CN115109287A - 一种光降解纳米氮化碳-聚氯乙烯复合薄膜的制备方法和应用 - Google Patents

一种光降解纳米氮化碳-聚氯乙烯复合薄膜的制备方法和应用 Download PDF

Info

Publication number
CN115109287A
CN115109287A CN202210873017.2A CN202210873017A CN115109287A CN 115109287 A CN115109287 A CN 115109287A CN 202210873017 A CN202210873017 A CN 202210873017A CN 115109287 A CN115109287 A CN 115109287A
Authority
CN
China
Prior art keywords
carbon nitride
polyvinyl chloride
composite film
photodegradable
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210873017.2A
Other languages
English (en)
Other versions
CN115109287B (zh
Inventor
李琦
苟宁
杨炜沂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN202210873017.2A priority Critical patent/CN115109287B/zh
Publication of CN115109287A publication Critical patent/CN115109287A/zh
Application granted granted Critical
Publication of CN115109287B publication Critical patent/CN115109287B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/04Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing carboxylic acids or their salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08J2327/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种光降解纳米氮化碳‑聚氯乙烯复合薄膜的制备方法和应用,属于可见光催化材料制备、可降解塑料制造技术领域。该方法通过调控类石墨相氮化碳的形貌和有机弱酸掺杂,从而提高氮化碳光催化氧化降解塑料的效果。该方法解决了常规添加纳米二氧化钛或纳米氧化锌制备光降解塑料时,引入额外的金属元素、较窄的吸收光谱范围等问题,添加氮化碳和有机弱酸可以显著地提高复合塑料薄膜的可光降解性能。该方法还可以应用于类似光降解纳米氮化碳‑聚乙烯复合薄膜的制备。

Description

一种光降解纳米氮化碳-聚氯乙烯复合薄膜的制备方法和 应用
技术领域
本发明涉及可见光催化材料制备、可降解塑料制造技术领域,具体涉及一种光降解纳米氮化碳-聚氯乙烯复合薄膜的制备方法和应用。
背景技术
传统塑料制品是用从石油中提炼出来的高分子材料制成的。聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯等制成的包装袋、一次性餐具、农用地膜、塑料瓶等塑料制品被广泛使用。这类塑料制品的回收利用价值较小,其大量使用后被弃置成为固体废弃物,导致生态环境严重污染。面对日益严重的白色污染问题,可降解塑料应运而生,其特点是在特定的环境条件下其化学结构发生明显变化从而发生降解。
光催化降解技术具有能耗低,降解光源条件便利等优点,是一种具有较好前景的塑料降解技术。在已有报道中,二氧化钛(TiO2)是应用最广泛的光催化材料,但是光响应范围较窄,只能利用紫外光,能量利用效率较低。因此,开发一种具有较大光谱响应范围,成本低、易制备以及具有较高光催化效果的光催化剂具有重要意义。类石墨相氮化碳,是一种新型的非金属聚合物半导体材料,仅由碳和氮两种元素组成、绿色环保、廉价易得、热稳定性和抗腐蚀性好。当足够的光照射氮化碳光催化剂表面就会促使光生载流子(光生电子和光生空穴)分离,光生电子获得光能从价带被激发到导带形成生光生电子,价带形成光生空穴。光生电子具有还原能力,与吸附在氮化碳光催化剂上的氧气发生一系列反应,产生超氧自由基和羟基自由基,其氧化能力可以降解各种有机物。类石墨相氮化碳具有比二氧化钛更宽的吸收光谱范围,而且具有稳定的物理化学性能,无毒无污染,易制备,是一种极具发展前途的新型光催化剂。本发明就是利用纳米氮化碳的光催化性质,将其引入聚氯乙烯中,使其在光照条件下发生降解从而达到废弃聚氯乙烯的自然降解的目的。
发明内容
本发明的目的在于提供一种光降解纳米氮化碳-聚氯乙烯复合薄膜的制备方法和应用,通过调控类石墨相氮化碳的形貌和有机弱酸掺杂,从而提高氮化碳光催化氧化降解塑料的效果,解决了常规添加纳米二氧化钛或纳米氧化锌制备光降解塑料时,引入额外的金属元素、较窄的吸收光谱范围等问题,添加氮化碳和有机弱酸后的聚氯乙烯复合塑料可以显著地提高复合塑料的可光降解性能。该方法还可以应用于类似光降解纳米氮化碳-聚乙烯复合薄膜的制备。
为实现上述目的,本发明所采用的技术方案如下:
一种光降解纳米氮化碳-聚氯乙烯复合薄膜的制备方法,该方法包括如下步骤:
(1)准备多孔氮化碳纳米片;
(2)将聚氯乙烯溶解在N,N-二甲基甲酰胺溶剂中,得到聚氯乙烯溶液;
(3)将所述氮化碳纳米片和有机弱酸加入到步骤(2)所得聚氯乙烯溶液中,加热挥发溶剂后即制得所述光降解纳米氮化碳-聚氯乙烯复合薄膜。
上述步骤(1)中,所述多孔氮化碳纳米片为片层状的石墨相结构,颗粒粒径1-4微米。
上述步骤(1)中,所述多孔氮化碳纳米片的制备包括如下步骤(a)-(b):
(a)制备类石墨相氮化碳:将富氮和富碳的前驱体在马弗炉中煅烧,所得样品通过行星球磨机研磨;
(b)热剥离处理:将球磨后的样品(氮化碳)置于50ml的坩埚中,煅烧温度为500~550℃,升温速率为2~5℃/min,保温时间为2~5h;锻炼后在60℃的烘箱中干燥12h,即得到所述的多孔氮化碳纳米片。
上述步骤(a)中,所述富氮和富碳的前驱体为尿素、硫脲、双氰胺和三聚氰胺中的一种或几种,煅烧温度为520~550℃,升温速率为2℃/min,保温时间为2~4h。
上述步骤(3)中,所述聚氯乙烯、有机弱酸和氮化碳纳米片的质量比为100:(1-15):(1-15)。
上述步骤(3)中,所述有机弱酸为草酸、醋酸和柠檬酸中的一种或两种的混合。
所制备的复合薄膜的光吸收范围为200-450nm;该复合薄膜在制备过程中未引入额外的金属元素,且在强酸强碱条件下具有性能稳定、质地轻的优点。
该复合薄膜应用于可见光条件下的塑料的高效光降解。
本发明设计机理如下:
本发明将具有良好光催化性能的氮化碳与聚乙烯塑料结合形成复合材料,在光照下,光生载流子(光生电子和光生空穴)分离,光生电子获得光能从价带被激发到导带形成生光生电子,价带形成光生空穴。有机弱酸可与光激发的空穴或表面羟基结合,抑制电子和空穴复合,从而显著提高氮化碳的光催化效率。光生电子与吸附在氮化碳光催化剂上的氧气发生一系列反应,产生超氧自由基和羟基自由基,攻击聚氯乙烯高分子链,达到光催化降解塑料的效果。
本发明的优点在于:
1.本发明将具有良好光催化性能的氮化碳与聚乙烯塑料结合形成复合材料,增强了复合材料的光吸收范围,实现了塑料薄膜的高效光降解。
2.本发明采用类石墨相氮化碳作为光敏剂,其制备简单、原料存储丰富、绿色环保。
3.本发明技术手段不引入金属元素,该复合薄膜为一种环境友好材料。
附图说明
图1为实施例1和对比例所制备的薄膜的光致失重曲线图。
图2为实施例1和对比例所制备的薄膜的紫外-可见吸收光谱。
具体实施方式
以下结合附图和实施例详述本发明。
本发明制备了一种光降解纳米氮化碳-聚氯乙烯复合薄膜,该复合薄膜由光敏剂氮化碳多孔纳米片、有机弱酸和聚氯乙烯复合而成,在光照条件下能够高效光降解。
所述光降解纳米氮化碳-聚氯乙烯复合薄膜的制备方法,包括如下步骤:
(1)基底清洗:将载玻片依次用丙酮、硝酸、去离子水和无水乙醇清洗,去除表面氧化物、油渍等杂质,然后置于真空干燥箱内60℃干燥12-24h;
(2)制备多孔氮化碳纳米片:将富氮和富碳的前驱体在马弗炉中煅烧,所得样品通过行星球磨机研磨;再将球磨后的样品置于50ml的坩埚中,煅烧温度为500~550℃,升温速率为2~5℃/min,保温时间为2~5h,在60℃的烘箱中干燥12h,研磨后即得到所述的氮化碳纳米片;
(3)制备复合薄膜:将聚氯乙烯溶解在N,N-二甲基甲酰胺溶剂中,然后以聚氯乙烯、有机弱酸和氮化碳纳米片用量的质量比为100:(1-15):(1-15)的剂量加入有机弱酸和步骤(2)获得的多孔氮化碳纳米片;将所得混合溶液流延至清洗后的载玻片,然后加热挥发溶剂制得光降解纳米氮化碳-聚氯乙烯复合薄膜。
以下实施例中,所制备的复合薄膜的光降解性能测试是在氙灯老化试验箱中,采用290~800nm波长光源对该复合薄膜进行辐照,测试该材料的光降解性能。
实施例1:
本实施例制备的纳米氮化碳-聚氯乙烯复合薄膜,具体过程如下:
(1)制备多孔氮化碳纳米片:首先,将富氮和富碳的前驱体在马弗炉中煅烧,所得样品通过行星球磨机研磨;再将球磨后的样品置于50ml的坩埚中,煅烧温度为520℃,升温速率为2℃/min,保温时间为4h,在60℃的烘箱中干燥12h,研磨后即得到所述的氮化碳纳米片;
(2)基底清洗:将载玻片依次用丙酮、硝酸、去离子水和无水乙醇清洗,去除表面氧化物、油渍等杂质,然后置于真空干燥箱内60℃干燥12h;
(3)制备复合薄膜:称量0.4g聚氯乙烯溶解在5ml N,N-二甲基甲酰胺溶剂中,在磁力搅拌器上搅拌6h,然后以聚氯乙烯、草酸颗粒和多孔氮化碳纳米片用量的质量比为100:6:1的剂量加入草酸颗粒和步骤(1)获得的多孔氮化碳纳米片;将所得混合溶液流延至清洗后的载玻片,然后置于加热台上,40℃干燥24h制得光降解纳米氮化碳-聚氯乙烯复合薄膜。
对比例1:
不添加实施例1步骤(3)中的草酸,只加入多孔氮化碳纳米片,具体过程如下:
(1)制备多孔氮化碳纳米片:首先,将富氮和富碳的前驱体在马弗炉中煅烧,所得样品通过行星球磨机研磨;再将球磨后的样品置于50ml的坩埚中,煅烧温度为520℃,升温速率为2℃/min,保温时间为4h,在40℃的烘箱中干燥12h,研磨后即得到所述的氮化碳纳米片;
(2)基底清洗:将载玻片依次用丙酮、硝酸、去离子水和无水乙醇清洗,去除表面氧化物、油渍等杂质,然后置于真空干燥箱内60℃干燥12h;
(3)制备复合薄膜:称量0.4g聚氯乙烯溶解在5ml N,N-二甲基甲酰胺溶剂中,在磁力搅拌器上搅拌6h,然后以聚氯乙烯与氮化碳纳米片用量的质量比为100:1的剂量加入步骤(2)获得的多孔氮化碳纳米片;将所得混合溶液流延至清洗后的载玻片,然后置于加热台上,40℃干燥24h制得复合薄膜。
对比例2:
本例为制备的纳米二氧化钛-聚氯乙烯复合薄膜,具体过程如下:
(1)基底清洗:将载玻片依次用丙酮、硝酸、去离子水和无水乙醇清洗,去除表面氧化物、油渍等杂质,然后置于真空干燥箱内60℃干燥12h;
(2)制备复合薄膜:称量0.4g聚氯乙烯溶解在5ml N,N-二甲基甲酰胺溶剂中,在磁力搅拌器上搅拌6h,然后以聚氯乙烯与草酸用量的质量比为100:1的剂量加入纳米二氧化钛;将所得混合溶液流延至清洗后的载玻片,然后置于加热台上,40℃干燥24h制得复合薄膜。
对比例3:
本例为制备的纯的聚氯乙烯薄膜,具体制备过程如下:
(1)基底清洗:将载玻片依次用丙酮、硝酸、去离子水和无水乙醇清洗,去除表面氧化物、油渍等杂质,然后置于真空干燥箱内60℃干燥12h;
(2)制备复合薄膜:称量0.4g聚氯乙烯溶解在5ml N,N-二甲基甲酰胺溶剂中,在磁力搅拌器上搅拌6h;将所得混合溶液流延至清洗后的载玻片,然后置于加热台上,60℃干燥24h制得纯聚氯乙烯薄膜。
实施例2:
将实施例1和对比例1-3制备的聚氯乙烯薄膜按照GB/T20197-2006的标准进行降解试验。
图1为实施例中1制备的纳米氮化碳-聚氯乙烯复合薄膜的光致失重曲线图。由图1可以看出实施例1所制备的纳米氮化碳-聚氯乙烯复合薄膜失重率为18.54%,具有最佳降解效果。对比例1所制备复合薄膜的失重率为13.08%,而对比例3制备的纯的聚氯乙烯薄膜失重率仅为8.26%。
图2为实施例1和对比例所制备的薄膜的紫外-可见吸收光谱,可以看出实施例1所制备的纳米氮化碳-聚氯乙烯复合薄膜在200~450nm范围的吸收增强,对比例2制备的纳米二氧化钛-聚氯乙烯复合薄膜在200~387nm近紫外区有吸收,对比例3制备的纯的聚氯乙烯薄膜仅对紫外光有吸收。说明本发明制备的复合薄膜提高了PVC薄膜对可见光的吸收,增强光吸收可以破坏PVC化学键,加快降解速率。
综合上述试验结果表明,本发明纳米氮化碳-聚氯乙烯复合薄膜具有宽的可见光吸收光谱范围,在辐照下复合薄膜光降解速率明显提高,值得大力提倡。
上述实施例仅作参考,具有和本专利相似或者从本专利思路出发而延伸的具有环境友好、无金属元素等特点的可光降解纳米氮化碳-聚氯乙烯复合薄膜的制备方法及其制备方法和应用,均在本专利的保护范围。

Claims (9)

1.一种光降解纳米氮化碳-聚氯乙烯复合薄膜的制备方法,其特征在于:该方法包括如下步骤:
(1)准备多孔氮化碳纳米片;
(2)将聚氯乙烯溶解在N,N-二甲基甲酰胺溶剂中,得到聚氯乙烯溶液;
(3)将所述氮化碳纳米片和有机弱酸加入到步骤(2)所得聚氯乙烯溶液中,加热挥发溶剂后即制得所述光降解纳米氮化碳-聚氯乙烯复合薄膜。
2.根据权利要求1所述的光降解纳米氮化碳-聚氯乙烯复合薄膜的制备方法,其特征在于:步骤(1)中,所述多孔氮化碳纳米片为片层状的石墨相结构,颗粒粒径1-4微米。
3.根据权利要求1或2所述的光降解纳米氮化碳-聚氯乙烯复合薄膜的制备方法,其特征在于:步骤(1)中,所述多孔氮化碳纳米片的制备包括如下步骤(a)-(b):
(a)制备类石墨相氮化碳:将富氮和富碳的前驱体在马弗炉中煅烧,所得样品通过行星球磨机研磨;
(b)热剥离处理:将球磨后的样品(氮化碳)置于50ml的坩埚中,煅烧温度为500~550℃,升温速率为2~5℃/min,保温时间为2~5h;锻炼后在60℃的烘箱中干燥12h,即得到所述的多孔氮化碳纳米片。
4.根据权利要求3所述的光降解纳米氮化碳-聚氯乙烯复合薄膜的制备方法,其特征在于:步骤(a)中,所述富氮和富碳的前驱体为尿素、硫脲、双氰胺和三聚氰胺中的一种或几种,煅烧温度为520~550℃,升温速率为2℃/min,保温时间为2~4h。
5.根据权利要求1所述的光降解纳米氮化碳-聚氯乙烯复合薄膜的制备方法,其特征在于:步骤(3)中,所述聚氯乙烯、有机弱酸和氮化碳纳米片的质量比为100:(1-15):(1-15)。
6.根据权利要求1所述的光降解纳米氮化碳-聚氯乙烯复合薄膜的制备方法,其特征在于:步骤(3)中,所述有机弱酸为草酸、醋酸和柠檬酸中的一种或两种的混合。
7.根据权利要求1所述的光降解纳米氮化碳-聚氯乙烯复合薄膜的制备方法,其特征在于:该复合薄膜的光吸收范围为200-450nm。
8.根据权利要求1所述的光降解纳米氮化碳-聚氯乙烯复合薄膜的制备方法,其特征在于:该复合薄膜在制备过程中未引入额外的金属元素,且在强酸强碱条件下具有性能稳定、质地轻的优点。
9.一种利用权利要求1所述方法制备的光降解纳米氮化碳-聚氯乙烯复合薄膜的应用,其特征在于:该复合薄膜应用于可见光条件下的塑料的高效光降解。
CN202210873017.2A 2022-07-21 2022-07-21 一种光降解纳米氮化碳-聚氯乙烯复合薄膜的制备方法和应用 Active CN115109287B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210873017.2A CN115109287B (zh) 2022-07-21 2022-07-21 一种光降解纳米氮化碳-聚氯乙烯复合薄膜的制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210873017.2A CN115109287B (zh) 2022-07-21 2022-07-21 一种光降解纳米氮化碳-聚氯乙烯复合薄膜的制备方法和应用

Publications (2)

Publication Number Publication Date
CN115109287A true CN115109287A (zh) 2022-09-27
CN115109287B CN115109287B (zh) 2023-12-05

Family

ID=83334935

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210873017.2A Active CN115109287B (zh) 2022-07-21 2022-07-21 一种光降解纳米氮化碳-聚氯乙烯复合薄膜的制备方法和应用

Country Status (1)

Country Link
CN (1) CN115109287B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116080053A (zh) * 2023-04-06 2023-05-09 中国农业科学院农业环境与可持续发展研究所 一种石墨化氮化碳可降解生物塑料膜的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005146243A (ja) * 2003-11-17 2005-06-09 Iwao Jiki Kogyo Kk 樹脂複合多孔質材料
CN216396312U (zh) * 2021-07-23 2022-04-29 常州恒利宝纳米新材料科技有限公司 一种氧硫掺杂石墨相氮化碳量子点光降解复合层及应用其的反应器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005146243A (ja) * 2003-11-17 2005-06-09 Iwao Jiki Kogyo Kk 樹脂複合多孔質材料
CN216396312U (zh) * 2021-07-23 2022-04-29 常州恒利宝纳米新材料科技有限公司 一种氧硫掺杂石墨相氮化碳量子点光降解复合层及应用其的反应器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DESONG WANG等: "An efficient visible-light photocatalyst prepared from g-C3N4 and polyvinyl chloride", APPLIED CATALYSIS B: ENVIRONMENTAL, vol. 156, pages 323 - 330 *
米静艳;殷蓉;罗青枝;王尚霞;安静;王德松;: "纳米TiO_2/聚氯乙烯共轭衍生物复合材料的制备及可见光催化性能", 复合材料学报, no. 05 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116080053A (zh) * 2023-04-06 2023-05-09 中国农业科学院农业环境与可持续发展研究所 一种石墨化氮化碳可降解生物塑料膜的制备方法

Also Published As

Publication number Publication date
CN115109287B (zh) 2023-12-05

Similar Documents

Publication Publication Date Title
US11111605B2 (en) Iodine doped bismuthyl carbonate nanosheet and molybdenum disulfide modified carbon nanofiber composites, preparation method and application thereof
CN105170173B (zh) 一种钙钛矿材料/有机聚合物复合光催化剂、制备及应用
CN105148949B (zh) 一种碘氧化铋‑钒酸铋异质结光催化剂及其制备方法
Rashid et al. ZnO-nanoparticles thin films synthesized by RF sputtering for photocatalytic degradation of 2-chlorophenol in synthetic wastewater
CN108940332B (zh) 一种高活性MoS2/g-C3N4/Bi24O31Cl10复合光催化剂的制备方法
CN111250135B (zh) 一种石墨相氮化碳纳米片材料及其制备方法和应用
CN107824174A (zh) 一种二氧化钛量子点/碳球复合材料及其制备方法
CN110801856A (zh) 一种石墨相氮化碳-铵钨青铜复合光催化剂的合成及其应用
CN110639594B (zh) 一种纳米二氧化钛/石墨相氮化碳复合光催化剂的制备方法
CN111453804A (zh) 一种铁掺杂类石墨相氮化碳/石墨烯多功能纳米复合材料的制备方法
CN105195190A (zh) 一种异质结光催化剂SnS2/g-C3N4及其制备方法和应用
CN115109287B (zh) 一种光降解纳米氮化碳-聚氯乙烯复合薄膜的制备方法和应用
Liu et al. TiOF2/g-C3N4 composite for visible-light driven photocatalysis
CN107930633B (zh) 一种SrTiO3/Cu2O异质结复合纳米材料的制备方法及应用
Wang et al. Visible light-driven photocatalytic degradation of organic pollutants via carbon quantum dots/TiO 2
CN106914266B (zh) 一种快速降解污染物的g-C3N4复合光催化剂及其制备方法
CN100594976C (zh) 纳米二氧化钛光催化室内净化剂的制备方法
CN111569856B (zh) In-Ga2O3复合光催化剂及其制备方法和应用
CN113101980A (zh) 一种具有可见光催化活性的TiO2/UiO-66复合材料的制备方法和应用
CN111569931A (zh) 一种用于光催化生产双氧水的碳氮催化剂的制备方法及其应用
CN106673118A (zh) 一种锐钛矿二氧化钛/碳复合材料的制备方法
CN108554427B (zh) 一种In2O3/BiOI半导体复合光催化剂及其制备方法和用途
CN112973757B (zh) 一种钒酸铋量子点/rgo/石墨相氮化碳三元复合光催化剂及其制备方法
CN111659445B (zh) 一种可见光催化剂及其制备和在降解有机废水中的应用
CN108311132A (zh) 一种可见光三元光催化剂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant