CN1151546C - 使用快速热处理的预退火/氧化联合步骤 - Google Patents

使用快速热处理的预退火/氧化联合步骤 Download PDF

Info

Publication number
CN1151546C
CN1151546C CNB991184955A CN99118495A CN1151546C CN 1151546 C CN1151546 C CN 1151546C CN B991184955 A CNB991184955 A CN B991184955A CN 99118495 A CN99118495 A CN 99118495A CN 1151546 C CN1151546 C CN 1151546C
Authority
CN
China
Prior art keywords
oxygen
oxidation
oxide
depth
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB991184955A
Other languages
English (en)
Other versions
CN1257306A (zh
Inventor
H��H����ʩ��
H·H·图斯
��������ķ������
M·施雷姆斯
T·格尔特纳
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of CN1257306A publication Critical patent/CN1257306A/zh
Application granted granted Critical
Publication of CN1151546C publication Critical patent/CN1151546C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • H01L21/02238Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02255Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/3165Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation
    • H01L21/31654Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation of semiconductor materials, e.g. the body itself
    • H01L21/31658Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation of semiconductor materials, e.g. the body itself by thermal oxidation, e.g. of SiGe
    • H01L21/31662Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation of semiconductor materials, e.g. the body itself by thermal oxidation, e.g. of SiGe of silicon in uncombined form

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种使用快速热处理(RTP)的预退火/氧化联合步骤处理硅片,使之形成给定厚度的热氧化物,同时调节溶蚀区深度和整体微缺陷密度(BMD),该步骤包括:在氧化环境中、在环境压力下,将硅片暴露于受控温度下经过受控退火时间,以获得预选的热氧化物目标厚度,以适应预选的溶蚀区深度。

Description

使用快速热处理的预退火/氧化联合步骤
技术领域
本发明是在使硅片预退火的DRAM工艺中运用快速热处理(RTP)来实现预退火/氧化联合步骤。特别是,本发明的方法在使硅片预退火的改进处理过程中,能借助于一次RTP过程同时形成溶蚀区(DZ)和指定厚度的衬垫氧化物(pad oxide)。
背景技术
在制备硅片的过程中,在经卓氏生长(Czochralski growth)后的Si棒中是存在着氧的。氧的来源是盛着生长中的熔融硅的石英坩埚,部分的氧溶解在熔融硅中。
当从硅棒切成硅片后,氧仍存在于硅片中,多数是以填隙的方式存在。因此,DRAM工艺的第一个步骤就是在繁复的高温过程中使硅片退火。在该繁复的高温过程中,其目的或目标是要使氧从硅片表面的10~20μm厚的表层中扩散出来,同时在硅片体内形成SiO2沉淀物。该预退火步骤可造就“溶蚀区”(DZ)亦即靠近硅片需加处理的表层没有与氧有关的缺陷的区域,该过程还能提供出具有很高内在吸气能力的硅片。在预退火中,通常能生长出一薄层氧化物,但是,该层氧化物的缺点是厚度不能控制,因此在形成衬垫氧化物以前必须把它剥离。
在一种制备硅片的方法中,有一种内在吸气的方法,公开在美国专利5,674,756中。该方法包括将含有氧沉淀核的硅片以至少10℃/分钟的速率从室温加热到约800℃~1000℃,并在此温度下保持0.5至20分钟,这样就可得到具有有效内在吸气能力的硅片。该方法指出,若保持时间超过20分钟,就会得到过厚的DZ层,而氧沉淀核在此保持时间内也会生长成稳定的大小。
美国专利4,597,804公开了一种借助于内在吸气来制造溶蚀硅片的方法,该方法包括在退火温度为500℃至1300℃的范围内,用加热硅片的方法使硅片退火,具体做法是先用500℃至900℃的第一退火温度,再将温度升高至950℃至1300℃的第二退火温度,从第一退火温度到第二退火温度的升温速度不超过14℃/分钟。
美国专利5,534,294公开了一种制造半导体硅片的方法,它包括:在硅片的一面上形成一层厚1nm至3nm的氧化物膜;在形成的氧化物膜上加涂一层多晶硅;并将该硅片在惰性气体或还原气体或其混合气中进行热处理,处理时以硅片的另一面向气体暴露,以使该另一面的氧被排出,从而在该另一面形成溶蚀区。该方法指出,用该法所制出的硅片具有做在顶面的表面溶蚀区。
美国专利5,401,669公开了一种制备硅片的方法,这种硅片具有可控制的氧沉淀核中心的密度分布。其法是把硅片的一个未加防护的面,在快速热处理中暴露于温度至少为1175℃的含有氮气或氮化物气体的大气中,而与此同时在快速热处理中把硅片的另一面防护起来,不暴露于大气,以在后续的热处理中产生出供生长氧沉淀物场地用的成核中心,该成核中心的峰值密度近似于硅片来加防护的面。
在制造硅片的技术领域需要一种方法,它能同时既形成给定目标厚度的氧化物,又形成溶蚀区。
在制造硅片的技术领域还需要一种方法,它能消除在形成衬垫氧化物前,必须剥离掉在预退火中形成的厚度不能控制的氧化物这一缺点。
发明内容
本发明的一个目的是提供出一种制造硅片的方法,它能形成给定目标厚度的氧化物,同时形成溶蚀区。
本发明的另一个目的是提供出一种制造硅片的方法,它能借助于预退火提供出一层可控制厚度的氧化物,该氧化物不需在形成衬垫氧化物以前剥离。
本发明再一个目的是提供出一种制备硅片的方法,它能借助于高温氧化法造成溶蚀区;能把沉淀物密度调节到给定目标值;并能提供出很薄的衬垫氧化物层以备进一步处理。
总之,本发明的制造硅片的方法是,借助于在100%O2和接近于大气压力的高压下,控制温度和退火时间,把氧化物厚度和DZ深度调节到要求的目标值的办法来实现。
附图说明
图1示出本发明第一实施方案的RTA温度变化曲线图。
图2为在稀释氧中的RTA曲线图,图中示出在1200℃和740托下,在100%氧以及在含有5%氧的氩中进行快速热处理时,DZ深度与时间的关系曲线。
图3为说明在1150℃、60秒、740托的快速热处理中溶蚀区与环境气体中氧含量关系的曲线图。
图4示出在1150℃下短时10秒快速热处理中溶蚀区与环境气体中氧含量关系的曲线。
图5为在纯氧中,在三种不同的快速热处理条件下,氧化物厚度与时间的关系曲线图,该时间为RTP/氧化时间的函数。
图6为氧化物厚度与小室压力的关系曲线图,并对两种RTO时间25秒和60秒示出氧化物厚度与小室压力的函数关系。
图7为整体微缺陷密度(Bulk Micro Defect density)(BMD)与RTO时间的函数关系曲线图。
图8为BMD密度与RTO时间的函数关系曲线图。
图9为10秒、25秒、和60秒RTO处理中,BMD密度与压力的函数关系曲线图。
图10为在1200℃下在纯氧中分别在10托和740托压力下进行RTO处理时溶蚀区深度与压力的关系曲线图。
具体实施方式
按照本发明,已经发现了一种快速热处理(RTP)的技术,它在制作硅片时,能形成热氧化物,并同时能调节熔蚀区深度和整体微缺陷密度(BMD)。
实施例1
(大气压法)
现参看图1,可看到单晶硅片被从环境度升温到1200℃,保持约10秒钟,然后又回降至环境温度,提供本发明第一实施方案的快速温度退火(RTA)的温度变化曲线。在该实施方案中,借助于在100%的氧和接近于大气压约740托的高压中控制温度和退火时间,把氧化物厚度和DZ深度调节到要求的目标值。
在该处理过程中,溶蚀区深度约为35μm,这从图2在1200℃、740托下,在100%氧中以及在含有5%氧的氩中,进行快速热处理的DZ深度与时间的关系曲线中可以看出。该值大于要求的最小值10μm。
在快速热处理步骤的环境条件为1150℃、60秒、740托时,DZ深度对氧含量的依赖关系表明,当周围气体中氧含量为20%时出现一个峰值。
现参看图4,该图示出在1150℃下10秒快速RT步骤中,溶蚀区深度与氧含量的依赖关系曲线。
从示出氧化物厚度与时间的关系曲线的图5中可以看出,在100%氧中以1200℃、10秒的RTO处理,可得到约8nm的目标厚度。事实上,我们回头再看图2,可看到溶蚀区深度系大于目标值10μm(实际值为35μm)。
图6中的曲线示出,在100%O2中,在25秒和60秒两种RTO时间下,氧化物厚度与小室压力的关系。
图7为整体微缺陷密度(BMD)的曲线,并说明整体微缺陷密度与RTO时间之间的函数关系。
如图8所示,BMD密度是总压力和RTO时间的函数,其中在DRAM装置生产周期期间可得到的足够大的沉淀物密度约为3e8cm-3
如果要求得到4nm的氧化物目标厚度,可在100%O2中在740托压力下,使用1200℃、2秒钟的RTO。根据图2,这个条件会得到约20μm的溶蚀区深度,这一数值也可充分满足10μm的目标值。同样,该过程的BMD密度约为3e8cm-3(见图8)。
参看图9可以看出,BMD密度与压力的函数关系是在100%的O2中得出的。该BMD密度对总压力的函数关系是对于10秒、25秒和60秒的RTO处理过程示出的。
实施例2
(减压法)
现参看图10,该图为在100%O2中在1200℃下,溶蚀区深度与压力的关系曲线图。从图10可以看出,在100%O2环境下溶蚀区的深度对总压力只有微弱的依赖关系。在该实施例中,氧化物的目标厚度为80A,而DZ深度为20μm。图10还示出,20μm的DZ相当于约25秒的RTO时间。氧化物的目标厚度是借助于选择总压力来设定的。正如从图6可以看出的,要求的压力为200托。
图6为在100%O2中在1200℃下,作25秒的RTO处理时,氧化物厚度与压力的函数关系曲线图。从图9中可以看出,在此情况下BMD密度约为2.5e9cm-3
通观本发明,处理过程是可以操作来调节氧化物的厚度的,它靠的是在大气压力下稀释氧、氩或氮;但是,优选的实施方案是使用100%的O2或其它种类的氧化剂为N2O或NO,以避免硅的表面起凹坑。
应当理解,在不违反本发明范围的情况下可对本发明的处理过程作出种种变更,同时也应理解,所给出的实施例只是为了说明,而不是为了限制。

Claims (10)

1.处理半导体衬底的方法,其包括:
在快速热处理中,在给定压力下在氧化环境中把硅晶片暴露于受控的温度和受控的预退火时间,在晶片表面上获得预先选定的目标厚度的热氧化物,以满足预先选定的熔蚀区深度,同时调节熔蚀区深度和整体微缺陷密度,
其特征在于所述氧化物用来形成衬垫氧化物而没有进行剥离步骤,从而所述硅晶片的暴露用作预退火和氧化的联合步骤,并且所述受控的温度保持在1200℃,快速热氧化时间为10-25秒,以获得4-8纳米目标厚度的热氧化物。
2.权利要求1的方法,其中氧化环境系选自100%氧、含有5%氧的氩、NO和N2O的任一种。
3.权利要求1的方法,其中所说的热氧化物的厚度是借助于改变该环境压力来调节的。
4.权利要求1的方法,其中所说的溶蚀区深度和整体微缺陷密度,是借助于快速热处理的温度和时间参数来调节的。
5.权利要求2的方法,其中所说的氧化环境为100%的氧,所说的环境压力为约740托。
6.权利要求5的方法,其中所说的受控温度是在快速热氧化时间为约10秒内保持在1200℃,以获得目标厚度约4nm的热氧化物。
7.权利要求5的方法,其中所说的受控温度是在快速热氧化时间为约25秒内保持在约1200℃,以获得目标厚度约8nm、整体微缺陷密度约3e8cm-3的热氧化物。
8.权利要求5的方法,其在在约25秒的快速热氧化时间内,获得约20μm的溶蚀区深度。
9.权利要求5的方法,其中在总压力为约200托下获得约2.5e9cm-3的整体微缺陷密度。
10.权利要求2的方法,其中所说的氧化环境为含有5%氧的氩,所说的环境压力为约740托。
CNB991184955A 1998-09-03 1999-09-03 使用快速热处理的预退火/氧化联合步骤 Expired - Fee Related CN1151546C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/146,870 US6436846B1 (en) 1998-09-03 1998-09-03 Combined preanneal/oxidation step using rapid thermal processing
US09/146870 1998-09-03
US09/146,870 1998-09-03

Publications (2)

Publication Number Publication Date
CN1257306A CN1257306A (zh) 2000-06-21
CN1151546C true CN1151546C (zh) 2004-05-26

Family

ID=22519341

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB991184955A Expired - Fee Related CN1151546C (zh) 1998-09-03 1999-09-03 使用快速热处理的预退火/氧化联合步骤

Country Status (6)

Country Link
US (1) US6436846B1 (zh)
EP (1) EP0984486A3 (zh)
JP (1) JP2000091259A (zh)
KR (1) KR100630516B1 (zh)
CN (1) CN1151546C (zh)
TW (1) TW540120B (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100372097B1 (ko) * 2000-12-26 2003-02-14 주식회사 실트론 웨이퍼의 열처리 방법
US7101812B2 (en) * 2002-09-20 2006-09-05 Mattson Technology, Inc. Method of forming and/or modifying a dielectric film on a semiconductor surface
US7321722B2 (en) * 2005-06-13 2008-01-22 United Microelectronics Corp. Method for thermal processing a semiconductor wafer
EP1835533B1 (en) * 2006-03-14 2020-06-03 Soitec Method for manufacturing compound material wafers and method for recycling a used donor substrate
JP5072460B2 (ja) * 2006-09-20 2012-11-14 ジルトロニック アクチエンゲゼルシャフト 半導体用シリコンウエハ、およびその製造方法
DE102007027111B4 (de) * 2006-10-04 2011-12-08 Siltronic Ag Siliciumscheibe mit guter intrinsischer Getterfähigkeit und Verfahren zu ihrer Herstellung
JP4820801B2 (ja) * 2006-12-26 2011-11-24 株式会社Sumco 貼り合わせウェーハの製造方法
JP5515406B2 (ja) * 2009-05-15 2014-06-11 株式会社Sumco シリコンウェーハおよびその製造方法
US8999864B2 (en) 2009-06-03 2015-04-07 Global Wafers Japan Co., Ltd. Silicon wafer and method for heat-treating silicon wafer
CN102168314B (zh) * 2011-03-23 2012-05-30 浙江大学 直拉硅片的内吸杂工艺
US8492290B2 (en) * 2011-06-21 2013-07-23 International Business Machines Corporation Fabrication of silicon oxide and oxynitride having sub-nanometer thickness
JP6716344B2 (ja) 2016-06-01 2020-07-01 グローバルウェーハズ・ジャパン株式会社 シリコンウェーハの熱処理方法
CN108660513A (zh) * 2017-03-28 2018-10-16 上海新昇半导体科技有限公司 一种减少晶片缺陷的设备及方法
DE102017219255A1 (de) * 2017-10-26 2019-05-02 Siltronic Ag Halbleiterscheibe aus einkristallinem Silizium
US20220298620A1 (en) * 2021-03-22 2022-09-22 Applied Materias, Inc. Enhanced oxidation with hydrogen radical pretreatment

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS583375B2 (ja) * 1979-01-19 1983-01-21 超エル・エス・アイ技術研究組合 シリコン単結晶ウエハ−の製造方法
EP0214421A1 (de) * 1985-08-09 1987-03-18 Siemens Aktiengesellschaft Verfahren zum Herstellen von Dünnoxidschichten auf durch Tiegelziehen hergestellten Siliziumsubstraten
US5242854A (en) * 1990-04-02 1993-09-07 National Semiconductor Corporation High performance semiconductor devices and their manufacture
JPH0684925A (ja) * 1992-07-17 1994-03-25 Toshiba Corp 半導体基板およびその処理方法
US5360769A (en) * 1992-12-17 1994-11-01 Micron Semiconductor, Inc. Method for fabricating hybrid oxides for thinner gate devices
US5401669A (en) * 1993-05-13 1995-03-28 Memc Electronic Materials, Spa Process for the preparation of silicon wafers having controlled distribution of oxygen precipitate nucleation centers
JP2874834B2 (ja) * 1994-07-29 1999-03-24 三菱マテリアル株式会社 シリコンウェーハのイントリンシックゲッタリング処理法
US6100149A (en) * 1997-07-01 2000-08-08 Steag Rtp Systems Method for rapid thermal processing (RTP) of silicon substrates
WO2000013226A1 (en) * 1998-09-02 2000-03-09 Memc Electronic Materials, Inc. Process for preparing an ideal oxygen precipitating silicon wafer

Also Published As

Publication number Publication date
EP0984486A2 (en) 2000-03-08
CN1257306A (zh) 2000-06-21
JP2000091259A (ja) 2000-03-31
KR20000022803A (ko) 2000-04-25
EP0984486A3 (en) 2000-04-19
TW540120B (en) 2003-07-01
US6436846B1 (en) 2002-08-20
KR100630516B1 (ko) 2006-09-29

Similar Documents

Publication Publication Date Title
CN1151546C (zh) 使用快速热处理的预退火/氧化联合步骤
US5869405A (en) In situ rapid thermal etch and rapid thermal oxidation
KR940007587B1 (ko) 반도체장치의 제조방법
EP1626440B1 (de) SOI-Scheibe
US5994761A (en) Ideal oxygen precipitating silicon wafers and oxygen out-diffusion-less process therefor
EP0193021A1 (en) A method of forming an ion implanted gallium arsenide device
KR20010092733A (ko) 고유 게터링을 가지는 에피택시얼 실리콘 웨이퍼 및 그제조 방법
KR20010073067A (ko) 무산소침전 초크랄스키 실리콘 웨이퍼
JP3204855B2 (ja) 半導体基板の製造方法
EP1212790B1 (en) Process for improving the thickness uniformity of a thin oxide layer in semiconductor wafer fabrication
WO1999001895A1 (en) Method for rapid thermal processing (rtp) of a silicon substrate
JPH10144698A (ja) シリコンウエーハ及びその製造方法
JPS61230329A (ja) 半導体表面への酸化物薄膜の形成方法
JPS6130030A (ja) 多元素半導体のアニ−ル方法
KR0137550B1 (ko) 게이트 산화막 형성 방법
JP2868881B2 (ja) 化合物半導体単結晶の熱処理法
JPS61135128A (ja) 半導体装置の製造方法
TW439152B (en) Non-oxygen precipitating Czochralski silicon wafers
US20110156222A1 (en) Silicon Wafer and Manufacturing Method Thereof
JPS6116530A (ja) 半導体装置の製造方法
KR100227641B1 (ko) 반도체 소자의 게이트 산화막 형성 방법
JP2574630B2 (ja) シリコン基板の品質安定化処理方法
US20060276038A1 (en) Thermal desorption of oxide from surfaces
JPS6115335A (ja) シリコンウエ−ハのゲツタリング方法
JPH07283205A (ja) エッチング方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: INFINEON TECHNOLOGIES AG

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT

Effective date: 20130226

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20130226

Address after: German Neubiberg

Patentee after: Infineon Technologies AG

Address before: Munich, Germany

Patentee before: Siemens AG

Effective date of registration: 20130226

Address after: Munich, Germany

Patentee after: QIMONDA AG

Address before: German Neubiberg

Patentee before: Infineon Technologies AG

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20151228

Address after: German Berg, Laura Ibiza

Patentee after: Infineon Technologies AG

Address before: Munich, Germany

Patentee before: QIMONDA AG

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20040526

Termination date: 20170903

CF01 Termination of patent right due to non-payment of annual fee