CN115141623A - 一种用于汞离子检测的比率型荧光探针的制备方法 - Google Patents

一种用于汞离子检测的比率型荧光探针的制备方法 Download PDF

Info

Publication number
CN115141623A
CN115141623A CN202210729094.0A CN202210729094A CN115141623A CN 115141623 A CN115141623 A CN 115141623A CN 202210729094 A CN202210729094 A CN 202210729094A CN 115141623 A CN115141623 A CN 115141623A
Authority
CN
China
Prior art keywords
fluorescent probe
mass
ion detection
mercury ion
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210729094.0A
Other languages
English (en)
Other versions
CN115141623B (zh
Inventor
贾坤
易柯宇
范子林
郭新凯
刘孝波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Guangdong Electronic Information Engineering Research Institute of UESTC
Original Assignee
University of Electronic Science and Technology of China
Guangdong Electronic Information Engineering Research Institute of UESTC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China, Guangdong Electronic Information Engineering Research Institute of UESTC filed Critical University of Electronic Science and Technology of China
Priority to CN202210729094.0A priority Critical patent/CN115141623B/zh
Publication of CN115141623A publication Critical patent/CN115141623A/zh
Application granted granted Critical
Publication of CN115141623B publication Critical patent/CN115141623B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4804Two or more polyethers of different physical or chemical nature
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/6692Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/34
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Immunology (AREA)
  • Optics & Photonics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种用于汞离子检测的比率型荧光探针的制备方法,属于高分子材料技术领域。包括以下步骤:首先调节软段结构,通过聚合得到不同结构的聚氨酯,将聚氨酯包埋量子点得到用于汞离子检测的荧光探针;然后,再以含苯并噁嗪环的邻苯二甲腈树脂作为碳源和氮源,通过水热法制备得到了具有稳定荧光的碳量子点;最后,将碳量子点与荧光探针通过一步共混法,得到比率型荧光探针。该方法制得的比率型荧光探针不仅大大提高了探针检测的稳定性,同时将探针转移至水性聚氨酯乳液中,得到的荧光薄膜同样能够实现对汞离子的识别。

Description

一种用于汞离子检测的比率型荧光探针的制备方法
技术领域
本发明属于高分子材料技术领域,尤其涉及一种用于汞离子检测的比率型荧光探针的制备方法。
背景技术
随着现代化工业的迅速发展,有毒有害的排放废物从种类到数量都在与日俱增,特别是重金属及其化合物的污染尤为突出并且日益严重。其中,汞离子(Hg2+)的积累会对人体的肝脏、肾脏、神经元和免疫系统造成严重损害,导致臭名昭著的水俣病。因此,开发能够有效检测微量重金属离子浓度的灵敏分析工具具有重要意义。同时,发展快速便捷、低成本、简单可靠、便于现场检测的方法,也是当前重金属离子检测领域的研究热点。
半导体量子点作为一种能够检测重金属离子的纳米颗粒,一直以来受到研究者的广泛关注。但是高量子产率的半导体量子点通常都是油溶性,在水相中易聚集导致荧光淬灭,因此很难应用于各种水环境中重金属离子的检测。针对上述难题,研究者采用聚合物材料包埋量子点,成功将油溶性量子点转移到水相中,实现了其对于水相中各类重金属离子的检测。另外,在荧光探针分析中,单波段发射的荧光探针会受各类仪器波动等因素,致使荧光测试稳定性较差。因此设计开发具有多波段发射、且其中至少一个波段的荧光强度保持稳定的比率型荧光探针,可有效提高分析检测性能。
发明内容
本发明的目的在于,针对背景技术存在的问题,提出了一种用于汞离子检测的比率型荧光探针的制备方法。本发明通过设计不同结构的聚氨酯,将商用的油溶性ZnCdSe@ZnS量子点转移到水相中,得到可用于特异性检测水相汞离子的荧光探针(QD@PU)。同时为了提高汞离子检测的稳定性,制备了水溶性碳量子点,并构建了具有双波段发射特性的复合比率型荧光探针(CD-QD@PU),显著提高了汞离子检测性能。
为实现上述目的,本发明采用的技术方案如下:
一种用于汞离子检测的比率型荧光探针的制备方法,包括以下步骤:
步骤1、将0.03份(物质的量)多元醇滴加至0.06份(物质的量)含催化剂的二异氰酸酯中,在70~90℃下反应,直到得到的产物中异氰酸基(-NCO)的含量达到5.8%(异氰酸基质量占产物总质量的百分比),停止反应,得到预聚体;
步骤2、在步骤1得到的预聚体中依次加入0.01~0.03份(物质的量)2,2-二羟甲基丙酸(DMPA)、0.01~0.03份(物质的量)1,4-丁二醇(BDO),70~90℃下反应,反应完成后自然冷却至室温,采用二氯甲烷稀释后取出,得到质量浓度为40wt%的聚氨酯溶液;
步骤3、取2份(质量)的二氯甲烷,向其中加入0.025份(质量)步骤2得到的聚氨酯溶液和0.05~0.2份(质量)量子点溶液,混合均匀后加入10份(质量)的去离子水中,密闭搅拌6~10h后,敞开体系继续搅拌6~10h,得到荧光探针;
步骤4、将0.00025~0.001份(物质的量)含苯并噁嗪环的邻苯二甲腈树脂和0.05份(质量)的浓硫酸,加入10份(质量)的去离子水中,搅拌混合均匀后,转移至高压釜中进行水热反应,反应温度为200℃,反应时间为10小时,反应完成后,冷却至室温,取出上清液过滤得到碳量子点溶液;
步骤5、按照体积比为1:1,将步骤3得到的荧光探针和步骤4得到的碳量子点溶液混合,搅拌反应4~6小时,即可得到用于汞离子检测的比率型荧光探针。
进一步的,将步骤5得到的比率型荧光探针与水性聚氨酯乳液混合后,浇筑于聚四氟乙烯模具,在40℃下烘干48h,得到能够稳定检测汞离子的荧光薄膜;其中,比率型荧光探针与水性聚氨酯乳液的体积比为1:50,水性聚氨酯乳液的固含量为20%。
进一步的,步骤1所述多元醇为分子量为600~2000的聚乙二醇(PEG)、聚丙二醇(PPG)、聚四氢呋喃二醇(PTMG)中的两种以上;所述二异氰酸酯为异佛尔酮二异氰酸酯(IPDI)、甲苯二异氰酸酯(TDI)、二苯基甲烷二异氰酸酯(MDI)、二环己基甲烷二异氰酸酯(HMDI)等。
进一步的,步骤1所述催化剂为二月桂酸二丁基锡(DBTDL),催化剂占多元醇的0.1wt.%。
进一步的,步骤3所述量子点溶液为油溶性的半导体荧光量子点,具体为浓度为3mg/mL的ZnCdSe@ZnS量子点溶液。
进一步的,步骤4所述含苯并噁嗪环的邻苯二甲腈树脂的化学结构式为
Figure BDA0003712179270000031
进一步的,步骤4所述浓硫酸的浓度为98%。
本发明提供的一种用于汞离子检测的比率型荧光探针的制备方法,首先,调节软段结构,通过聚合得到不同结构的聚氨酯,采用聚氨酯包埋量子点得到用于汞离子检测的荧光探针;然后,再以含苯并噁嗪环的邻苯二甲腈树脂作为碳源和氮源,通过水热法制备得到了具有稳定荧光的碳量子点;最后,将碳量子点与荧光探针通过一步共混法,得到比率型荧光探针。该方法制得的比率型荧光探针不仅大大提高了探针检测的稳定性,同时将探针转移至水性聚氨酯乳液中,得到的荧光薄膜同样能够实现对汞离子的识别。
与现有技术相比,本发明的有益效果为:
1、本发明提供的一种用于汞离子检测的比率型荧光探针的制备方法,采用聚氨酯包埋,将油溶性的量子点转移至水相,实现了对水相中汞离子的特异性荧光检测。
2、本发明提供的一种用于汞离子检测的比率型荧光探针的制备方法,制得的碳量子点荧光强度不受汞离子浓度影响,使得基于碳量子点和荧光探针构建的比率型荧光探针,具有更加优异的汞离子检测性能,进一步提高了对汞离子的检测能力。
3、本发明提供的一种用于汞离子检测的比率型荧光探针的制备方法,通过优选聚氨酯的分子结构,得到性能更优异的荧光探针;通过一步共混法制得水分散性比率型荧光探针,制备方法简单,安全环保。
附图说明
图1为实施例1、对比例1、对比例2三种不同多元醇软段结构的聚氨酯的红外光谱图;
图2为实施例1、对比例1、对比例2三种不同多元醇软段结构的聚氨酯包埋量子点探针在不同pH下的荧光发射强度;
图3为实施例1制得的PTMG-PEG-PU包埋ZnCdSe@ZnS量子点的荧光探针对不同浓度汞离子的响应及线性范围;
图4为实施例2步骤4制得的碳量子点溶液在不同的50μM金属离子溶液中的荧光发射光谱;
图5为实施例2步骤5制得的比率型荧光探针对不同浓度汞离子的响应及线性范围;
图6为实施例2步骤5制得的比率型荧光探针检测汞离子浓度的重现性。
具体实施方式
以下通过具体实施方式的描述对本发明做进一步说明,但这并非对本发明的限制,本领域技术人员根据本发明的基本思想,可以做出各种变型或改性,只要不脱离本发明的基本思想,均在本发明的范围之内。
实施例1
步骤1、将PTMG-1000、PEG-1000滴加至含二月桂酸二丁基锡(DBTDL)的异佛尔酮二异氰酸酯(IPDI)中,在80℃下反应3小时,采用二正丁胺滴定法测定NCO含量,直到得到的产物中异氰酸基(-NCO)的含量达到5.8%(异氰酸基质量占产物总质量的百分比),停止反应,得到预聚体;其中,二月桂酸二丁基锡(DBTDL)占PTMG-1000和PEG-1000总质量的0.1wt.%;
步骤2、在步骤1得到的预聚体中依次加入2,2-二羟甲基丙酸(DMPA)、1,4-丁二醇(BDO),80℃下反应3小时,反应完成后自然冷却至室温,采用二氯甲烷稀释后取出,得到质量浓度为40wt%的聚氨酯溶液,标记为PTMG-PEG-PU,其红外光谱图如图1所示;其中,IPDI、PTMG-1000、PEG-1000、DMPA、BDO的摩尔比为0.1mol:0.025mol:0.025mol:0.03mol:0.02mol;
步骤3、取2份(质量)的二氯甲烷,向其中加入0.025份(质量)步骤2得到的聚氨酯溶液和0.05(质量)ZnCdSe@ZnS量子点溶液,混合均匀后加入10份(质量)的去离子水中,密闭搅拌8h后,敞开体系继续搅拌8h挥发二氯甲烷,得到荧光探针。
图2为实施例1、对比例1、对比例2三种不同多元醇软段结构的聚氨酯包埋量子点探针在不同pH下的荧光发射强度;由图2可知,实施例1的PTMG-PEG-PU乳液中的量子点仍然具有荧光,表明油溶性量子点已经被聚氨酯成功包埋,成功制备出荧光探针。并且通过与对比例1及对比例2的荧光性能比较后可知,在不同pH值下,实施例1的聚氨酯包埋量子点探针具有更大的荧光强度、更好的荧光稳定性。
图3为实施例1制得的PTMG-PEG-PU包埋ZnCdSe@ZnS量子点的荧光探针对不同浓度汞离子的响应及线性范围;由图3可知,通过将荧光探针对不同浓度汞离子的荧光响应进行线性拟合,发现具有一定的线性关系,且R2=0.93713。
对比例1
步骤1、将PTMG-1000滴加至含二月桂酸二丁基锡(DBTDL)的异佛尔酮二异氰酸酯(IPDI)中,在80℃下反应3小时,采用二正丁胺滴定法测定NCO含量,直到得到的产物中异氰酸基(-NCO)的含量达到5.8%(异氰酸基质量占产物总质量的百分比),停止反应,得到预聚体;其中,二月桂酸二丁基锡(DBTDL)占PTMG-1000质量的0.1wt.%;
步骤2、在步骤1得到的预聚体中依次加入2,2-二羟甲基丙酸(DMPA)、1,4-丁二醇(BDO),80℃下反应2.5小时,反应完成后自然冷却至室温,采用二氯甲烷稀释后取出,得到质量浓度为40wt%的聚氨酯溶液,标记为PTMG-PU,其红外光谱图如图1所示;其中,IPDI、PTMG-1000、DMPA、BDO的摩尔比为0.1mol:0.05mol:0.03mol:0.02mol;
步骤3、取2份(质量)的二氯甲烷,向其中加入0.025份(质量)步骤2得到的聚氨酯溶液和0.05(质量)ZnCdSe@ZnS量子点溶液,混合均匀后加入10份(质量)的去离子水中,密闭搅拌8h后,敞开体系继续搅拌8h挥发二氯甲烷,得到包埋量子点的聚氨酯乳液,即荧光探针。
图2为实施例1、对比例1、对比例2三种不同多元醇软段结构的聚氨酯包埋量子点探针在不同pH下的荧光发射强度;由图2可知,对比例1的PTMG-PU乳液中的量子点仍然具有荧光,表明油溶性量子点已经被聚氨酯成功包埋,成功制备出荧光探针,但在不同pH条件下的荧光稳定性差,需要继续优化PU分子结构。
对比例2
步骤1、将PEG-1000滴加至含二月桂酸二丁基锡(DBTDL)的异佛尔酮二异氰酸酯(IPDI)中,在70℃下反应3小时,采用二正丁胺滴定法测定NCO含量,直到得到的产物中异氰酸基(-NCO)的含量达到5.8%(异氰酸基质量占产物总质量的百分比),停止反应,得到预聚体;其中,二月桂酸二丁基锡(DBTDL)占PEG-1000质量的0.1wt.%;
步骤2、在步骤1得到的预聚体中依次加入2,2-二羟甲基丙酸(DMPA)、1,4-丁二醇(BDO),80℃下反应2.5小时,反应完成后自然冷却至室温,采用二氯甲烷稀释后取出,得到质量浓度为40wt%的聚氨酯溶液,标记为PEG-PU,其红外光谱图如图1所示;其中,IPDI、PEG-1000、DMPA、BDO的摩尔比为0.1mol:0.05mol:0.03mol:0.02mol;
步骤3、取2份(质量)的二氯甲烷,向其中加入0.025份(质量)步骤2得到的聚氨酯溶液和0.05(质量)ZnCdSe@ZnS量子点溶液,混合均匀后加入10份(质量)的去离子水中,密闭搅拌8h后,敞开体系继续搅拌8h挥发二氯甲烷,得到包埋量子点的聚氨酯乳液,即荧光探针。
图2为实施例1、对比例1、对比例2三种不同多元醇软段结构的聚氨酯包埋量子点探针在不同pH下的荧光发射强度;由图2可知,对比例2的PEG-PU乳液中的量子点仍然具有荧光,表明油溶性量子点已经被聚氨酯成功包埋,成功制备出荧光探针,但在不同pH条件下的荧光稳定性差,需要继续优化PU分子结构。
实施例2
步骤1、将PTMG-1000、PEG-1000滴加至含二月桂酸二丁基锡(DBTDL)的异佛尔酮二异氰酸酯(IPDI)中,在80℃下反应3小时,采用二正丁胺滴定法测定NCO含量,直到得到的产物中异氰酸基(-NCO)的含量达到5.8%(异氰酸基质量占产物总质量的百分比),停止反应,得到预聚体;其中,二月桂酸二丁基锡(DBTDL)占PTMG-1000和PEG-1000总质量的0.1wt.%;
步骤2、在步骤1得到的预聚体中依次加入2,2-二羟甲基丙酸(DMPA)、1,4-丁二醇(BDO),80℃下反应3小时,反应完成后自然冷却至室温,采用二氯甲烷稀释后取出,得到质量浓度为40wt%的聚氨酯溶液,标记为PTMG-PEG-PU,其红外光谱图如图1所示;其中,IPDI、PTMG-1000、PEG-1000、DMPA、BDO的摩尔比为0.1mol:0.025mol:0.025mol:0.03mol:0.02mol;
步骤3、取2份(质量)的二氯甲烷,向其中加入0.025份(质量)步骤2得到的聚氨酯溶液和0.05(质量)ZnCdSe@ZnS量子点溶液,混合均匀后加入10份(质量)的去离子水中,密闭搅拌8h后,敞开体系继续搅拌8h挥发二氯甲烷,得到荧光探针;
步骤4、取0.5mmol含苯并噁嗪环的邻苯二甲腈树脂和50uL的98%浓硫酸加入10mL的去离子水中,搅拌混合均匀后,转移至高压釜中进行水热反应,反应温度为200℃,反应时间为10小时,反应完成后,冷却至室温,取出上清液过滤得到碳量子点溶液;
步骤5、按照体积比为1:1,将步骤3得到的荧光探针和步骤4得到的碳量子点溶液混合,搅拌反应6小时,即可得到用于汞离子检测的比率型荧光探针。
图4为实施例2步骤4制得的碳量子点溶液在不同的50μM金属离子溶液中的荧光发射光谱;由图4可知,在50μM的不同金属离子溶液中碳量子点的荧光强度保持不变。
图5为实施例2步骤5制得的比率型荧光探针对不同浓度汞离子的响应及线性范围;由图5可知,制备出的比率型荧光探针表现出对汞离子的比率型荧光响应特征,通过比率型荧光探针对不同浓度汞离子的荧光响应进行线性拟合,得到的线性相关系数R2为0.99505,高于实施例1制备的单一型荧光探针的线性相关系数,表明比率型荧光探针相比单一型探针,表现出更好的汞离子检测性能。为了进一步证明比率型荧光探针的检测重现性,将其用于检测特定浓度的汞离子溶液,将每个浓度下检测到的荧光淬灭程度代入图5拟合得到的线性方程中,可推算出测试浓度,并与标定浓度进行对照,检测结果如图6所示。图6显示,每个浓度下的多次检测结果均接近实际汞离子浓度,且测试结果的标准偏差为0.08~0.41,表明比率型荧光探针对汞离子的检测具有优异的重现性。

Claims (7)

1.一种用于汞离子检测的比率型荧光探针的制备方法,其特征在于,包括以下步骤:
步骤1、将0.03物质的量份多元醇滴加至0.06物质的量份含催化剂的二异氰酸酯中,在70~90℃下反应,直到得到的产物中异氰酸基的含量达到5.8%,停止反应,得到预聚体;
步骤2、在步骤1得到的预聚体中依次加入0.01~0.03物质的量份2,2-二羟甲基丙酸、0.01~0.03物质的量份1,4-丁二醇,70~90℃下反应,反应完成后自然冷却至室温,采用二氯甲烷稀释后取出,得到质量浓度为40wt%的聚氨酯溶液;
步骤3、取2质量份的二氯甲烷,向其中加入0.025质量份步骤2得到的聚氨酯溶液和0.05~0.2质量份量子点溶液,混合均匀后加入10质量份的去离子水中,密闭搅拌6~10h后,敞开体系继续搅拌6~10h,得到荧光探针;
步骤4、将0.00025~0.001物质的量份含苯并噁嗪环的邻苯二甲腈树脂和0.05质量份的浓硫酸,加入10质量份的去离子水中,搅拌混合均匀后,转移至高压釜中进行水热反应,反应温度为200℃,反应时间为10小时,反应完成后,冷却至室温,取出上清液过滤得到碳量子点溶液;
步骤5、按照体积比为1:1,将步骤3得到的荧光探针和步骤4得到的碳量子点溶液混合,搅拌反应4~6小时,即可得到用于汞离子检测的比率型荧光探针。
2.根据权利要求1所述的用于汞离子检测的比率型荧光探针的制备方法,其特征在于,步骤5得到的比率型荧光探针与水性聚氨酯乳液混合后,浇筑于聚四氟乙烯模具,在40℃下烘干48h,得到荧光薄膜;其中,比率型荧光探针与水性聚氨酯乳液的体积比为1:50,水性聚氨酯乳液的固含量为20%。
3.根据权利要求1所述的用于汞离子检测的比率型荧光探针的制备方法,其特征在于,步骤1所述多元醇为分子量为600~2000的聚乙二醇、聚丙二醇、聚四氢呋喃二醇中的两种以上;所述二异氰酸酯为异佛尔酮二异氰酸酯、甲苯二异氰酸酯、二苯基甲烷二异氰酸酯或二环己基甲烷二异氰酸酯。
4.根据权利要求1所述的用于汞离子检测的比率型荧光探针的制备方法,其特征在于,步骤1所述催化剂为二月桂酸二丁基锡,催化剂占多元醇的0.1wt.%。
5.根据权利要求1所述的用于汞离子检测的比率型荧光探针的制备方法,其特征在于,步骤3所述量子点溶液为油溶性的半导体荧光量子点。
6.根据权利要求1所述的用于汞离子检测的比率型荧光探针的制备方法,其特征在于,步骤3所述量子点溶液为3mg/mL的ZnCdSe@ZnS量子点溶液。
7.根据权利要求1所述的用于汞离子检测的比率型荧光探针的制备方法,其特征在于,步骤4所述浓硫酸的浓度为98%。
CN202210729094.0A 2022-06-24 2022-06-24 一种用于汞离子检测的比率型荧光探针的制备方法 Active CN115141623B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210729094.0A CN115141623B (zh) 2022-06-24 2022-06-24 一种用于汞离子检测的比率型荧光探针的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210729094.0A CN115141623B (zh) 2022-06-24 2022-06-24 一种用于汞离子检测的比率型荧光探针的制备方法

Publications (2)

Publication Number Publication Date
CN115141623A true CN115141623A (zh) 2022-10-04
CN115141623B CN115141623B (zh) 2023-12-01

Family

ID=83407351

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210729094.0A Active CN115141623B (zh) 2022-06-24 2022-06-24 一种用于汞离子检测的比率型荧光探针的制备方法

Country Status (1)

Country Link
CN (1) CN115141623B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080255346A1 (en) * 2007-04-11 2008-10-16 Chung-Ang University Industry-Academy Cooperation Foundation Ratiometric fluorescent chemosensor for selective detection of Hg (II) ions
CN103709731A (zh) * 2013-12-27 2014-04-09 Tcl集团股份有限公司 量子点/聚氨酯纳米晶体复合物及制备方法和彩色转化膜
CN109174047A (zh) * 2018-09-30 2019-01-11 天津市金鳞水处理科技有限公司 一种兼具重金属离子检测和吸附型聚丙烯酰胺微凝胶
CN109504368A (zh) * 2018-11-19 2019-03-22 太原科技大学 一种CDs/TPU荧光纳米复合材料制备方法
DE102018125070A1 (de) * 2017-10-10 2019-04-11 Uniwersytet Jagielloński Nanoskaliger Quecksilber-Ionen-Sensor und Verfahren zu dessen Herstellung, sowie Verfahren zur Detektion von Hg2+-Ionen
KR20190141902A (ko) * 2018-06-15 2019-12-26 건국대학교 산학협력단 형광 포르피린 유도체가 도핑된 수분산 폴리우레탄 박막 및 이를 이용한 수은 이온 검출 방법
CN112986197A (zh) * 2021-02-18 2021-06-18 军事科学院军事医学研究院环境医学与作业医学研究所 用于检测汞离子的比率荧光探针、荧光纸芯片和检测方法
CN113155803A (zh) * 2021-05-24 2021-07-23 河南师范大学 基于新型碳点的比率荧光探针合成及对汞离子的检测应用
CN113214826A (zh) * 2021-04-16 2021-08-06 中科院广州化学有限公司 一种高荧光量子产率碳量子点及其制备与在检测汞离子中的应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080255346A1 (en) * 2007-04-11 2008-10-16 Chung-Ang University Industry-Academy Cooperation Foundation Ratiometric fluorescent chemosensor for selective detection of Hg (II) ions
CN103709731A (zh) * 2013-12-27 2014-04-09 Tcl集团股份有限公司 量子点/聚氨酯纳米晶体复合物及制备方法和彩色转化膜
DE102018125070A1 (de) * 2017-10-10 2019-04-11 Uniwersytet Jagielloński Nanoskaliger Quecksilber-Ionen-Sensor und Verfahren zu dessen Herstellung, sowie Verfahren zur Detektion von Hg2+-Ionen
KR20190141902A (ko) * 2018-06-15 2019-12-26 건국대학교 산학협력단 형광 포르피린 유도체가 도핑된 수분산 폴리우레탄 박막 및 이를 이용한 수은 이온 검출 방법
CN109174047A (zh) * 2018-09-30 2019-01-11 天津市金鳞水处理科技有限公司 一种兼具重金属离子检测和吸附型聚丙烯酰胺微凝胶
CN109504368A (zh) * 2018-11-19 2019-03-22 太原科技大学 一种CDs/TPU荧光纳米复合材料制备方法
CN112986197A (zh) * 2021-02-18 2021-06-18 军事科学院军事医学研究院环境医学与作业医学研究所 用于检测汞离子的比率荧光探针、荧光纸芯片和检测方法
CN113214826A (zh) * 2021-04-16 2021-08-06 中科院广州化学有限公司 一种高荧光量子产率碳量子点及其制备与在检测汞离子中的应用
CN113155803A (zh) * 2021-05-24 2021-07-23 河南师范大学 基于新型碳点的比率荧光探针合成及对汞离子的检测应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BENMEI CAO等: "Ratiometric fluorescence detection of mercuric ion based on the nanohybrid of fluorescence carbon dots and quantum dots", ANALYTICA CHIMICA ACTA, vol. 786, pages 146 - 152 *
ZHU, SY等: "Construction of β-cyclodextrin derived CDs-coupled block copolymer micelles loaded with CdSe/ZnS QDs via host-guest interaction for ratiometric fluorescence sensing of metal ions", DYES AND PIGMENTS, vol. 168, pages 369 - 380 *
李光吉;黄玉刚;朱祖钊;罗伟昂;陈旭东;: "ZnS量子点/聚氨酯纳米复合材料的荧光光谱", 华南理工大学学报(自然科学版), no. 03, pages 1 - 5 *
石吉勇;李文亭;胡雪桃;史永强;邹小波;: "新型汞离子CQDs-CuNCs比率荧光探针的构建及在螃蟹中的应用", 光谱学与光谱分析, no. 12, pages 3925 - 3931 *

Also Published As

Publication number Publication date
CN115141623B (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
CN111217985B (zh) 一种金属配位自愈合聚氨酯弹性体及其制备方法
CN107674173B (zh) 水性聚氨酯交联剂及其制备方法
CN101649036B (zh) 多异氰酸酯固化剂及制备方法
CN111333808A (zh) 一种无溶剂水性聚氨酯的制备方法
EP0678536A1 (de) Wässrige Dispersion auf der Basis von Polymer/Polyurethan-Harzen, Verfahren zu deren Herstellung, Überzugsmittel und deren Verwendung
CN102333804A (zh) 水性聚氨酯树脂分散体及其制造方法
CN112625208A (zh) 一种三聚茚酮衍生物改性水性聚氨酯树脂及其制备方法
CN115141623A (zh) 一种用于汞离子检测的比率型荧光探针的制备方法
CN101775119A (zh) 一种环境敏感性聚氨酯膜的制备方法
CN103755920A (zh) 无溶剂型异氰酸酯预聚体及其制备方法、异氰酸酯组合物
CN101619164A (zh) 水性聚氨酯及其制备以及由其组成的水性涂料
CN102786648A (zh) 交联型的形状记忆聚氨酯
DE19708451A1 (de) Verfahren zum Herstellen von dünnwandigen elastischen Formkörpern
CN106397714B (zh) 一种防霉变聚氨酯预聚体的制备方法
CN110746569B (zh) 荧光水性聚氨酯的合成方法
CN110606928B (zh) 一种基于咔唑的荧光水性聚氨酯的合成方法
CN112898520B (zh) 一种水性聚氨酯分散体及其合成方法
CN108659189A (zh) 一种金属离子及pH响应荧光扩链剂及其制备方法和应用
Rahman et al. Effect of polyisocyanate hardener on waterborne polyurethane adhesive containing different amounts of ionic groups
CN111518256A (zh) 一种脂肪族水性聚氨酯的制备方法
CN114920904B (zh) 一种无色透明高强度聚氨酯防伪材料的制备方法及其应用
Król et al. Polyurethane cationomers synthesised with 4, 4′-methylenebis (phenyl isocyanate), polyoxyethylene glycol and N-methyl diethanolamine
CN116410432A (zh) 一种后交联体系水性聚氨酯和应用
CN110922551B (zh) 一种用于铁离子检测的罗丹明-聚氨酯荧光探针的制备方法
CN115109222A (zh) 一种抗菌的荧光可调水性聚氨酯材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant