为制备均质膜所需的铸膜液要远多于制备复合膜的用量,因此隔绝氧气十分重要。使用紫外光源照射样品10分钟,经过叫交联后的膜放入烘箱中80℃干燥1小时以去除多于的溶剂和光引发剂。
OH-PDMS均质膜的制备过程与AC-PDMS相似,除了不需要紫外辐照。而且需要将OH-PDMS置于室温5小时,然后80℃干燥。这些均质膜将用于之后的气体渗透实验。
2.3气体分离实验
使用恒容变压法进行PDMS膜的纯气体测试实验。当系统达到稳定后,在25℃和室温下进行渗透实验。所有的测试需要重复至少3次。组分i的渗透率可以由下式计算:
Figure BDA0003692817830000051
式中的Pi为组分i的气体渗透率(1GPU=10-6cm3(STP)cm-2s-1cmHg),Δp跨膜压差(0.1MPa)。A是有效膜面积,T是测试温度(℃),dp/dt渗透侧压力变化的斜率。膜的理想选择性为αi/j,由快气的和慢气的渗透率之比进行计算:
Figure BDA0003692817830000052
混合气(CO2:N2,15vol%:85vol%)的测试过程与纯气的类似除了渗透物需要使用气相色谱法进行分析其组成。而且需要使用被压控制器控将进料气的stage-cut控制在1%以下。
铸膜因素的影响:
本发明中研究了一系列因素来优化AC-PDMS TFC膜的制备条件。首先,紫外光的波长对膜的形成至关重要。紫外光按波长可分为三种:UVA(320nm-400nm)、UVB(275nm-320nm)和UVC(200nm-275nm)。波长最长的UVA具有穿透能力的优势,但能量较低,不足以完全固化膜表面并克服氧气抑制作用。因此,我们将UVA与UVC结合作为光源(UVAC)。为方便标记,我们将不同光源制备的膜命名为AC-PDMS-UVA、AC-PDMS-UVC和AC-PDMS-UVAC。如图2所示,与其他种类的紫外光相比,UVC制造的膜在渗透性上表现出明显的劣势,只有4378GPU。UVAC组合光源制造的AC-PDMS-UVAC膜表现出最高渗透率(6944GPU)和固有选择性(11.7)。光源可能对聚合物的结构产生重要的影响。AC-PDMS-UVA的选择性最低。这归因于不完全交联的AC-PDMS链不足以构建用于气体分离的完整网络。UVC满足了表面固化对足够能量的需求,但这种光源不能穿透整个选择层,导致深处的铸膜液固化不完全。铸膜液的流动性导致了孔渗,从而导致CO2渗透率下降。相比之下,具有良好渗透能力的UVA保证了深度固化并抑制了孔隙渗透。因此,将UVC与UVA结合作为光源可以使整个AC-PDMS的选择性层达到完全交联。
为了进一步验证我们的推论,XPS光谱被用于确定由不同紫外光源制造的膜表面化学键组成。如图3所示,AC-PDMS-UVA的C1s谱在结合能287.8、285.8、284.8、283.8eV处表现出四个峰,分别对应于C=O、C-C、C-Si和C=C。与AC-PDMS-UVC和AC-PDMS-UVA相比,AC-PDMS-UVA表面存在C=C表明表面交联反应不完全。AC-PDMS-UVC和AC-PDMS-UVAC中C-C基团的含量显示C=C基团全部转化为C-C。此外,光源的功率是影响交联反应程度的另一个关键因素。具有更高强度和功率的UVAC组合光源增强了膜的体积固化。综上所述,UVAC组合光源集合了UVA和UVC的优势,制备了具有最佳交联网络和复合膜结构的AC-PDMC TFC膜。
后加热过程对于蒸发溶剂和确保固化程度至关重要。一般来说,OH-PDMS膜需要加热以构建完整的网络。因为额外的Si-OH基团需要高温(60℃-120℃)和足够的时间在非溶剂环境下与相邻的交联剂反应。AC-PDMS膜也需要后加热过程,而这个过程只涉及溶剂蒸发而不是进一步的反应,因为丙烯酰氧基之间的反应在去除紫外线后立即停止。如图4所示,AC-PDMS在80℃到305℃范围内出现质量损失,这是由于沸点为80℃的光引发剂1173的解吸所致。此外,质量损失与光引发剂的浓度相对应。因此,后加热温度选择为80℃。值得注意的是,紫外光照射后光引发剂可从基态转变为激发态,同时释放大量自由基以促进聚合反应。因此,光引发剂不会参与实际的交联反应从而影响分离性能。
在涂膜前需要将铸膜液预交联至合适的粘度是制备无缺陷复合膜的必要条件。此外,较高的粘度会抑制孔隙渗透。传统的羟基封端PDMS的黏度很难控制,因为缩合反应一旦开始就很难停止。相反,丙烯酰氧基之间的加成反应可以通过移除紫外光源立即停止。鉴于这一特性,我们可以通过间歇照射来控制浇铸液的粘度(即短时间、多次间歇照射,其间搅拌并控制在合适粘度)。如图5所示,一方面,铸膜液的粘度与聚合物浓度呈正相关。经过200s的UV照射后,聚合物浓度为5wt%的铸膜液粘度达到43cP,此黏度适合用于刮膜。另一方面,铸膜液的粘度随着总辐照时间的增加而增加。当辐照时间超过200s时,溶液粘度急剧增加。如果持续延长曝光时间,铸膜液会转变成凝胶。值得注意的是连续的N2流对于消除反应系统中的氧气是必要的。
在膜制备过程中,必不可少的辐照时间是另一个关键影响因素。没有紫外线照射的膜不具备有效分离的能力(图6)。相比之下,CO2的渗透性和CO2/N2选择性在仅3s紫外线照射后就会迅速增加,这意味着如此短的照射时间足以构建完整的选择层。通过进一步延长辐照时间,更密集的交联网络有助于选择性从11.3略微提高到12,并且CO2渗透率几乎没有变化。因为铸膜液的快速固化有效的抑制了孔渗。此外,与传统OH-PDMS膜的热交联工艺相比,极短的固化时间有望节省热固化消耗的能源。
我们比较了AC-PDMS膜与传统OH-PDMS膜的制备。如图7的a所示,AC-PDMS复合膜的CO2渗透率几乎是OH-PDMS复合膜的两倍,尽管两种膜的选择性层厚度约为500nm(图7的b)。这表明OH-PDMS复合膜的过度孔渗增加了传质阻力。如图7的c所示,在OH-PDMS膜的支撑体层中仍观察到较强的Si元素信号,而AC-PDMS膜的值在相同深度较低。结果表明,AC-PDMS铸膜液的快速固化对抑制气孔渗透有明显的效果。同时,该方法避免了过渡层的引入。图7的d和e显示了AC-PDMS膜和OH-PDMS膜的FTIR光谱,所有样品均表现出硅橡胶的代表性吸附峰。1256cm-1和1019cm-1的吸附峰归因于Si-CH3的弯曲振动和Si-O-Si的不对称伸缩振动。重要的是,在OH-PDMS和AC-PDMS铸造溶液中未观察到C=C在1670cm-1处的峰值。这表明紫外线照射后所有的C=C键都被消耗掉,AC-PDMS膜的表面完全固化。观察到作为封端基的丙烯酰氧基而不是羟基意味着丙烯酰氧基的浓度高于羟基。更多的封端基团和更低的分子量赋予AC-PDMS更高的反应活性。
AC-PDMS和OH-PDMS之间的本质差异,包括化学和物理特性是由于各自的交联机制导致的。传统的羟基封端的PDMS倾向于通过羟基与含有四个或三个活性乙氧基键的交联剂(如正硅酸四乙酯、乙烯基三乙氧基硅烷)缩合形成空间聚合网络。然而,在紫外线照射下,AC-PDMS链段的长度因乙烯基之间的加成反应而迅速增加,线性聚合物链的缠结导致聚合物基质固化(图8的a)。进一步研究链段堆积状态对传质行为的影响是有意义的。
介电弛豫光谱技术(DRS)是一种从链段动力学特性探索堆叠状态的重要方法。AC-PDMS的弛豫过程如图8的b所示。聚合物的弛豫过程总是与温度和电场有关。当电场频率低于10Hz时,发生偶极子定向极化,其与交变电场的变化同步。此时,直流电导贡献了主要的介电损耗。随着频率的增加和温度接近玻璃化转变温度(Tg),聚合物链段的侧基可以响应频率变化,导致β弛豫。当温度高于Tg时,聚合物主链的更强迁移率会增加介电损耗,从而发生α弛豫。因此,α松弛的信息可以反映主链的动态特性。此外,OH-PDMS表现出与AC-PDMS相似的电介质,这与报道一致。将α弛豫数据通过HN方程和VFT方程拟合得到脆性因子,用来证明聚合物链段的堆积状态。如内插表所示,AC-PDMS的脆性系数远低于OH-PDMS。这意味着AC-PDMS的聚合物链段比OH-PDMS会更密集地堆叠。此外,与OH-PDMS相比,XRD结果(图8的c)显示AC-PDMS的特征峰位置从12.1°偏移到12.8°。这表明OH-PDMS具有比AC-PDMS
Figure BDA0003692817830000081
更大的链间距
Figure BDA0003692817830000082
d-spacing的值由布拉格方程计算。

Claims (10)

1.丙烯酰氧基封端的PDMS制备薄膜复合膜,包括支撑层以及其表面的选择分离层,所述的选择分离层具有如下所示的结构:
Figure FDA0003692817820000011
式中,R是含有1-16个碳原子的带支链或不带支链的烷基;所述的分离膜应用于气体分离。
2.根据权利要求1所述的丙烯酰氧基封端的PDMS制备薄膜复合膜,其特征在于,所述的支撑层的材质是多孔材料。
3.根据权利要求1所述的丙烯酰氧基封端的PDMS制备薄膜复合膜,其特征在于,所述的多孔材料选自多孔陶瓷或者多孔聚合物。
4.根据权利要求1所述的丙烯酰氧基封端的PDMS制备薄膜复合膜,其特征在于,所述的选择分离层的厚度0.1-5μm。
5.丙烯酰氧基封端的PDMS制备薄膜复合膜的制备方法,其特征在于,包括如下步骤:
步骤1,丙烯酰氧基封端的PDMS和光引发剂溶解于溶剂中,获得涂膜液;
步骤2,将涂膜液涂覆于支撑层的表面,再通过紫外光照射使丙烯酰氧基封端的PDMS固化,获得复合膜。
6.根据权利要求5所述的制备方法,其特征在于,所述的步骤1中,涂膜液中丙烯酰氧基封端的PDMS的浓度1-25wt%,且丙烯酰氧基封端的PDMS和光引发剂的重量比5-15:1,溶剂选自非极性溶剂,所述的非极性溶剂是烃类溶剂或酯类溶剂;所述的步骤1中,还包括对涂膜液的粘度进行调节的步骤:通过对涂膜液采用紫外线间歇照射并搅拌,使粘度控制在35-55cP。
7.根据权利要求5所述的制备方法,其特征在于,所述的步骤1中,丙烯酰氧基封端的PDMS具有如下所示的结构:
Figure FDA0003692817820000012
式中,R是含有1-16个碳原子的带支链或不带支链的烷基。
8.根据权利要求5所述的制备方法,其特征在于,所述的步骤2中,支撑层经过了预先的水填充处理;紫外光照射的时间是1-30s;紫外光是选自UVA、UVB或者UVC中的一种或几种的混合,优选采用UVA和UVC的混合光源,热处理是在60-90℃下5-30min。
9.权利要求1所述的丙烯酰氧基封端的PDMS制备薄膜复合膜在用于气体分离中的应用。
10.根据权利要求9所述的应用,其特征在于,所述的气体分离是指对混合气体中的CO2进行透过分离,或者是对O2/N2的分离。
CN202210665583.4A 2022-06-14 2022-06-14 丙烯酰氧基封端的pdms制备薄膜复合膜、制备方法和用途 Active CN115155331B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210665583.4A CN115155331B (zh) 2022-06-14 2022-06-14 丙烯酰氧基封端的pdms制备薄膜复合膜、制备方法和用途
US18/333,528 US11951446B2 (en) 2022-06-14 2023-06-12 Acryloyloxy-terminated polydimethylsiloxane (AC-PDMS)-based thin-film composite (TFC) membrane, and preparation method and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210665583.4A CN115155331B (zh) 2022-06-14 2022-06-14 丙烯酰氧基封端的pdms制备薄膜复合膜、制备方法和用途

Publications (2)

Publication Number Publication Date
CN115155331A true CN115155331A (zh) 2022-10-11
CN115155331B CN115155331B (zh) 2023-05-26

Family

ID=83485578

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210665583.4A Active CN115155331B (zh) 2022-06-14 2022-06-14 丙烯酰氧基封端的pdms制备薄膜复合膜、制备方法和用途

Country Status (2)

Country Link
US (1) US11951446B2 (zh)
CN (1) CN115155331B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116603403A (zh) * 2023-06-13 2023-08-18 中建安装集团有限公司 一种超薄聚氧化乙烯基碳捕集膜及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105561802A (zh) * 2015-12-23 2016-05-11 哈尔滨工业大学宜兴环保研究院 一种新型uv固化聚氧化乙烯半互穿网络气体分离膜的制备方法
CN109012198A (zh) * 2018-08-07 2018-12-18 北京化工大学 一种渗透汽化膜及其制备与应用
US20190015796A1 (en) * 2017-07-17 2019-01-17 National University Of Singapore Composite hollow fiber membrane
CN112029403A (zh) * 2020-09-15 2020-12-04 广东思泉新材料股份有限公司 一种抗紫外老化防水涂层及其制备方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0985443B1 (de) * 1998-09-10 2010-10-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Semipermeable Membranen
DE102005031703B3 (de) * 2005-07-05 2007-01-11 Gkss-Forschungszentrum Geesthacht Gmbh Kompositmembran
US7708810B2 (en) * 2005-07-19 2010-05-04 The Penn State Research Foundation Carbon nanocomposite membranes and methods for their fabrication
JP5009307B2 (ja) * 2006-01-16 2012-08-22 スティヒティング エネルギーオンダーゾーク セントラム ネーデルランド 熱水安定性の高い微細孔性分子分離膜
JP2011016896A (ja) * 2009-07-08 2011-01-27 Nippon Bee Chemical Co Ltd 光硬化型植物由来コーティング剤およびそのコーティング物
JP6156443B2 (ja) * 2014-08-13 2017-07-05 Jsr株式会社 積層体および基材の処理方法
US9873094B2 (en) * 2015-08-14 2018-01-23 Ut-Battelle, Llc Cross-linked polymeric membranes for carbon dioxide separation
US9784332B2 (en) * 2015-11-12 2017-10-10 Ronald Scott Bandy Gas permeable internal floating piston
FR3044222B1 (fr) * 2015-11-30 2020-01-03 L'oreal Procede de traitement cosmetique des matieres keratiniques
FR3045362B1 (fr) * 2015-12-22 2020-11-06 Oreal Procede de traitement cosmetique des matieres keratiniques avec un polymere ethylenique d'anhydride maleique
JP7395514B2 (ja) * 2018-06-15 2023-12-11 ビーエーエスエフ ソシエタス・ヨーロピア セラミック光樹脂配合物
US10865327B2 (en) * 2018-06-29 2020-12-15 Polymer Technology, Inc. Tintable abrasion resistant compositions
WO2022201072A1 (en) * 2021-03-24 2022-09-29 Alcon Inc. Method for making embedded hydrogel contact lenses

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105561802A (zh) * 2015-12-23 2016-05-11 哈尔滨工业大学宜兴环保研究院 一种新型uv固化聚氧化乙烯半互穿网络气体分离膜的制备方法
US20190015796A1 (en) * 2017-07-17 2019-01-17 National University Of Singapore Composite hollow fiber membrane
CN109012198A (zh) * 2018-08-07 2018-12-18 北京化工大学 一种渗透汽化膜及其制备与应用
CN112029403A (zh) * 2020-09-15 2020-12-04 广东思泉新材料股份有限公司 一种抗紫外老化防水涂层及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116603403A (zh) * 2023-06-13 2023-08-18 中建安装集团有限公司 一种超薄聚氧化乙烯基碳捕集膜及其制备方法和应用

Also Published As

Publication number Publication date
US20230398504A1 (en) 2023-12-14
US11951446B2 (en) 2024-04-09
CN115155331B (zh) 2023-05-26

Similar Documents

Publication Publication Date Title
Ji et al. High‐performance CO2 capture through polymer‐based ultrathin membranes
US8865266B2 (en) Method of coating a porous substrate
KR101434770B1 (ko) 다공성 실리콘 성형체의 제조 방법
WO2009013340A1 (en) Hydrophilic membrane
Zhan et al. Enhanced pervaporation performance of PDMS membranes based on nano-sized Octa [(trimethoxysilyl) ethyl]-POSS as macro-crosslinker
Zhou et al. Plasma modification of substrate with poly (methylhydrosiloxane) for enhancing the interfacial stability of PDMS/PAN composite membrane
CN106807258B (zh) 一种硅橡胶复合膜及其制备方法和应用
KR20150123278A (ko) 가교결합된 열가소성 실리콘 탄성중합체로 제조된 비대칭 다공성 막
KR20150110747A (ko) 가교된 열가소성 실리콘 엘라스토머로 이루어진 다공성 막
Kim et al. High-performance self-cross-linked PGP–POEM comb copolymer membranes for CO2 capture
Tsai et al. Study on the pervaporation performance and long-term stability of aqueous iso-propanol solution through chitosan/polyacrylonitrile hollow fiber membrane
WO2019023430A1 (en) PROCESS FOR THE PREPARATION OF SELECTIVE MEMBRANE LAYERS BY INTERFACIAL RADICAL POLYMERIZATION
WO2016136404A1 (ja) ガス分離膜、ガス分離モジュール、ガス分離装置、及びガス分離方法
CN102827371A (zh) 一种功能性聚硅氧烷及其制备和在气体分离膜中的应用
CN115155331B (zh) 丙烯酰氧基封端的pdms制备薄膜复合膜、制备方法和用途
JP2016503448A (ja) フッ素化エチレン‐プロピレンポリマーを含有するガス分離のためのブレンドポリマー膜
Salehian et al. In situ regulation of micro-pore to design high performance polyimide membranes for pervaporation dehydration of isopropanol
Jia et al. Low-surface-energy monomer for ultrathin silicone membrane fabrication: Towards enhanced ethanol/water pervaporation performance
US10174171B2 (en) Nanoporous films derived from polycyclo-olefinic block polymers
Liu et al. High-/Low-Molecular-Weight PDMS photo-copolymerized membranes for ethanol recovery
EP3122807B1 (en) Modified elastomer surface
EA005984B1 (ru) Мембрана с эпоксисилоксановым покрытием, способ ее изготовления и способ мембранного разделения
CN114452845B (zh) 抗污染反渗透膜及其制备方法和应用
WO2017002407A1 (ja) ガス分離膜、ガス分離モジュール、ガス分離装置、ガス分離方法及びポリイミド化合物
KR20200041838A (ko) 기체 분리막의 제조방법 및 이에 따라 제조되는 기체 분리막

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant