CN115093575B - 一种含离子型配体的链状钴基配合物材料及其制备方法和应用 - Google Patents

一种含离子型配体的链状钴基配合物材料及其制备方法和应用 Download PDF

Info

Publication number
CN115093575B
CN115093575B CN202210800112.XA CN202210800112A CN115093575B CN 115093575 B CN115093575 B CN 115093575B CN 202210800112 A CN202210800112 A CN 202210800112A CN 115093575 B CN115093575 B CN 115093575B
Authority
CN
China
Prior art keywords
cobalt
chain
complex material
ionic ligand
based complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210800112.XA
Other languages
English (en)
Other versions
CN115093575A (zh
Inventor
邵志超
陈军帅
高可心
毕前程
米立伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongyuan University of Technology
Original Assignee
Zhongyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongyuan University of Technology filed Critical Zhongyuan University of Technology
Priority to CN202210800112.XA priority Critical patent/CN115093575B/zh
Publication of CN115093575A publication Critical patent/CN115093575A/zh
Application granted granted Critical
Publication of CN115093575B publication Critical patent/CN115093575B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/79Acids; Esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/79Acids; Esters
    • C07D213/803Processes of preparation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/42Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of organic or organo-metallic materials, e.g. graphene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)

Abstract

本发明公开了一种含离子型配体的链状钴基配合物材料的制备方法及应用,将六水合硝酸钴、离子型配体1,1'‑[1,4‑亚苯基双(亚甲基)]双(3,5‑二羧基吡啶)(L)、N,N‑二甲基甲酰胺和水的混合物密封在玻璃瓶中,在超声波清洗机内充分震荡直至完全溶解;放置在90℃烘箱中反应24小时;以10℃/h的速率降至室温,得到红色块状晶体,用母液洗涤,干燥,得到钴配合物材料,化学式为{[Co(L)(H2O)4]·2H2O} n 。本发明制备的钴基配合物表现出优异的反铁磁性质,在300 K时磁化率为3.05 cm3 K mol−1。此外,随着外磁场继续增加至70 kOe,磁化值缓慢增加至2.58 Nβ。

Description

一种含离子型配体的链状钴基配合物材料及其制备方法和 应用
技术领域
本发明属于分子基磁性材料技术领域,具体涉及一种含离子型配体的链状钴基配合物材料及其制备方法和应用。
背景技术
金属配合物分子磁体是目前研究最广泛、最深入的一类分子磁体,其自旋载体为过渡金属。在其构建单元中,可以形成单核、双核及多核配合物。由这些高自旋的配位物进行适当的分子组装,可以形成一维、二维及三维分子磁体,可以形成链状或层状结构。分子磁性材料具有体积小、相对密度轻、结构多样化、易于复合加工成型等优点,使得其在电磁开关、航空航天材料、光磁材料、微波材料、隐身材料以及信息储存材料等方面具有非常重要的应用前景。作为一种新型的软材料,分子基磁性材料在近年来材料科学的研究中已成为化学家、物理学家以及生物学家非常重视的新兴科学领域。然而,目前报道的分子基材料难以满足高稳定性、高效率和可设计的需求。相比于其它磁性材料,金属配合物的优势在于其具有精确的结构信息,可以从分子尺度研究其磁学现象,因而对构建理想的磁性材料具有重要的指导意义。晶态配合物材料属于有机无机杂化材料,不仅p (有机成分) 和d (无机成分) 轨道提供具有电子自旋的性质,而且配位键也提供磁交换作用路径。因此,金属配合物在结构和磁性性能方面的进一步研究具有广阔的发展前景。
发明内容
针对现有技术中存在的问题,本发明提供了一种含离子型配体的链状钴基配合物材料及其制备方法和应用,本发明的钴基配合物材料制备方法简单易操作,成本低廉,合成时间短,产率较高,重复性强。低温时,具有明显的反铁磁行为,这不仅为晶态磁性材料提供了新的选择,也拓展了晶态配合物材料的合成路线和应用价值。
为解决上述技术问题,本发明采用以下技术方案:
一种含离子型配体的链状钴基配合物材料,所述链状钴基配合物材料为晶态材料,分子结构为{[Co(L)(H2O)4]•2H2O}n,其中n=∞。
本发明所述链状钴基配合物材料属于三斜晶系,空间群为P-1,晶胞参数为a=10.387(6)Å,b=10.792(6)Å, c=11.414(6)Å,α=83.933(18),β=70.795(18),γ=79.583(18),其最小结构单元由一个金属Zn2+,一个离子型配体和四个配位水分子组成。
本发明的含离子型配体的链状钴基配合物材料利用1,1'-[1,4-亚苯基双(亚甲基)]双(3,5-二羧基吡啶)(L)作为离子型配体,具体制备方法如下:
(1)将六水合硝酸钴、1,1'-[1,4-亚苯基双(亚甲基)]双(3,5-二羧基吡啶)、N,N-二甲基甲酰胺和水的混合物密封在玻璃瓶中,在超声波清洗机内充分震荡五分钟直至完全溶解;
(2)放置在90℃烘箱中反应24小时;
(3)以10℃/h的速率降至室温,得到红色块状晶体,用母液洗涤,干燥,得到基于钴配合物的材料。
进一步,所述步骤(1)中六水合硝酸钴和1,1'-[1,4-亚苯基双(亚甲基)]双(3,5-二羧基吡啶)的摩尔比为2:1,N,N-二甲基甲酰胺和水的体积比为3:2。
本发明还提供了一种含离子型配体的链状钴基配合物材料作为抗铁磁性材料应用。本发明测试该钴配合物在2~300 K温度范围内的磁学性质和在-70000-70000 Oe之间的磁化强度。在300 K时磁化率为3.05 cm3 K mol−1。此外,随着外磁场继续增加至70 kOe,磁化值缓慢增加至2.58 Nβ。磁化率随温度的变化曲线说明所述钴配合物呈现出明显的反铁磁性质。
本发明与现有技术相比具有以下有益效果:
1、本发明的钴基配合物材料通过常见的水热法工艺制备,制备方法简单易行,也更容易批量式生产,降低成本,为分子基磁性材料提供了新的选择,同时拓展了晶态配合物材料的应用价值;
2、本发明的钴基配合物材料的结晶状态良好,外观完整,在室温下可以保持长时间的稳定,为商业应用打下基础;
3、本发明的钴基配合物材料表现出优异的反铁磁性质,在300 K时磁化率为3.05cm3 K mol−1,最高磁化值达到2.58 Nβ。具有作为电磁屏蔽和信息存储材料的发展潜力。
附图说明
图1是材料制备用到的1,1'-[1,4-亚苯基双(亚甲基)]双(3,5-二羧基吡啶)离子型配体分子式。
图2是实施例1所得含离子型配体的链状钴基配合物材料结构图。
图3是实施例1所得晶态钴配合物材料的光学照片图。
图4是实施例1所得晶态钴配合物材料的高分辨扫描电镜图。
图5是实施例1所得晶态钴配合物材料的热重图。
图6 是实施例1所得晶态钴配合物材料的红外图。
图7 是实施例1所得晶态钴配合物材料的光电子能谱图
图8 是实施例1所得晶态钴配合物材料变温磁化率的图。
图9 是实施例1所得晶态钴配合物材料磁化率的数据居里-外斯定律线性拟合图。
图10 是实施例1所得晶态钴配合物材料磁化强度的图。
具体实施方式
以下通过实施例对本发明的上述内容做进一步详细说明,但不应该将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明上述内容实现的技术均属于本发明的范围。
实施例1
本实施例的晶态钴配合物材料的制备方法如下:
将六水合硝酸钴(CoNO3·6H2O) (0.0300克,0.01 mmol)、1,1'-[1,4-亚苯基双(亚甲基)]双(3,5-二羧基吡啶)(C22H22N2O12) (0.0100克,0.02 mmol)、N,N-二甲基甲酰胺(3ml)和H2O (2 ml)的混合物密封在10毫升玻璃瓶中,并在超声波清洗机内充分震荡五分钟直至完全溶解,然后放置在90 ℃ 烘箱中反应24小时。以10℃/h的速率降至室温,得到红色块状晶体,用母液洗涤,干燥,得到目标产物钴基配合物,称重,产率:81 %(基于C22H22N2O12计算得到)。
通过单晶X射线衍射仪测出晶体结构如图2。
钴配合物材料晶体学参数详见下表,CCDC号为2177127。
Figure 599163DEST_PATH_IMAGE002
1、对晶态钴配合物材料的形貌进行拍照
将实施例1得到的晶态钴配合物材料,放置在彩色光学显微镜下,并观察晶体的颜色和结晶状态,如图3所示。
2、对晶态钴配合物材料进行高分辨场发射扫描电镜分析
将干燥后的晶态钴配合物材料固定在导电胶上面,并喷金120 s,在蔡司Merlin紧凑型场发射扫描电子显微镜(FE-SEM)上进项操作,得到材料的高分辨扫描电镜图。并加上区域能谱仪(Mapping)对晶体粉末样品进行了表征,得到区域元素分析图像,如图4所示。
3、对晶态钴配合物材料进行热重分析
将干燥后的晶态钴配合物材料放置在Netzsch STA 449C热分析仪内,通入空气,并以10°C min的加热速率进行热重分析,如图5所示。
4、对晶态钴配合物材料进行红外分析
将干燥后的晶态钴配合物材料放置在研钵内研磨0.5 h得到均匀的粉末。并加入溴化钾粉末混合,压片制样,在400-4000 cm-1范围内,使用Thermo iS50 FT-IR对样品粉末进行FI-IR光谱分析,如图6所示。
5、对晶态钴配合物材料进行光电子能谱分析
将干燥后的晶态钴配合物材料放置在研钵内研磨0.5 h得到均匀的粉末,并压成薄片状涂敷在导电胶上面,采用Thermo scientific K-Alpha x射线光电子能谱仪测定了X射线光电子能谱(XPS),如图7所示。
实施例2
利用实施例1制备的晶态钴配合物材料进行变温磁化率的测试,步骤如下:
a、将晶态钴配合物材料粉末放在一个长圆柱形玻璃管内,悬挂在磁场中,样品管下端在磁极中央处,另一端则在磁场强度为零处。
b、在2~300K温度范围,外加1000 Oe直流磁场下对样品进行扫描,得到相应的磁化率。
c、本发明实施例2中所制备的钴配合物的变温磁化率曲线(χM-T)如图8所示。其在在300 K时磁化率为3.05 cm3 K mol−1,随着温度的降低,磁化率不断下降。磁化率随温度的变化曲线说明所述钴配合物呈现明显的反铁磁性。
实施例3
本发明实施例1中所制备的钴配合物在1000Oe磁场强度和2~300K温度范围内磁化率倒数((χM −1)随温度的变化趋势如图9所示。
将(χM −1 -T)磁化率的数据进行居里-外斯定律(χM=C/(T-θ)) 进行线性拟合,发现居里常数(C)和外斯常数(θ)分别是3.09 cm3 mol−1 K,-9.21 K。其中,外斯常数θ为负值,这表明晶态钴配合物材料具有反铁磁性质。
实施例4
利用实施例1制备的晶态钴配合物材料进行磁化强度的测试,步骤如下:
a、将晶态钴配合物材料粉末放在一个长圆柱形玻璃管内,悬挂在磁场中,样品管下端在磁极中央处,另一端则在磁场强度为零处。
b、在外加-70K-70KOe的直流磁场范围和2 K的温度下,对样品进行扫描,得到样品的磁化强度,如图10所示。
c、随着外磁场继续增加至70 kOe,磁化值缓慢增加至2.58 Nβ。因此,此材料可以在量子计算、信息存储和磁性传感器等领域得以应用。
以上实施例描述了本发明的基本原理、主要特征及优点,本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明原理的范围下,本发明还会有各种变化和改进,这些变化和改进均落入本发明保护的范围内。

Claims (6)

1.一种含离子型配体的链状钴基配合物材料作为抗铁磁性材料的应用,其特征在于:所述链状钴基配合物材料为晶态材料,分子结构为{[Co(L)(H2O)4]·2H2O} n ,其中n=∞;所述链状钴基配合物材料属于三斜晶系,空间群为P-1,晶胞参数为a=10.387(6) Å,b=10.792(6)Å ,c= 11.414(6) Å,α=83.933(18),β=70.795(18),γ=79.583(18),其最小结构单元由一个金属Co2+,一个离子型配体和四个配位水分子组成;
所述的含离子型配体的链状钴基配合物材料的制备方法,包括以下步骤:
将六水合硝酸钴、离子型配体1,1'-[1,4-亚苯基双(亚甲基)]双(3,5-二羧基吡啶)(L)、N,N-二甲基甲酰胺和水的混合物密封在玻璃瓶中,在超声波清洗机内充分震荡直至完全溶解,然后放置在烘箱中反应;反应结束后降至室温,得到红色块状晶体,用母液洗涤,干燥,得到钴配合物的磁性材料。
2.根据权利要求1所述的应用,其特征在于:所述六水合硝酸钴和离子型配体1,1'-[1,4-亚苯基双(亚甲基)]双(3,5-二羧基吡啶)(L)的摩尔比为2:1。
3.根据权利要求1所述的应用,其特征在于:所述N,N-二甲基甲酰胺和水的体积比为3:2。
4.根据权利要求1所述的应用,其特征在于:所述水热反应的温度为90℃,水热反应的时间为24小时。
5.根据权利要求1所述的应用,其特征在于:所述反应结束后降至室温是以10℃/h的速率降至室温。
6.根据权利要求1所述的应用,其特征在于:所述含离子型配体的链状钴基配合物材料在300 K时磁化率为3.05 cm3 K mol−1,随着外磁场继续增加至70 kOe,磁化值缓慢增加至2.58 Nβ。
CN202210800112.XA 2022-07-06 2022-07-06 一种含离子型配体的链状钴基配合物材料及其制备方法和应用 Active CN115093575B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210800112.XA CN115093575B (zh) 2022-07-06 2022-07-06 一种含离子型配体的链状钴基配合物材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210800112.XA CN115093575B (zh) 2022-07-06 2022-07-06 一种含离子型配体的链状钴基配合物材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN115093575A CN115093575A (zh) 2022-09-23
CN115093575B true CN115093575B (zh) 2023-05-19

Family

ID=83296985

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210800112.XA Active CN115093575B (zh) 2022-07-06 2022-07-06 一种含离子型配体的链状钴基配合物材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN115093575B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114957699B (zh) * 2022-07-06 2023-06-02 中原工学院 基于Cu-MOF的摩擦纳米发电材料及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103087111A (zh) * 2012-12-10 2013-05-08 天津师范大学 四唑基钴(ii)配合物磁性材料及其制备方法与应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114957699B (zh) * 2022-07-06 2023-06-02 中原工学院 基于Cu-MOF的摩擦纳米发电材料及其制备方法和应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103087111A (zh) * 2012-12-10 2013-05-08 天津师范大学 四唑基钴(ii)配合物磁性材料及其制备方法与应用

Also Published As

Publication number Publication date
CN115093575A (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
CN115093575B (zh) 一种含离子型配体的链状钴基配合物材料及其制备方法和应用
CN108440766B (zh) 一种钴金属有机骨架材料及其制备方法和应用
CN112280051A (zh) 一种钴基金属有机骨架Co-MOF材料的制备方法及应用
Wang et al. pH manipulates the assembly of a series of dysprosium clusters with subtle differences
CN110294771A (zh) 一种六核镝簇环状配合物单分子磁体及其制备方法
CN108558917B (zh) 一种锌-呋喃二甲酸有机框架材料及制备方法
Pasińska et al. A paraelectric–ferroelectric phase transition of an organically templated zinc oxalate coordination polymer
Li et al. 1D–3D mixed-ligand frameworks with an unusual dmp topology tuned by intersection angles of isomeric benzenedicarboxylates: magnetic properties, gas-dependent calcination-thermolysis and energy storage performances
Li et al. Radii-dependent self-assembly of chiral lanthanide complexes: synthesis, chirality, and single-molecule magnet behavior
González et al. Magnetic studies on hexahalorhenate (IV) salts of ferrocenium cations [Fe (C5R5) 2] 2 [ReX6](R= H, CH3; X= Cl, Br, I)
Li et al. Rational design of an organic–inorganic hybrid with Schiff base cations for an efficient quadratic nonlinear optical switch
Li et al. Highly stable drone-shaped lanthanide clusters: structure, assembly mechanism, and crystalline–amorphous transitions
CN105037405B (zh) 一种单分子磁体Dy2(salen)2(tta)4(OAc)2的制备方法
CN113105512A (zh) 一种具有单分子磁体性质的新型钴(iii)-硫簇基配位聚合物
CN111116343B (zh) 一种Dy(III)-Cu(II)共晶单分子磁体及其制备方法
Eppley et al. [Mn3O (O2CPh) 6 (py) 2] 2 (4, 4′-bpy) and [Mn9O7 (O2CC6H4-p-OMe) 13 (4, 4′-bpy)] 2: new multinuclear manganese complexes
CN106432363A (zh) 一种水溶性三核钴配合物及其制备方法
CN114605656B (zh) 一种钕基金属有机骨架材料Nd-MOF的制备方法及其应用
Wang et al. A Family of\left {Ni^ II _ 2 Ln^ III _ 2\right\} Ni 2 II Ln 2 III Butterfly Complexes: Lanthanide Contraction Effect on the Structures Magnetic Properties
Lu et al. The syntheses, structures, magnetic and luminescent properties of five new lanthanide (III)–2, 6-naphthalenedicarboxylate complexes
McGhee et al. Thermally activated magnetic interactions in a one-dimensional semiconductor. Structural, charge-transport, and magnetic studies of bis [(tetramethylporphyrinato) copper] perrhenate
CN113416218A (zh) 一种稀土-镍混金属分子基磁性材料合成方法和应用
Tan et al. Syntheses, structures and characterizations of two Ln (III)-3, 5-dichlorobenzoate coordination polymers
Liu et al. A novel heterospin polynuclear complex containing both macrocyclic and imino nitroxide radical ligands:{[CuL (H 2 O)](CuL) Mn (IM-2Py)}{[CuL (MeOH)](CuL) Mn (IM-2Py)}(ClO 4) 4· MeOH
CN104650123B (zh) 一种有机-金属薄膜的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant