CN115106064A - 一种基于壳聚糖修饰的磁性纳米材料及其制备方法与应用 - Google Patents

一种基于壳聚糖修饰的磁性纳米材料及其制备方法与应用 Download PDF

Info

Publication number
CN115106064A
CN115106064A CN202210853006.8A CN202210853006A CN115106064A CN 115106064 A CN115106064 A CN 115106064A CN 202210853006 A CN202210853006 A CN 202210853006A CN 115106064 A CN115106064 A CN 115106064A
Authority
CN
China
Prior art keywords
sio
chitosan
magnetic
nano material
magnetic nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210853006.8A
Other languages
English (en)
Inventor
许志刚
田宇
刘智敏
苏敬淳
杨玉明
李娇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202210853006.8A priority Critical patent/CN115106064A/zh
Publication of CN115106064A publication Critical patent/CN115106064A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28085Pore diameter being more than 50 nm, i.e. macropores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/08Ferroso-ferric oxide [Fe3O4]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/286Treatment of water, waste water, or sewage by sorption using natural organic sorbents or derivatives thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/08Preparation using an enricher
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N2030/062Preparation extracting sample from raw material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biochemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Molecular Biology (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明属于纳米材料技术领域,公开了一种基于壳聚糖修饰的磁性纳米材料及其制备方法与应用。本发明以四氧化三铁磁性纳米材料作为内核,在其表面依次键合二氧化硅和壳聚糖得到磁性纳米材料。采用磁性固相萃取法富集并分离出环境水中的多氯联苯,以上述磁性纳米材料作为吸附剂,检测环境水中多氯联苯。Fe3O4@SiO2@CTS的磁性复合材料成本低、制备简单、操作简便快捷,且检出限低、选择性好、回收率高,可用于复杂环境水样中多种多氯联苯的同时检测。

Description

一种基于壳聚糖修饰的磁性纳米材料及其制备方法与应用
技术领域
本发明涉及纳米材料技术领域,尤其涉及一种基于壳聚糖修饰的磁性纳米材料及其制备方法与应用。
背景技术
多氯联苯由于化学稳定性、亲油性等性质,在自然环境中不容易降解,大量沉积在土壤、水体、空气等环境中,被植物等生物吸收,进而通过食物链积累最终聚积在人体体内,现代医学研究已证实多氯联苯在人体大量积累,会使得人类生殖系统产生疾病,改变人体免疫系统,严重的会导致癌症的产生。2001年国际社会通过了《斯德哥尔摩公约》,将多氯联苯列入持久性有机污染物名单,我国亦将多氯联苯列入《地下水质量标准》(GB/T 14848-2017)中,将9种多氯联苯列入地下水污染物控制指标中,严格控制多氯联苯的使用和排放。然而多氯联苯被禁止后,仍有大量相关报道,多氯联苯仍大量存在于环境水、土壤、沉积物等人类易接触的地方,且持续不间断对人类造成不可逆的伤害,研究和开发新型的现代分离分析检测方法仍有必要。
目前报道的针对多氯联苯的检测方法有:高效液相色谱法、气相色谱法、液相色谱串联质谱检测方法、气相色谱串联质谱检测方法等昂贵精密仪器的先进检测方法,但是由于多氯联苯的疏水性、结构类似物多、环境中存在量少,环境基质组分多,干扰大等原因,难以直接进行检测,通常采用固相萃取、分散固相萃取、液-液萃取、分子印迹法等现代样品前处理方法对样品进行前处理达到进样检测条件。但这些样品前处理及检测技术操作复杂,且其耗时长,往往需要专业技术人员来操作。固相萃取富集倍数高,但其操作较为繁琐,且难以直接从水相中富集到难降解、疏水性强的环境污染物。磁固相萃取是一种高效率的样品前处理方法,通过在Fe3O4等磁性材料上修饰和键合合适的功能材料,制备合适的吸附剂,结合外加磁场,使得包含分析物的吸附剂和基质快速分离,达到检测的条件。磁固相萃取由于样品前处理简单,高效快捷,磁性吸附剂容易回收,重复利用等特点,在现代分离分析技术中被广泛研究和应用。
壳聚糖(Chitosan,CTS)是一类碱性天然多糖类物质,来源广泛,生产成本低,绿色无毒害,由于其表面含有大量的羟基和氨基,容易改性,且壳聚糖自身属于超分子主体化合物,因其超分子大环分子的空腔能通过主客体相互作用,对目标分析物具有选择性吸附作用。被广泛应用在医学、食品、化工等众多领域中。然而壳聚糖有机物在水中溶解性小,容易分散流失,难以操控,简单的物理化学形式改性壳聚糖亦存在同样的缺陷,限制壳聚糖的应用和发展。
因此,如何提供一种新型的吸附分离复合材料对发展新型磁固相萃取方法具有重要意义。
发明内容
本发明的目的在于提供一种基于壳聚糖修饰的磁性纳米材料,解决现有技术的不足和环境水中多氯联苯的检测需求。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种基于壳聚糖修饰的磁性纳米材料,所述磁性纳米材料为Fe3O4@SiO2@CTS,由核心到外依次为Fe3O4、SiO2和CTS;
所述Fe3O4为球形结构,粒径为205~215nm;
所述Fe3O4外层包覆SiO2组成Fe3O4@SiO2
所述Fe3O4@SiO2为核壳结构,粒径为225~235nm;
所述Fe3O4@SiO2外层包覆壳聚糖组成Fe3O4@SiO2@CTS;
所述Fe3O4@SiO2@CTS的粒径为235~245nm。
本发明还提供了一种基于壳聚糖修饰的磁性纳米材料的制备方法,包括以下步骤:
S1:制备Fe3O4纳米粒子
将NaAc、聚乙二醇(PEG)溶于FeCl3·6H2O的乙二醇溶液中,在150~250℃加热6~10h得到Fe3O4粉末;
S2:制备Fe3O4@SiO2纳米粒子
将Fe3O4、乙醇(EtOH)、水、NH3·H2O混合后,加入SiO2前驱体,反应8~15h,得到Fe3O4@SiO2
S3:制备Fe3O4@SiO2@CTS纳米材料
将CTS、γ-缩水甘油醚氧丙基三甲氧基硅烷、N,N-二甲基甲酰胺(DMF)混合后在60~100℃搅拌20~30h,加入Fe3O4@SiO2后在60~100℃搅拌20~30h,通过磁性分离得到Fe3O4@SiO2@CTS。
优选的,在上述一种基于壳聚糖修饰的磁性纳米材料的制备方法中,S2中所述SiO2前驱体为四乙氧基硅烷、正硅酸丁酯、正硅酸乙酯、硅酸盐中的一种。
优选的,在上述一种基于壳聚糖修饰的磁性纳米材料的制备方法中,S1中所述FeCl3·6H2O、乙二醇、NaAc、PEG的用量比为2~4g:50~60mL:6~8g:1~3g。
优选的,在上述一种基于壳聚糖修饰的磁性纳米材料的制备方法中,S2中Fe3O4在使用前还包括进行超声;所述超声为Fe3O4在盐酸中超声;所述超声的时间为5~15min。
优选的,在上述一种基于壳聚糖修饰的磁性纳米材料的制备方法,S2中所述Fe3O4、乙醇、水、NH3·H2O、SiO2前驱体的用量比为0.5~1.2g:60~100mL:10~30mL:1~4mL:0.5~1mL。
优选的,在上述一种基于壳聚糖修饰的磁性纳米材料的制备方法,S3中所述Fe3O4@SiO2、CTS、γ-缩水甘油醚氧丙基三甲氧基硅烷和DMF的用量比为2~3g:1~2g:0.1~0.5g:120~160mL。
本发明还提供了一种基于壳聚糖修饰的磁性纳米材料在检测环境水中环境污染物多氯联苯中的应用。
优选的,在上述一种基于壳聚糖修饰的磁性纳米材料在检测环境水中环境污染物多氯联苯中的应用中,所述检测环境水中环境污染物多氯联苯的方法,包括以下步骤:
S1:样品预处理
环境水经过滤除去杂质得到样品溶液;
S2:磁固相萃取富集浓缩过程
向S1中所述样品溶液中加入基于壳聚糖修饰的磁性纳米材料Fe3O4@SiO2@CTS,调节样品溶液的离子强度为0~26.5%、pH为2~12后,经萃取后通过外部磁场进行分离,得到残渣,向残渣中加入解吸液解吸后,经超声分离得到上清液;
S3:测定多氯联苯的浓度
所述上清液经0.45μm尼龙有机相滤膜过滤后,采用气相色谱质谱联用测定多氯联苯的浓度。
优选的,S1中所述除去杂质的方法为经过滤纸过滤和0.22μm水相滤膜过滤;S2中所述样品溶液与基于壳聚糖修饰的磁性纳米材料Fe3O4@SiO2@CTS的用量比为20~40mL:30~50mg;S2中所述萃取的时间为2~120min,解吸液为甲醇、乙醇、乙腈、正己烷和二氯甲烷中的一种,解吸的时间为2~20min。
经由上述的技术方案可知,与现有技术相比,本发明具有如下有益效果:
1、基于壳聚糖修饰的Fe3O4@SiO2@CTS纳米吸附材料,由于其超分子大环分子的空腔是通过主客体作用进行识别,因此其能够对环境水样中多氯联苯具有优异的特异识别吸附性,实现了从水相中萃取富集到疏水性物质多氯联苯的目的。
2、本发明建立的一种环境水样中多氯联苯前处理的磁性纳米材料的制备及检测方法的检测限低至0.02~0.15μg/L,可以满足环境水样中多氯联苯的高灵敏检测,具有很好的通用性,比传统方法的检测精度和灵敏度高。
3、Fe3O4@SiO2@CTS纳米材料具有良好的重复使用性,经实验验证,该材料在经过十次循环使用后,其吸附量仍能达到初次使用时的90%以上。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,以下将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1为本发明基于上述磁性纳米材料检测多氯联苯的流程示意图;
图2为实施例1制备的Fe3O4纳米粒子、Fe3O4@SiO2纳米粒子、Fe3O4@SiO2@CTS纳米吸附材料的透射电镜图和扫描电镜图;
其中,A为Fe3O4纳米粒子的扫描电镜图;B为Fe3O4@SiO2纳米粒子的扫描电镜图;C为Fe3O4@SiO2@CTS纳米吸附材料的扫描电镜图;D为Fe3O4纳米粒子的透射电镜图;E为Fe3O4@SiO2纳米粒子的透射电镜图;F为Fe3O4@SiO2@CTS纳米吸附材料的透射电镜图;
图3为实施例5中多氯联苯的萃取率;
图4为实施例6中多氯联苯的萃取率;
图5为实施例7中多氯联苯的萃取率;
图6为实施例9中多氯联苯含量气相色谱质谱联用检测色谱图。
具体实施方式
本发明提供了一种基于壳聚糖修饰的磁性纳米材料,所述磁性纳米材料为Fe3O4@SiO2@CTS,由核心到外依次为Fe3O4、SiO2和CTS;
所述Fe3O4为球形结构,粒径优选为205~215nm,进一步优选为208~212nm,更优选为210nm。
所述Fe3O4外层包覆SiO2组成Fe3O4@SiO2
所述Fe3O4@SiO2为核壳结构,表面粗糙,具有轻微的皱纹,粒径优选为225~235nm,进一步优选为227~232nm,更优选为230nm。
所述Fe3O4@SiO2外层包覆CTS组成Fe3O4@SiO2@CTS;
所述Fe3O4@SiO2@CTS的粒径优选为235~245nm,进一步优选为238~242nm,更优选为240nm。
本发明还提供了一种基于壳聚糖修饰的磁性纳米材料的制备方法,包括以下步骤:
S1:制备Fe3O4纳米粒子
将NaAc、PEG溶于FeCl3·6H2O的乙二醇溶液中,在150~250℃加热6~10h得到Fe3O4粉末;
S2:制备Fe3O4@SiO2纳米粒子
将Fe3O4、EtOH、水、NH3·H2O混合后,加入SiO2前驱体,反应8~15h,得到Fe3O4@SiO2
S3:制备Fe3O4@SiO2@CTS纳米材料
将CTS、γ-缩水甘油醚氧丙基三甲氧基硅烷、DMF混合后搅拌20~30h,加入Fe3O4@SiO2后继续搅拌20~30h,通过磁性分离得到Fe3O4@SiO2@CTS。
在本发明中,S1中所述PEG优选为PEG-2000。
在本发明中,S1中所述FeCl3·6H2O、乙二醇、NaAc、PEG的用量比优选为2~4g:50~60mL:6~8g:1~3g,进一步优选为2.5~3.6g:52~56mL:6.3~7.5g:1.5~2.5g,更优选为3.0g:55mL:7g:2g。
在本发明中,S1中NaAc、PEG溶于FeCl3·6H2O的乙二醇溶液后,转移至聚四氟乙烯衬里的不锈钢高压釜中加热进行反应。
在本发明中,S1中优选为在150~250℃加热6~10h得到Fe3O4粉末,进一步优选为在160~220℃加热7~9h得到Fe3O4粉末,更优选为在200℃加热8h得到Fe3O4粉末。
在本发明中,S1中NaAc、PEG溶于FeCl3·6H2O的乙二醇溶液在150~250℃加热6~10h后,还包括将沉淀物冷却到室温并依次使用乙醇和水洗涤至中性,在60℃下真空干燥得到Fe3O4粉末。
在本发明中,S2中Fe3O4在使用前还包括进行超声;所述超声为Fe3O4在盐酸中超声;所述超声的时间优选为5~15min,进一步优选为8~12min,更优选为10min;所述盐酸的浓度优选为0.1~0.2mol/L,进一步优选为0.12~0.18mol/L,更优选为0.15mol/L;所述SiO2前驱体为四乙氧基硅烷、正硅酸丁酯、正硅酸乙酯、硅酸盐中的一种;所述盐酸和Fe3O4的用量比优选为5~15mL:0.5~1.5g,进一步优选为8~13mL:0.7~1.2g,更优选为10mL:1.0g。所述在盐酸中超声的目的是:盐酸对Fe3O4纳米粒子进行表面改性,使纳米粒子在水中具有良好的分散性,减少纳米粒子的团聚。
在本发明中,S2中所述加入SiO2前驱体反应的时间优选为8~15h,进一步优选为9~13h,更优选为12h。
在本发明中,S2中所述Fe3O4、EtOH、水、NH3·H2O、SiO2前驱体的用量比优选为0.5~1.2g:60~100mL:10~30mL:1~4mL:0.5~1mL,进一步优选为0.6~1.0g:70~85mL:15~22mL:1.5~3mL:0.6~0.9mL,更优选为0.7g:78mL:18mL:2mL:0.8mL。
在本发明中,S2中制备得到的Fe3O4@SiO2还包括后处理;后处理具体为Fe3O4@SiO2在60℃下真空干燥。
在本发明中,S3中所述Fe3O4@SiO2、CTS、γ-缩水甘油醚氧丙基三甲氧基硅烷和DMF的用量比优选为2~3g:1~2g:0.1~0.5g:120~160mL,进一步优选为2.2~2.7g:1.1~1.8g:0.2~0.4g:125~150mL;更优选为2.5g:1.5g:0.3g:140mL。
在本发明中,S3中将CTS、γ-缩水甘油醚氧丙基三甲氧基硅烷、DMF混合后优选为在60~100℃搅拌20~30h,进一步优选为在70~85℃搅拌22~26h,更优选为在80℃搅拌24h。
在本发明中,S3中加入Fe3O4@SiO2后优选为在60~100℃继续搅拌20~30h,进一步优选为在70~90℃继续搅拌22~26h,更优选为在85℃继续搅拌24h。
在本发明中,S3中得到的Fe3O4@SiO2@CTS还包括后处理;后处理具体为:依次用无水乙醇,丙酮和水洗涤后,在60℃下真空干燥。
本发明还提供了一种基于壳聚糖修饰的磁性纳米材料在检测环境水中环境污染物多氯联苯中的应用。
在本发明中,检测环境水中环境污染物多氯联苯的方法,包括以下步骤:
S1:样品预处理
环境水经过滤除去杂质得到样品溶液;
S2:磁固相萃取富集浓缩过程
向S1中所述样品溶液中加入基于壳聚糖修饰的磁性纳米材料Fe3O4@SiO2@CTS,调节样品溶液的离子强度为0~26.5%、pH为2~12后,经萃取后通过外部磁场进行分离,得到残渣,向残渣中加入解吸液解吸后,经超声分离得到上清液;
S3:测定多氯联苯的浓度
所述上清液经0.45μm尼龙有机相滤膜过滤后,采用气相色谱质谱联用测定多氯联苯的浓度。
在本发明中,S1中所述除去杂质的方法优选为经过滤纸过滤和0.22μm水相滤膜过滤;
S2中所述样品溶液与基于壳聚糖修饰的磁性纳米材料Fe3O4@SiO2@CTS的用量比优选为20~40mL:30~50mg,进一步优选为25~35mL:35~45mg,更优选为30mL:40mg;
S2中所述萃取的时间优选为2~120min,进一步优选为10~100min,更优选为70min;解吸液优选为甲醇、乙醇、乙腈、正己烷和二氯甲烷中的一种,进一步优选为甲醇、乙醇和正己烷中的一种,更优选为正己烷;解吸的时间优选为2~20min,进一步优选为5~18min,更优选为12min。
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种基于壳聚糖修饰的磁性纳米材料的制备方法,其制备流程如图1所示,包括以下步骤:
第一步、将2.7g的FeCl3·6H2O溶解在50mL乙二醇中,剧烈搅拌30min。随后将7.2gNaAc和2.0g PEG-2000加入溶液中,继续搅拌直到溶液完全搅拌均匀。然后,将棕色粘稠的溶液转移并密封在聚四氟乙烯衬里的不锈钢高压釜中。在200℃下加热8h后,将黑色沉淀物冷却至室温并依次用EtOH和超纯水洗涤数次直至中性,将得到的Fe3O4粉末在60℃下真空干燥。
第二步、用5mL 0.1mol/L HCl处理1.0g Fe3O4,超声处理10min。然后,将颗粒加入到含有80mL EtOH,20mL超纯水和2.5mLNH3·H2O的混合物中。将混合物搅拌均匀后,加入0.5mL四乙氧基硅烷,并在室温下搅拌12h,得到Fe3O4@SiO2,将得到的Fe3O4@SiO2粉末在60℃下真空干燥。
第三步、将1.5g的CTS和0.47g的γ-缩水甘油醚氧丙基三甲氧基硅烷在150mL DMF中于80℃搅拌24h。然后,向混合物中加入2.5g Fe3O4@SiO2并在80℃下搅拌24h。最后,从溶液中磁性分离出Fe3O4@SiO2@CTS纳米颗粒,并依次用无水乙醇洗涤2次,丙酮洗涤2次和去离子水洗涤2次,将得到的Fe3O4@SiO2@CTS粉末在60℃下真空干燥,密封保存。
上述方法制得的Fe3O4、Fe3O4@SiO2、Fe3O4@SiO2@CTS粉末的透射电镜图和扫描电镜图如图2所示。由图2可知,采用SEM和TEM研究了Fe3O4、Fe3O4@SiO2和Fe3O4@SiO2@CTS纳米粒子的形貌。三种纳米粒子的SEM图像如图2A~2C所示。磁铁矿纳米粒子几乎是单分散的,呈球形,平均直径约为200~250nm。在未包覆的Fe3O4到包覆的Fe3O4@SiO2和Fe3O4@SiO2@CTS颗粒中观察到粒径和粗糙度明显增加。深色的Fe3O4@SiO2纳米颗粒核心表面包覆灰色涂层CTS,直径尺寸从230nm增加到250nm,表明Fe3O4@SiO2@CTS材料的合成成功。Fe3O4、Fe3O4@SiO2和Fe3O4@SiO2@CTS纳米粒子分别分散在乙醇中的TEM图像如图2D~2F所示。Fe3O4纳米颗粒在形状和尺寸上基本均匀,没有明显的团聚。SiO2包覆后得到典型的核/壳结构形貌,相对较亮的壳层为SiO2,厚度约为10nm。此外,Fe3O4@SiO2复合材料被CTS包裹后,材料表面变得粗糙,这为Fe3O4@SiO2@CTS复合材料提供了更多的位点。这意味着该材料更有利于PCBs的吸附。
实施例2
一种基于壳聚糖修饰的磁性纳米材料的制备方法
第一步、将3.0g的FeCl3·6H2O溶解在55mL乙二醇中,剧烈搅拌30min。随后将7.5gNaAc和2.5g PEG-2000加入溶液中,继续搅拌直到溶液完全搅拌均匀。然后,将棕色粘稠的溶液转移并密封在聚四氟乙烯衬里的不锈钢高压釜中。在150℃下加热9h后,将黑色沉淀物冷却至室温并依次用EtOH和超纯水洗涤数次直至中性,将得到的Fe3O4粉末在60℃下真空干燥。
第二步、用7mL 0.1mol/LHCl处理0.8gFe3O4,超声处理8min。然后,将颗粒加入到含有70mLEtOH,15mL超纯水和3mLNH3·H2O的混合物中。将混合物搅拌均匀后,加入0.8mL正硅酸丁酯,并在室温下搅拌10h,得到Fe3O4@SiO2,将得到的Fe3O4@SiO2粉末在60℃下真空干燥。
第三步、将1.6g的CTS和0.5g的γ-缩水甘油醚氧丙基三甲氧基硅烷在125mL DMF中于90℃搅拌20h。然后,向混合物中加入2.7g Fe3O4@SiO2并在90℃下搅拌20h。最后,从溶液中磁性分离出Fe3O4@SiO2@CTS纳米颗粒,并依次用无水乙醇洗涤2次,丙酮洗涤2次和去离子水洗涤2次,将得到的Fe3O4@SiO2@CTS粉末在60℃下真空干燥,密封保存。
实施例3
一种基于壳聚糖修饰的磁性纳米材料的制备方法
第一步、将3.5g的FeCl3·6H2O溶解在60mL乙二醇中,剧烈搅拌30min。随后将8gNaAc和2.7g PEG-2000加入溶液中,继续搅拌直到溶液完全搅拌均匀。然后,将棕色粘稠的溶液转移并密封在聚四氟乙烯衬里的不锈钢高压釜中。在230℃下加热7h后,将黑色沉淀物冷却至室温并依次用EtOH和超纯水洗涤数次直至中性,将得到的Fe3O4粉末在60℃下真空干燥。
第二步、用10mL 0.1mol/L HCl处理1.2g Fe3O4,超声处理12min。然后,将颗粒加入到含有60mL EtOH,25mL超纯水和1.5mL NH3·H2O的混合物中。将混合物搅拌均匀后,加入0.7mL正硅酸乙酯,并在室温下搅拌8h,得到Fe3O4@SiO2,将得到的Fe3O4@SiO2粉末在60℃下真空干燥。
第三步、将1.7g的CTS和0.5g的γ-缩水甘油醚氧丙基三甲氧基硅烷在160mL DMF中于75℃搅拌30h。然后,向混合物中加入2.8g Fe3O4@SiO2并在75℃下搅拌30h。最后,从溶液中磁性分离出Fe3O4@SiO2@CTS纳米颗粒,并依次用无水乙醇洗涤2次,丙酮洗涤2次和去离子水洗涤2次,将得到的Fe3O4@SiO2@CTS粉末在60℃下真空干燥,密封保存。
实施例4
一种基于壳聚糖修饰的磁性纳米材料的应用
(1)分别准确量取体积为30mL样品溶液于萃取瓶中,使得萃取曲线溶液的浓度分别为0.1mg/L、0.2mg/L、0.4mg/L、0.6mg/L、0.8mg/L、1.0mg/L,进行萃取标准曲线的建立。
(2)准确添加0.050g实施例1制备的Fe3O4@SiO2@CTS粉末,摇匀,在漩涡振荡器上振荡萃取,振荡频率为250rpm,振荡萃取2h后,静置1min,磁分离,弃去上层液相,再加入1mL色谱正己烷,超声解吸10min,解吸后磁分离。
(3)然后取步骤(2)中萃取瓶中上层清液过有机相膜,清液过滤后放入液相小瓶,用于GC-MS测定。GC-MS检测后,得到各个浓度的萃取液所对应的峰面积,分别做三种多氯联苯的峰面积-浓度曲线,即为萃取标准曲线。
(4)根据步骤(3)得出的萃取标准曲线,根据信噪比S/N≥3确定检出限(LOD)。
结果显示:三氯联苯的萃取标准曲线方程为:Y=158.85X+1.99,R=0.9986,LOD=0.02μg/L;五氯联苯的萃取标准曲线为:Y=80.15X-5.4,R=0.9996,LOD=0.03μg/L;六氯联苯的萃取标准曲线为:Y=39.10X+10.5,R=0.9990,LOD=0.15μg/L。
实施例5
一种基于壳聚糖修饰的磁性纳米材料的应用
(1)用移液枪准确量取150μL含有10mg/L多氯联苯的甲醇溶液于萃取瓶中,用氮气将萃取瓶中的甲醇吹干。
(2)准确量取体积为30mL样品溶液(不含多氯联苯的模拟废水溶液)于上述萃取瓶中,离子强度为0%,pH为7,准确添加0.050g实施例1制备的Fe3O4@SiO2@CTS粉末,摇匀,在漩涡振荡器上振荡萃取,振荡频率为250rpm,振荡萃取2h后,静置1min,磁分离,弃去上层液相,再加入1mL色谱正己烷,超声解吸10min,解吸后磁分离。
(3)然后取步骤(2)中萃取瓶中上层清液过有机相膜,清液过滤后放入液相小瓶,用于GC-MS测定。
气相色谱条件:色谱柱:DB-5MS弹性石英毛细管色谱柱(30m×0.25mm i.d.×0.25μm d.f.,美国Agilent);进样口温度:250℃;载气为氦气(纯度≥99.999%);恒流流速:1.2mL/min;分流比10:1;进样量为:1μL。程序升温条件:初始温度80℃,保持2min,然后以20℃/min的速率升温至180℃,保持2min,再以3℃/min的速率升温至230℃,并保持2min,再以30℃/min的速率升温至300℃,并保持8min;
质谱条件:电离方式:电子源轰击(EI);离子源温度:260℃;传输线温度:280℃;溶剂延迟:5min;质谱检测采用选择离子检测模式(SIM)。
(4)通过GC-MS检测样品溶液中各分析物的浓度,计算其萃取率,结果如图3。
结果显示:样品溶液中的多氯联苯能被有效萃取,其中,三氯联苯的萃取率为37.8%,五氯联苯的萃取率为38.0%,六氯联苯的萃取率为32.4%。
实施例6
一种基于壳聚糖修饰的磁性纳米材料的应用
(1)用移液枪准确量取150μL浓度为10mg/L的多氯联苯的甲醇溶液于萃取瓶中,用氮气将萃取瓶中的甲醇吹干。
(2)准确量取体积为30mL样品溶液(不含多氯联苯的模拟废水溶液)于上述萃取瓶中,离子强度为0%,pH为7,准确添加0.050g实施例1制备的Fe3O4@SiO2@CTS粉末,摇匀,在漩涡振荡器上振荡萃取,振荡频率为250rpm,振荡萃取1h后,静置1min,磁分离,弃去上层液相,再加入1mL色谱正己烷,超声解吸15min,解吸后磁分离。
(3)然后取步骤(2)中萃取瓶中上层清液过有机相膜,清液过滤后放入液相小瓶,用于GC-MS测定。
气相色谱条件:色谱柱:DB-5MS弹性石英毛细管色谱柱(30m×0.25mm i.d.×0.25μm d.f.,美国Agilent);进样口温度:250℃;载气为氦气(纯度≥99.999%);恒流流速:1.2mL/min;分流比10:1;进样量为:1μL。程序升温条件:初始温度80℃,保持2min,然后以20℃/min的速率升温至180℃,保持2min,再以3℃/min的速率升温至230℃,并保持2min,再以30℃/min的速率升温至300℃,并保持8min;
质谱条件:电离方式:电子源轰击(EI);离子源温度:260℃;传输线温度:280℃;溶剂延迟:5min;质谱检测采用选择离子检测模式(SIM)。
(4)通过GC-MS检测样品溶液中各分析物的浓度,计算其萃取率,结果如图4。
结果显示:样品溶液中的多氯联苯能被有效萃取,其中,三氯联苯的萃取率为41.7%,五氯联苯的萃取率为40.2%,六氯联苯的萃取率为32.4%。
实施例7
一种基于壳聚糖修饰的磁性纳米材料的应用
(1)用移液枪准确量取150μL浓度为10mg/L的多氯联苯的甲醇溶液于萃取瓶中,用氮气将萃取瓶中的甲醇吹干。
(2)准确量取体积为30mL样品溶液(不含多氯联苯的模拟废水溶液)于上述萃取瓶中,加入氯化钠,使其配制成离子强度为25%的盐溶液,pH为7,准确添加0.050g实施例1制备的Fe3O4@SiO2@CTS粉末,摇匀,在漩涡振荡器上振荡萃取,振荡频率为250rpm,振荡萃取1h后,静置1min,磁分离,弃去上层液相,再加入1mL色谱正己烷,超声解吸15min,解吸后磁分离。
(3)然后取步骤(2)中萃取瓶中上层清液过有机相膜,清液过滤后放入液相小瓶,用于GC-MS测定。
气相色谱条件:色谱柱:DB-5MS弹性石英毛细管色谱柱(30m×0.25mm i.d.×0.25μm d.f.,美国Agilent);进样口温度:250℃;载气为氦气(纯度≥99.999%);恒流流速:1.2mL/min;分流比10:1;进样量为:1μL。程序升温条件:初始温度80℃,保持2min,然后以20℃/min的速率升温至180℃,保持2min,再以3℃/min的速率升温至230℃,并保持2min,再以30℃/min的速率升温至300℃,并保持8min。
质谱条件:电离方式:电子源轰击(EI);离子源温度:260℃;传输线温度:280℃;溶剂延迟:5min;质谱检测采用选择离子检测模式(SIM)。
(4)通过GC-MS检测样品溶液中各分析物的浓度,计算其萃取率,结果如图5。
结果显示:样品溶液中的多氯联苯能被有效萃取,其中,三氯联苯的萃取率为97.4%,五氯联苯的萃取率为94.4%,六氯联苯的萃取率为81.2%。
实施例8
一种基于壳聚糖修饰的磁性纳米材料用于环境水样中多氯联苯的检测。包括以下步骤:
(1)环境水样取自盘龙江水,水样取回后,经过滤纸过滤和0.22μm水相滤膜过膜去除杂质,冰箱中保存待测。
(2)将过滤后的水样用氯化钠调节为离子强度25%的盐溶液,准确量取体积为30mL实际环境水样品于萃取瓶中,pH为7,准确添加0.050g实施例1制备的Fe3O4@SiO2@CTS粉末,摇匀,在漩涡振荡器上振荡萃取,振荡频率为250rpm,振荡萃取1h后,静置1min,磁分离,弃去上层液相,再加入1mL色谱正己烷,超声解吸15min,解吸后磁分离,然后取上层清液过有机相膜,清液过滤后放入液相小瓶,用于GC-MS测定。
气相色谱条件:色谱柱:DB-5MS弹性石英毛细管色谱柱(30m×0.25mm i.d.×0.25μm d.f.,美国Agilent);进样口温度:250℃;载气为氦气(纯度≥99.999%);恒流流速:1.2mL/min;分流比10:1;进样量为:1μL。程序升温条件:初始温度80℃,保持2min,然后以20℃/min的速率升温至180℃,保持2min,再以3℃/min的速率升温至230℃,并保持2min,再以30℃/min的速率升温至300℃,并保持8min;
质谱条件:电离方式:电子源轰击(EI);离子源温度:260℃;传输线温度:280℃;溶剂延迟:5min;质谱检测采用选择离子检测模式(SIM)。
(3)通过GC-MS中得到各种样品中多氯联苯的峰面积,然后将其代入萃取标准曲线,计算其溶液浓度。
实施例9
本实施例提供一种基于壳聚糖修饰的磁性纳米材料用于环境水样中多氯联苯的检测,具体参见实施例8,不同之处在于步骤(1)中环境水样取自金汁河水。检测结果如图6所示。
实施例10
本实施例提供一种基于壳聚糖修饰的磁性纳米材料用于环境水样中多氯联苯的检测,具体参见实施例8,不同之处在于步骤(1)中环境水样取自月牙谭水。
三条河水样品中,只有在金汁河水中检测到了三氯联苯,浓度为0.65μg/L,如图6所示。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种基于壳聚糖修饰的磁性纳米材料,其特征在于,所述磁性纳米材料为Fe3O4@SiO2@壳聚糖,由核心到外依次为Fe3O4、SiO2和壳聚糖;
所述Fe3O4为球形结构,粒径为205~215nm;
所述Fe3O4外层包覆SiO2组成Fe3O4@SiO2
所述Fe3O4@SiO2为核壳结构,粒径为225~235nm;
所述Fe3O4@SiO2外层包覆壳聚糖组成Fe3O4@SiO2@壳聚糖;
所述Fe3O4@SiO2@壳聚糖的粒径为235~245nm。
2.权利要求1所述的基于壳聚糖修饰的磁性纳米材料的制备方法,其特征在于,包括以下步骤:
S1:制备Fe3O4纳米粒子
将NaAc、聚乙二醇溶于FeCl3·6H2O的乙二醇溶液中,在150~250℃加热6~10h得到Fe3O4粉末;
S2:制备Fe3O4@SiO2纳米粒子
将Fe3O4、乙醇、水、NH3·H2O混合后,加入SiO2前驱体,反应8~15h,得到Fe3O4@SiO2
S3:制备Fe3O4@SiO2@壳聚糖纳米材料
将壳聚糖、γ-缩水甘油醚氧丙基三甲氧基硅烷、N,N-二甲基甲酰胺混合后在60~100℃搅拌20~30h,加入Fe3O4@SiO2后在60~100℃搅拌20~30h,通过磁性分离得到Fe3O4@SiO2@壳聚糖。
3.根据权利要求2中所述基于壳聚糖修饰的磁性纳米材料的制备方法,其特征在于,S2中所述SiO2前驱体为四乙氧基硅烷、正硅酸丁酯、正硅酸乙酯、硅酸盐中的一种。
4.根据权利要求3中所述基于壳聚糖修饰的磁性纳米材料的制备方法,其特征在于,S1中所述FeCl3·6H2O、乙二醇、NaAc、聚乙二醇的用量比为2~4g:50~60mL:6~8g:1~3g。
5.根据权利要求4中所述基于超分子主体化合物修饰的磁性纳米材料的制备方法,其特征在于,S2中Fe3O4在使用前还包括进行超声;所述超声为Fe3O4在盐酸中超声;所述超声的时间为5~15min。
6.根据权利要求5中所述基于壳聚糖修饰的磁性纳米材料的制备方法,其特征在于,S2中所述Fe3O4、乙醇、水、NH3·H2O、SiO2前驱体的用量比为0.5~1.2g:60~100mL:10~30mL:1~4mL:0.5~1mL。
7.根据权利要求2~6任意一项中所述基于壳聚糖修饰的磁性纳米材料的制备方法,其特征在于,S3中所述Fe3O4@SiO2、壳聚糖、γ-缩水甘油醚氧丙基三甲氧基硅烷和N,N-二甲基甲酰胺的用量比为2~3g:1~2g:0.1~0.5g:120~160mL。
8.权利要求1所述的基于壳聚糖修饰的磁性纳米材料在检测环境水中环境污染物多氯联苯中的应用。
9.根据权利要求8中所述的应用,其特征在于,所述检测环境水中环境污染物多氯联苯的方法,包括以下步骤:
S1:样品预处理
环境水经过滤除去杂质得到样品溶液;
S2:磁固相萃取富集浓缩过程
向S1中所述样品溶液中加入基于壳聚糖修饰的磁性纳米材料Fe3O4@SiO2@壳聚糖,调节样品溶液的离子强度为0~26.5%、pH为2~12后,经萃取后通过外部磁场进行分离,得到残渣,向残渣中加入解吸液解吸后,经超声分离得到上清液;
S3:测定多氯联苯的浓度
所述上清液经0.45μm尼龙有机相滤膜过滤后,采用气相色谱质谱联用测定多氯联苯的浓度。
10.根据权利要求8或9中所述的应用,其特征在于,S1中所述除去杂质的方法为经过滤纸过滤和0.22μm水相滤膜过滤;
S2中所述样品溶液与基于壳聚糖修饰的磁性纳米材料Fe3O4@SiO2@壳聚糖的用量比为20~40mL:30~50mg;
S2中所述萃取的时间为2~120min,解吸液为甲醇、乙醇、乙腈、正己烷和二氯甲烷中的一种,解吸的时间为2~20min。
CN202210853006.8A 2022-07-19 2022-07-19 一种基于壳聚糖修饰的磁性纳米材料及其制备方法与应用 Pending CN115106064A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210853006.8A CN115106064A (zh) 2022-07-19 2022-07-19 一种基于壳聚糖修饰的磁性纳米材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210853006.8A CN115106064A (zh) 2022-07-19 2022-07-19 一种基于壳聚糖修饰的磁性纳米材料及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN115106064A true CN115106064A (zh) 2022-09-27

Family

ID=83333535

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210853006.8A Pending CN115106064A (zh) 2022-07-19 2022-07-19 一种基于壳聚糖修饰的磁性纳米材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN115106064A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104785214A (zh) * 2015-03-27 2015-07-22 安徽大学 壳聚糖包覆磁性介孔二氧化硅核-壳结构纳米粒子及其制备方法和应用
CN104874366A (zh) * 2015-05-29 2015-09-02 西北师范大学 壳聚糖磁性吸附材料的制备及在吸附污水中Pb2+、As3+的应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104785214A (zh) * 2015-03-27 2015-07-22 安徽大学 壳聚糖包覆磁性介孔二氧化硅核-壳结构纳米粒子及其制备方法和应用
CN104874366A (zh) * 2015-05-29 2015-09-02 西北师范大学 壳聚糖磁性吸附材料的制备及在吸附污水中Pb2+、As3+的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YU TIAN ET AL.: ""Magnetic solid phase extraction based on Fe3O4@SiO2@CTS nano adsorbent for the sensitive detection of trace polychlorinated biphenyls in environmental water samples"", 《MICROCHEMICAL JOURNAL》 *
李影;周艺峰;聂王焰;陈鹏鹏;: "壳聚糖包覆磁性介孔SiO_2纳米粒子的制备及表征", 安徽大学学报(自然科学版) *

Similar Documents

Publication Publication Date Title
CN108620048B (zh) 聚乙烯亚胺修饰的磁性微球制备方法及应用
Xu et al. Magnetic solid-phase extraction of protein with deep eutectic solvent immobilized magnetic graphene oxide nanoparticles
Chen et al. Magnetic solid-phase extraction for the removal of mercury from water with ternary hydrosulphonyl-based deep eutectic solvent modified magnetic graphene oxide
CN105148852B (zh) 一种巯基改性磁性MOFs吸附剂及其制备方法和应用
CN105879842B (zh) 一种磁性PAFs固相萃取剂及其制备方法和应用
Wang et al. Adsorption of environmental pollutants using magnetic hybrid nanoparticles modified with β-cyclodextrin
Gao et al. Preparation and characterization of uniformly sized molecularly imprinted polymers functionalized with core–shell magnetic nanoparticles for the recognition and enrichment of protein
CN108262019B (zh) 一种磁性磺酸基功能化COFs材料及其制备方法和应用
Nuryono et al. Chitosan-functionalized natural magnetic particle@ silica modified with (3-chloropropyl) trimethoxysilane as a highly stable magnetic adsorbent for gold (III) ion
Huang et al. Study and comparison of polydopamine and its derived carbon decorated nanoparticles in the magnetic solid-phase extraction of estrogens
CN101574645B (zh) 磁性纳米材料萃取剂及其制备方法
Huang et al. Ionic liquid-coated Fe 3 O 4/APTES/graphene oxide nanocomposites: Synthesis, characterization and evaluation in protein extraction processes
CN108276584B (zh) 一种人体尿液中芳香胺化合物的检测方法
CN109201019B (zh) 一种磁性聚酰亚胺复合材料及其制备方法和应用
Ye et al. Preparation and characterization of magnetic nanoparticles for the on-line determination of gold, palladium, and platinum in mine samples based on flow injection micro-column preconcentration coupled with graphite furnace atomic absorption spectrometry
CN110732307B (zh) 一种edta改性磁性纳米复合材料的制备方法及应用
CN106883411B (zh) 超顺磁性核壳结构介孔分子印迹聚合物的制备及作为固相萃取剂的应用
CN109092254B (zh) 一种双虚拟模板邻苯二甲酸酯分子印迹磁性材料的制备及应用方法
CN110385116A (zh) 一种磁性纳米复合材料及其制备和应用
Zhang et al. Preparation and characterization of iminodiacetic acid-functionalized magnetic nanoparticles and its selective removal of bovine hemoglobin
CN107511132A (zh) 一种磁性四氧化三铁纳米粒子及其等离子体改性方法和应用
CN110586041B (zh) 一种基于MOFs剥离石墨相碳化氮吸附剂的全氟烷基化合物萃取与分析方法
CN109351335B (zh) 一种磁性三叠烯-三嗪共价骨架固相萃取剂及其制备方法和应用
Kaykhaii et al. Magnetic molecularly imprinted polymer nanoparticles for selective extraction of copper from aqueous solutions prior to its flame atomic absorption determination
Kaneko et al. Optimization of carboxyl-functionalized mesoporous silica for the selective adsorption of dysprosium

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220927

RJ01 Rejection of invention patent application after publication